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Abstract:
The analytical features of a Banach space K are characterized by the duality mappings

on a Banach space K. One example of a monotone duality mapping on K is the subdif-

ferential of proper convex functions on K. In this case, we look at various instances of

normalized duality mappings as well as the idea of monotone operators on K. The sur-

jectivity of the duality mappings and the notions of hemicontinuity and demicontinuity

are crucial. If A and B are two monotone mappings then their sum is always monotone

mapping but the sum of maximal monotone mapping may not be maximal in general.

Ultimately, the circumstance that results in the sum of two maximal monotone sets be-

coming a maximal monotone is revealed.

Keywords: Convex set, Duality mapping, Maximal monotone operator, Demicontinuity,
Re�exivity.

1. Introduction

We useK for real Banach space andK∗ for its dual. The evaluation of f ∈ K∗ at x ∈ K
is denoted by (f, x) or (x, f). The mapping J : K → 2K

∗
means J is the multivalued

mapping from K with the range as the subset of K∗. We call a space K strictly convex
if for all x, y ∈ K with x ̸= y , ||x|| − ||y|| = 1, ||µx + (1 − µ)y|| < 1, ∀µ ∈ (0, 1). It
is equivalent to say that K is strictly convex if and only if there is no any line segments
on the boundary of the unit ball. We call the space K uniformly convex if for 0 < ϵ < 2,
there exists δ > 0 : if ||x|| = 1, ||y|| = 1 and ||x− y|| ≥ ϵ. If A : K → K∗, we can de�ne
A with its subgraph in X ×X∗

{(x, f) ∈ K ×K∗, f = Ax}.
A subset of K ×K∗ is called monotone if for each (xi, fi) ∈ A, i = 1, 2,

(f1,−f2, x1 − x2) ≥ 0.

A is maximal monotone if no any other monotone set contains it properly. The sum of
two mappings A and B is de�ned as

A+B = {(x, f + g) : (x, f) ∈ A & (x, g) ∈ B}.
If A and B are monotone sets in K ×K∗, then A+B are clearly monotone. But it is

not con�rmed that A+B is maximal monotone if A and B are maximal monotone.
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There are di�erent contribution in this area by Lescarrent (1965) , Browder(1965) and
Rockfeller (1970). The common assumption is that at least one of A and B has a domain
with nonvoid interior. Here we study some useful interior for the case having neither
D(A) nor D(B) has non void interior from (Brezis, 1970).
In �rst section we discuss about duality mappings and the characteristics of the Banach
space using the nature of dual map. Then in second section we study some pertubation
results on monotone mappings.

2. Duality mappings on Banach space

A continuous and strictly increasing function ϕ : R+ → R+ is said to be weight function
if

ϕ(0) = 0 and lim
n→∞

ϕ(n) = ∞.

For any Banach space K, the mapping J : K → 2K
∗
de�ned by

Jx : {f ∈ K∗ : (f, x) = ||f ||||x||, ||f || = ϕ(||x||)}
is called the duality mapping of weight ϕ. If the weight function ϕ is identity , J is called
normalized duality mapping.

Example 1. For a Banach space K, the mapping A : K → 2K
∗
de�ned by

A(x) = ∂(
1

2
||x||2)

is the normalized duality mapping on K.

From (Asplund, 1967) we get the Banach space K is smooth if and only if each
duality mapping J of weight ϕ is single valued: in this case

⟨Jx, y⟩ = lim
t→∞

ψ(||x+ ty||)− ψ||x||
t

where ψ(t) =
∫ t

0
ϕ(x)dx a convex function on R+.

Proposition 1. If K is a Hilbert space then the normalized duality mappings on K are

linear and vice versa.

The normalized duality mapping is the identity operator after a Hilbert space is iden-
ti�ed with its dual in view of the Riesz representation theorem. It is important to know
whether the identi�cation is done before calculating the duality mapping or afterwards.

De�nition 1. (Ciaoranescu, (1990),p.153) A mapping A : K → 2K
∗
is said to be

monotone if for any x, y ∈ D(A) and u ∈ Ax, v ∈ Ay,

⟨u− v, x− y⟩ ≥ 0
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and a maximal monotone if it is monotone and

⟨u− v, x− y⟩ ≥ 0 =⇒ (x, u) ∈ G(A) for (y, v) ∈ G(A).

