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Abstract: This is a quick overview of the isomorphism between spaces of continuous 
functions, or C(X) type spaces, that depend on compact Hausdorff spaces outfitted with the 
uniform norm. When two compact metric spaces, X and Y, are homeomorphic, Banach 
assumed the problem in 1932. He came to the conclusion that if C(X) and C(Y) are isometric 
isomorphic, then X and Y are homeomorphic. Stone then generalized this outcome for a 
general compact Hausdorff space in 1937. Then it is frequently referred to as the Banach-
Stone theorem. There are numerous variations of this classic result. We can derive the 
topological features of X and Y from Gelfand and Kolmogoroff's algebraic version, which 
was published in 1939. 
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1. Introduction  

When X and Y are homeomorphic, there is one issue from the time of Banach. This 
issue was resolved by Banach in 1932 [Banach, 1932, p. 41] for the compact 
Hausdorff spaces X and Y, and the result is known as the Banach theorem. According 
to this theorem, the linear structure of C(X) and C(Y) establishes the 
homeomorphism between X and Y.  In other words, X and Y are homeomorphic if 
and only if C(X) and C(Y) are linear isometric. The distance-preserving function from 
C(X) and C(Y), which is also linear, is the linear isometry. i.e. 
                               T : C(X) → C(Y ) : T|f1 − f2| = |T(f1) − T(f2)|. 
 
The Banach Stone theorem was developed by Stone in 1937 for general compact Hausdorff 
spaces X and Y. According to the Banach Stone theorem, homeomorphism exists between 
two compact Hausdorff spaces, X and Y, when C(X) and C(Y) spaces are subjectively 
isometric. In numerous contexts, this finding has been discovered to have numerous 
extensions, generalizations, and variants. Here, we review some established findings about 
algebraic and Riesz isomorphism. Characterizing the topology of X in terms of a particular 
algebraic structure on C is the main focus (X). 
 

2. Banach-Stone Theorem 
 
The set of all bounded linear functionals on X that have the supremum norm is a normed 
space itself for every normed space X. Dual space of X is the term for this, and X* serves as 
the symbol. Consider the following scenario: We are given a set X, a topological space (Y, ), 
and a family F of mappings f: X Y. Create a topology on X such that f F is continuous 
throughout. 

 
As a result, we must provide the open set collection, OX. This is not difficult; if we 
select OX = P(X) (power set), we are done; however, this topology is meaningless. 
Nothing in this topology will converge (apart from the constant sequence). The 
topology is rather complex. Let (Y, τ) be a topological space and X be a 
predetermined (non-empty) set. Suppose F is a family of maps with the form f: X→  
Y. For X, there is a weakest topology that allows all f   to be continuous. Permit us to 
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attempt to describe this topology. We'll abbreviate it as τw. Keep in mind that we 
must have if f∈ F is continuous on X. i.e. 
 
                                                            ∀ f ∈ F and  ∀  V ∈ τ,  f -1 (V ) ∈ τw.  
 
 On the other hand, any topology containing the set 
                                                             ψ = {f −1  (V ) : V ∈ τ, f ∈ F}  
will  ensure that with regard to that topology, f  is continuous. Therefore,  ψ ⊆ τw.  
The topology generated by the set 
  
                                                             ψ = {f −1  (V )  : V ∈ τ, f ∈ F} 
 on X is called the weak topology on X and is denoted by σ(X, F). For any  normed 
space X, X ⊆ X∗∗. For x ∈ X, let  gx: X∗ → K be defined by gx(f) = f(x).  Then   gx ∈ X∗∗. 
Thus, we obtain a canonical mapping C : X → X∗∗, defined by  
                                                            Cx = gx  
i.e.  
                                                           (Cx)(f) = gx(f) = f(x).  
The weakest topology defined on X∗ which makes all gx : X∗ → K continuous is called 
weak∗ topology σ(X∗ , X). Any set G is open in W∗ -topology of X∗ iff for every g ∈ G 
there exists an ϵ > 0 and x1, x2, . . . , xn ∈ X such that   
                                                              {f ∈ X∗ : |(f − g)(xi)| < ϵ} ⊂ G.  
  The convergence of {fn} ⊂ X∗ in σ(X∗ , X) is given as,  
 
Proposition 1. [Fabian M., 2001, p.67] For a linear normed space X, a sequence 
{fn} ∈ X∗ converges weakly to f iff fn(x) converges to f(x) for all x ∈ X.  
 