Example 2. Let Ω ∈ Rn be a bounded domain, q ≥ 2. De�ne the Sobolev space

W 1,q(Ω) = {g : Dig ∈ Lq(Ω), 0 ≤ i ≤ n}
under the norm

||g||1,q =
( n∑

i=0

||Dig||qq
)1/q

Let W 1,q
0 (Ω) denote the closure of the test function space C∞

0 (Ω) where the norm is de�ned

as

||g||01,q =
( n∑

i=0

||Dig||qq
)1/q

.

The pseudo-Laplacian operator

A : W 1,q
0 (Ω) →

(
W 1,q

0 (Ω)
)∗

is de�ned by

Ag = −
n∑

i=1

Di

(
|Dig|q−2Dig

)
, g ∈ W 1,q

0 (Ω).

Now for h, g ∈ W 1,q
0 (Ω),

⟨Ag, h⟩ =
∫
Ω

(
−

n∑
i=1

Di

(
|Dig|q−2Dig

)
h
)

= −
n∑

i=1

∫
Ω

Di

(
|Dig|q−2Dig

)
h

= −
n∑

i=1

(
|Dig|q−2Dig

)
h |∂Ω +

n∑
i=1

∫
Ω

|Dig|q−2DigDih

= 0 +
n∑

i=1

∫
Ω

|Dig|q−2DigDih

And so |⟨Ag, h⟩| = |
∑n

i=1

∫
Ω
|Dig|q−2DigDih|.

Since

|Dig|q−2Dig ∈ Lp(Ω)

and

Dih ∈ Lq(Ω).
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from Holders inequality

|⟨Ag, h⟩| ≤
n∑

i=1

|
∫
Ω

|Dig|q−2DigDih|

≤
n∑

i=1

|||Dig|q−1||p||Dih||q

≤
( n∑

i=1

|||Dig|q−1||pp
) 1

p
( n∑

i=1

||Dif ||qq
) 1

q

Using

|||Dig|q−1||pp =
∫
Ω

|Dig|(q−1)p

=

∫
Ω

|Dig|q

= ||Dig||qq
We �nd

|⟨Ag, h⟩| ≤
( n∑

i=1

||Dig||qq
) 1

p
( n∑

i=1

||Dih||qq
) 1

q

=
(
||g||01,q

) q
p ||h||01,q.

This shows that A is well de�ned and bounded.

Moreover,

⟨Ag − Ah, g − h⟩ ≥ 0.

Hence operator A is strictly monotone.

Theorem 1. (Petryshyn, 1970) A Banach space K is strictly convex if and only if the

duality mapping J of weight ϕ is strictly monotone.

As a consequence result, we say that all duality mappings on a strictly convex Banach
spaces are strictly monotone.

3. The role of duality mappings in surjectivity

Suppose K be a Banach space. A mapping A : K → K∗ is said to be coerceive if there
exists a function ψ : R+ → R with

lim
t→∞

ψ(m) = +∞ :

(u, x) ≥ ψ(||x||) ∀(x, u) ∈ G(A).
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The following result is the basic tool to solve various functional equations for monotone
operators.

Proposition 2. (Browder, 1968)
Consider a Banach space K which is re�exive. If B a closed convex subset of K and

if A : K → 2K
∗
a monotone mapping where D(A) ⊆ B and ϕ : B → K∗ a monotone,

bounded, coercive and demicontinuous operator, then there exists x0 ∈ B with

(u+ ϕx0, x− x0) ≥ 0, ∀(x, u) ∈ G(A).

Theorem 2. For any real re�exive Banach space K and a closed convex subset B of

K, if A : K → 2K
∗
a maximal monotone mapping with D(A) ⊆ B and ϕ : B → K∗ a

monotone bounded, coercive and demicontinuous operator, then A+ ϕ is surjective.

Proof. Let f ∈ K∗, de�ne A′x = Ax− f . Then A′ and ϕ has the above all properties. So
from above proposition there exists y ∈ B:

(g′ + ϕy, x− y) ≥ 0. ∀(x, g′) ∈ G(A)

i.e.
(g − (f − ϕy), x− y) ≥ 0, ∀(x, g) ∈ G(A).

As A is maximal monotone,
(y, f − ϕy) ∈ G(A).

This gives
f ∈ Ay + ϕy.

i.e. ∀f ∈ K∗ there exists y ∈ B : A(y) = gy + ϕy.
□

Now we present the surjectivity results for maximal monotone mappings involving such
a duality mappings.

Theorem 3. (Browder, 1966) Let K be a re�exive Banach space. A maximal mono-

tone and coercive mapping A : K → 2K
∗
is surjective.

Theorem 4. A monotone mapping A : K → 2K
∗
is maximal i� A + J is surjective on

any re�exive Banach space K.

Proof. From Theorem 2, the neccessity condition is completed. Suppose R(A+ J) = K∗

and A is not maximal monotone then there exists (x0, u0) ∈ K ×X :

(x0, u0) ̸∈ G(A)

but

(3.1) (u− u0, x− x0) ≥ 0, ∀(x,G) ∈ G(A).
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From hypothesis (x1, u1) ∈ G(A) so that

(3.2) u0 + Jx0 = u1 + Jx1

Using x = x1 and u = u1 in (3.1), we get

(u1 − u0, x1 − x0) ≥ 0.

Hence
(Jx1 − Jx0, x1 − x0) = 0.

Since J is strictly monotone, it follows that

x0 = x1 ∈ D(A).

Thus by (3.2)
u0 = u1 ∈ Ax1 ∈ G(A),

i.e. (x0, u0) ∈ G(A) and this is contradiction.
This completes the proof. □

Corollary 1. (Rockfeller, 1970) If A : K → 2K
∗
is maximal monotone and ϕ : K →

K∗ is a monotone bounded and hemicontinuous operator with D(ϕ) = K, then A + ϕ is

maximal monotone.

Proof. As D(ϕ) = K, Bϕ is demicontinuous and hence Bϕ + J is demicontinuous. Also
it is monotone, bounded and coercive then by Theorem 2, A+ ϕ+ J is surjective. Then
from above theorem A+ ϕ is maximal.

□

4. Pertubation results

The main problem in the pertubation theory of maximal monotone sets is the deter-
mination of the condition under which the sum of two maximal sets A and B is maximal.
First look at the following example.

Example 3. Let K = L2(R+), Ag = −g′′ with D(A) = {g ∈ H2(R+), g(0) = 0} and

Bg = −g′′ with D(B) = {g ∈ H2(R+), g
′(0) = 0}. Here A and B are maximal monotone

but A+B is not maximal monotone.

The following theorem gives the condition for the sum of maximal monotone mappings
to be again a maximal monotone.

Theorem 5. (Rockfeller,1970)
Let K be a re�exive and A and B be two maximal monotone mappings: if intD(A) ∩

D(B) ̸= ϕ, then A+B is maximal monotone.

Theorem 6. Let K be a re�exive Banach space and A, B are two maximal monotone

sets in K ×K∗ such that

6



(1) D(A) ⊂ D(B)
(2) |B(x)| ≤ k(||x||)|Ax|+ C(||x||),
where k(r) and C(r) are non-decreasing functions of r and k(r) < 1 ∀r. Then A+B

is maximal monotone in K ×K∗.

Proof. With no loss of generality suppose that 0 ∈ D(A), 0 ∈ A0 and 0 ∈ B0. We can get
it by the shifting domain and range of A and B.
Suppose {|| · ||p} be the family of equivalent norm on K. Then A + B is maximal if for
every f ∗ ∈ K∗ and u ∈ K there exists p:

f ∗ + Jp(u) ∈ R(Jp + A+B).

We take an equation

(4.1) Jp(xλ) + x∗λ +Bt
λxλ = f ∗ + Jp(u), [xλ, x

∗
λ] ∈ A.

For every f ∗ ∈ K∗, u ∈ K and a �xed t, this equation has a unique solution xλ.
Then

f ∗ + Jp(u) ∈ R(Jp + A+B)

is bounded as ||Bt
λxλ||t is bounded as λ→ 0. Multiplying (4.1) by xλ, we get

||xλ||t ≤ ||f ∗||t + ||u||t ≤ t(||f ∗||+ ||u||),
as Bt

λ0 = 0.
Take R = 2(||f ∗||+ ||u||) and t such that 1 < t < 2 and k(R)t2 < 1. Using (4.1) , we get

t−1|Axλ| ≤ ||Axλ||t
≤ ||x∗λ||t
≤ ||f ∗||t + ||Bt

λxλ||tp+ ||u||t + ||xλ||t
≤ 2t(||f ∗||+ ||u||) + |Bxλ|t
≤ 2t(||f ∗||+ ||u||) + t|Bxλ|
≤ 2t(||f ∗||+ ||u||) + tk(R)|A(x)|+ tC(R)

This shows that |Axλ| is bounded then |Bxλ|t is bounded. Hence
||Bt

λxλ||t
is bounded. This completes the proof. □

Remark: We can use for x ∈ D(A) there exists a neighbourhood ux of x, tkx < 1 and
a constant Cx :

|By| ≤ kx|Ay|+ Cx

for all y ∈ D(A) ∩ ux if K and K∗ are uniformly convex.
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