A compact Hausdorff space X can be embedded into the dual space  C(X)∗ of C(X) 
through the evaluation map 
 
                                                            δ : X → C(X) defined by δx = f(x).  
 
This can be proved by the help of Urysohn,s lemma.  
 
    For all x1, x2 ∈ K with x1 ≠ x2 and for  f ∈ C(X),  f(x1) ≠ f(x2) ⇒ δx1 (f) ≠ δx2 (f) ⇒ δ(x1) ̸= 
δ(x2).  
 
Thus δ is one-one. Now to show δ is continuous, let kα is a net converging to x in X. 
By the condition of weak convergence, for every f ∈ C(X), 
                                                          f(xα) → f(x) =⇒ δxα →w∗  δx.  
 Lastly, since every continuous functions on a compact sets are homeomorphism, δ is 
homeomorphism onto it's  image. Function δx lies in the unit ball of C(X)∗ . From 
[Arens et al.,(1947), p. 501] every evaluation functional and their negatives are the 
extreme point of the unit ball of C(X)∗ . 
 
        Extreme point of any convex subset K of a linear space L is the point of K which 
does not lie in the interior of any line segment of K.  
 
Definition 1 (Adjoint operators) For a bounded linear operator T : X → Y , the 
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new operator T∗ : Y∗ → X∗ defined by  
                                                          ∀ g ∈ Y∗ and x ∈ X, (T∗ g)(x) = g(Tx)  
is called the adjoint operator of T.  
 
This adjoint operator satisfies the condition  
                                                          T∗ f(x) = g(x) = (g ◦ T)(x) = g(T(x)).  
 Theorem 1. [Richard, (2002), p. 25](Banach-Stone Theorem) For a compact 
Hausdorff spaces X and Y, if  T is the surjective  isometry between C(X) and C(Y ) 
then there exists a homeomorphism τ : Y → X and |h(y)| = 1 for all y ∈ Y such that  
                                                       T(f)(y) = h(y)f(τ (y)), ∀ f ∈ C(X) and y ∈ Y.  
 
We will discover that a linear isometry T: C(L)→ C(K) must be a weighted 
composition map of the form (T f) = a (f h), where a is a continuous scalar function 
with |a| = 1 and h is a homeomorphism from K onto L. There is further discussion of 
the initial Banach proof for compact metric spaces. Furthermore, we incorporate the 
Mazur-Ulam theorem concerning the linearity of isometries between normed spaces. 
 
       3.  Algebraic Isomorphism between the C(X) apaces  
 
             The algebraic extension of Banach-Stone theorem gives an idea about how the 
topological properties can be extracted from the algebraic nature of C(X) spaces. It was first 
given by Gelfand and Kolmogorff [Gelfand and Kolmogorff, 1939, p. 13] in 1939 for 
compact spaces. Here X will be a compact Hausdorff space and we shall consider on C(X) its 
algebra structure.    
 
    Definition 2 (Algebra Isomorphism). A map ψ between two algebraic structure A and B 
is called algebraic isomorphism if  for all a1, a2 ∈ A, 
                        (1) ψ(a1 + a2) = ψ(a1) + ψ(a2);  
                        (2) ψ(a1 · a2) = ψ(a1) · ψ(a2);  
                       (3) ψ(1X) = ψ(1Y ) and  
                       (4) ϕ is bijective.  
 
To prove the Gelfand and Kolmogoroff theorem we need the following theorem from Stone 
[Stone M., (1937), p. 79].  
 
Lemma 1. For a compact Hausdorff space X and for every nonzero multiplicative functional 
ψ : C(X) → ℝ  there exists a unique x ∈ X such that ψδx, that is ψ(f) = f(x), for all f ∈ C(X). 
 
 Proof. Since ψ is a nonzero multiplicative functional, 
                                                              ψ(1) = ψ(1 · 1) = ψ(1) · ψ(1).  
This implies that ψ(1) = 1. Similarly,  
                                                              ∀λ ∈ R, ψ(λ) = λ.  
 
     Moreover, ψ(g) ≠ 0 when Z(g) = ϕ, since in this case 1/g ∈ C(X) and  
 
                                                              1 = ψ(1) = φ(g) · ψ( 1/g ).  
 
Now we have to show that for every f ∈ C(X) there exists x ∈ X such that 
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                                                              ψ(f) = f(x). 
 On contrary suppose that for some function f ∈ C(X) we have  
 
                                                            ∀x ∈ X, g(x) = f(x) − ψ(f) ≠0 .   
Thus Z(g) = ϕ and  
                                                            ψ(g) = ψ(f) − ψ(f) = 0,  
a contradiction.  
Since X is compact, the intersection of all the finite family of closed subsets of X is 
nonempty. So there exists x ∈ X with  
                                                         x ∈ ∩Z(f − ψ(f))  
i.e. 
                                                         ψ = δx.  
Lastly the uniqueness of x comes from the fact that C(X) seperates the points of X.  
 
 Theorem 2 (Gelfand and Kolmogoroff , (1939), p. 13). Let X and Y be a compact spaces. 
Then C(X) and C(Y ) are isomorphic as algebras if and only if X and Y are homeomorphic. 
Moreover, every algebra isomorphism T : C(Y ) → C(X) is of the form T f = f ◦ h where h → 
Y is a homeomorphism.  
 
Proof. Let h : X → Y be a homeomerphism between X and Y . Here we have to show that T : 
C(Y ) → C(X) defined by T f = f ◦ h is an algebra isomerphism. For f1, f2 ∈ C(Y ) and x ∈ X,  
 
                                                         T(f1 + f2)(x) = (f1 + f2) ◦ h(x)  
                                                                             = (f1 + f2) h(x)  
                                                                             = f1(h(x)) + f2(h(x))  
                                                                             = f1 ◦ h(x) + f2 ◦ h(x)  
                                                                             = T f1(x) + T f2(x).  
Similarly, we can show that 
 
                                                        T(f1 ·  f2)(x) = T f1(x) · T f2(x).  
 
This shows that T is algebraic homomorphism.  
Again, let 1X ∈ C(Y ). Then  
                                                          T1X(y) = 1x ◦ h(y) = 1.  
  Thus T(1x) = 1Y .  
To show T injective, let f1, f2 ∈ C(Y ) then  
                                                       ∀x ∈ X, T f1(x) = T f2(x) ⇒ f1 ◦ h(x) = f2 ◦ h(x) ⇒ f1h(x) = 
f2h(x) .  
This implies that  
                                                        f1 = f2.  
 
Finally, for every f ◦ h ∈ C(X) there exist f ∈ C(Y ) and h : X → Y such that 
                                                      T f = f ◦ h.  
Thus T : C(Y ) → C(X) a algebra isomorphism. Conversely, let T : C(Y ) → C(X) is an 
algebra isomorphism. For each x ∈ X, define ψ : C(Y ) → ℝ by  
                                                       ψ(f) = δx ◦ T(f) = T f(x).  
For  f1, f2 ∈ C(Y ),  
                                                       ψ(f1, f2) = δx ◦ T(f1 ·  f2)  
                                                                    = δx ◦ (T(f1) · T(f2))  
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                                                                    = δx ◦ (T f1) · δx ◦ (T f2)  
                                                                    = ψ(f1) · ψ(f2).  
      Therefore ψ = δx ◦ T : C(Y ) → ℝ is a nonzero multiplicative functional.  
So from above lemma there exists unique y = h(x) ∈ Y such that 
                                                                 δx ◦ T = δh(x) i.e.  
 
                                                            ∀f ∈ C(Y ), T f(x) = f(h(x)).  
 Thus the map satisfies  
 
                                                           ∀f ∈ C(Y ), T f = f ◦ h ∈ C(X).  
 
Now it remains to show that h is continuous. Let {xn} ⊆ X and x ∈ X such that  
                                                             xn → x.  
Suppose that  
                                                            h(xn) → h(x).  
Since f is continuous,   
                                                           f(h(xn)) → f(h(x)).  
This implies that  
                                                          T f(xn) → T f(x).  
This contradicts xn → x since T f ∈ C(X). Thus for xn → x in X, 
                                                           h(xn) → h(x) in Y .  
Therefore h : X → Y is continuous map. Since h is defined between compact spaces, h is 
homeomerphism between Y and X.  
 This result gives the characterization of the topological space X from the algebraic characters 
of the ring C(X).  
 
                       4. Riesz isomorphism between the C(K) spaces  
 
                       4.1. Riesz space and Riesz homomorphism.  
 
Definition  3. (1) A linear space L is called an ordered vector space if L is partially ordered 
in such a manner that the partial ordering is compactible with the algebraic structure i.e. if f, 
g ∈ L then f ≤ g implies  

∀ h ∈ L, f + h ≤ g + h  
and f ≥ 0 implies  
                                                       ∀ a ∈ R, a ≥ 0, a f ≥ 0 .  
 (2) A real linear spsce L is called a Riesz space if L is partially ordered in such a manner 
that (a) L is lattice (b) L is an ordered vector space. 
 Example  1. (1) The cartesian space  ℝ2 , partially ordered by (x1, x2) ≤ (y1, y2) if x1 < y1 or 
if x1 = y1and x2 ≤ y2 is Riesz space. 
 (2) Let X be a non-empty set and let B(X) be the collection of all bounded real valued 
functions dened on X. Clearly B(X) is a vector space under the pointwise addition and scalar 
multiplication which is ordered by the positive cone    
                                                          B(X)+ = {f ∈ B(X) : f(t) ≥ 0 ∀t ∈ X}.  
Thus f ≥ g holds iff f − g ∈ B(X)+. Obviously  
                                                         (f ∨ g)(t) = max {f(t), g(t)} and 
                                                        (f ∧ g)(t) = min {f(t), g(t)}  
 for each t ∈ X & f, g ∈ B(X). Thus B(X) is a Riesz space.  
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Definition 4. The collection of all u ∈ L satisfying u ≥ 0 is called the positive cone of L. 
Elements in the positive cone are called positive elementts. We denote it by  
                                                         L+ = {u ∈ L : u ≥ 0}.  
Furthermore for arbitrary f ∈ L, we define f+ = f ∨ o, f − = (−f) ∨ 0, |f| = (−f) ∨ f.  
 
Definition 5. (Riesz subspace) A linear subspace V of  L is called a Riesz subspace if f, g ∈ V 
implies f ∨ g ∈ V .(f ∧ g also lies in V since f + g = f ∨ g + f ∧ g.)  
 
Example 2. The space C[0, 1] is the Riesz space. The linear subspace V of C[0, 1] consisting 
of all constant function on [0, 1] is Riesz subspace of C[0, 1].  
 
Definition 6. (1) A linear map ϕ : L → M is called positive (in notation ϕ ≥ o), if ϕ(L+) ⊂ M+.  
                      (2) A linear map ϕ : L → M is called a Riesz homomorphism if f, g ∈ L+ and 
f∧g = 0 implies  
                                                                    ϕ(f)∧ϕ(g) = 0.  
 
 
Theorem 3. [Junge E., (1977), p. 15] Let ϕ : L → M be a linear map then the following 
statements are equivalents  
                     (1) ϕ is Riesz homomorphism  
                     (2) ϕ(f ∧ g) = ϕ(f) ∧ ϕ(g) ∀f, g ∈ L  
                     (3) ϕ(f ∨ g) = ϕ(f) ∨ ϕ(g) ∀f, g ∈ L.  
 
 
Theorem 4. [Junge E., (1977), p. 78] For a compact Hausdorff space X and every a ∈ X 
define ϕa : C(X) → R by  
                      ϕa(f) = f(a) (f ∈ C(X)).  
Then ϕa is Riesz homomorphism and ϕa(1) = 1. Conversely, for every Riesz homomorphism ϕ 
: C(X) → R with ϕ(1) = 1 there exists a unique a ∈ X such that ϕ = ϕa. \ 
 
Proof. Let f, g ∈ C(X). Now, 
                                              ϕa(f ∧ g) = (f ∧ g)(a)  
                                                            = f(a) ∧ g(a)  
                                                            = ϕa(f) ∧ ϕa(g) ∀f, g ∈ C(X).  
Thus ϕa is Riesz homomerphism. And ϕa(1) = 1(a) = 1 being constant function. Conversely, 
let ϕ be a Riesz homomerphism C(X) → ℝ and ϕa(1) = 1. If possible suppose that for every a 
∈ X there exist an fa ∈ C(X) such that                                                                                                                                                                   
ϕ(fa) ≠ ϕa(fa).  
For each a, set  
                                                        ga = |fa − ϕ(fa)1|.  
Then  
                                                        ga(a) = |ϕa(fa) − ϕ(fa)| > 0  
while  
                                                        ϕ(ga) = |ϕ(fa) − ϕ(fa)ϕ(1)| = 0.  
Because X is compact and each ga is continuous, there exists a1, a2,  . . .  , am ∈ X such that 
                                                         X =∪  {x ∈ X : gai (x) > 0}.  
  Now let g = ga1 ∨ . . . ∨ gam. Then  
                                                       ∀x ∈ X, g(x) > 0 .   
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As g is continuous and X is compact, there must exist a δ > 0 such that  
                                                      ∀ x ∈ X, g(x) > δ.  
Then  
                                                      ϕ(g) ≥ ϕ(δ1) = δϕ(1) = δ > 0.  
On the other hand  
                                                    ϕ(g) = ϕ(ga1 ) ∨ . . . ∨ ϕ(gam) [since ϕ is Riesz 
homomerphism]  
                                                            = 0  
which  is contradiction.  
Thus there must exist a a ∈ X such that  
                                                        ϕ = ϕa.  
The uniqueness follows from Urysohn's lemma; if x, y ∈ X and x ≠ y then there exist an f ∈ 
C(X) such that  
                                                          f(y) = 1 and f(x) = 0  
i.e.   
                                                         ϕx(f) = 0 and ϕy(f) = 1.  
 If ϕ is a continuous map of a compact Hausdorff space Y into a compact Hausdorff space X, 
then Φ : f → f ◦ϕ is a Riesz homomorphism of C(X) into C(Y ) with Φ(1) = 1.  
The converse is explained in the following.  
 
Theorem 5. [[Junge E., (1977), p. 80] Let X and Y be a compact Hausdorff space and Φ a 
Riesz homomerphism of C(X) into C(Y ) such that Φ(1) = 1. Then there exist a unique 
continuous map ϕ : Y → X such that  
                                                           Φf = f ◦ ϕ (f ∈ C(X)).  
Proof.  Let Φ : C(X) → C(Y ) a Riesz homomorphism with Φ(1) = 1. Then there exist unique 
element ϕ(y) ∈ C(X) such that 
                                                          (Φf)(y) = Φϕ(y) (f)  
                                                                      = f(ϕ(y)) ∀f ∈ C(X).  
Thus we obtain a ϕ : Y → X with the property 
                                                                 Φf = f ◦ ϕ (f ∈ C(X)). 
 Now it remains to show that ϕ is continuous. Let U ⊂ X be open and let b ∈ ϕ −1 (U) ⊂ Y . 
By Urysohn's lemma there exists an f ∈ C(X) such that 
                                                                   f(ϕ(b)) = 1  
while f vanishes at X\U. Setting g = Φf we have  
                                                                   g ∈ C(Y ), g(b) = f(ϕ(b)) = 1  
and g vanishes at Y \ϕ −1 (U).  
Now  
                                                                  {y ∈ Y : g(y) ≥ 0}  
 is open in Y and b ∈ {y ∈ Y : g(y) > 0} ⊂ ϕ −1 (U).  
Hence ϕ −1 (U) is open in X and therefore ϕ is continuous.  
 The Banach-tone theorem for Riesz isomorphism is the following.  
 
Theorem 6. (Banach-Stone)[ [Junge E., (1977), p. 80] Let X and Y be compact Hausdorff  
space. If C(X) and C(Y ) are Riesz isomorphic, then X and Y are homeomorphic. 
 
 Proof.  Let Φ be a Riesz isomorphism of C(X) onto C(Y ). Let u = Φ1 and take v ∈ C(X) : 
Φ(v) = 1. Then there exist a positive number c for which v < c1. Then  
                                          1 = Φv ≤ cΦ1 = cu,  
So C(Y ) > 0 for every y ∈ Y .  
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The formula,  
                                                       (φf)(y) = (Φf)(y) /u(y)  (f ∈ C(X), y ∈ Y ) can be used to 
define isomerphism φ of C(X) ont C(Y ) such taht  
                                                        (φ1)(y) = (Φ1)(y) /u(y)  
                                                                    = u(y) u(y)  
                                                                    = 1.  
Now there exists continuous ϕ1 : Y → X and ϕ2 : X → Y with the properties  
                                                           φf = f ◦ ϕ1 (f ∈ C(X))  
and  
                                                           φ −1 g = g ◦ ϕ2   (g ∈ C(Y )).  
If x ∈ X, then for every f ∈ C(X),   
                                                           f(x) = (φ −1φ(f)(x) = (f ◦ (ϕ1 ◦ ϕ2))(x),  
since X is compact, f is homeomerphic to R so taking Yinverse of f on bothsides from left we 
get  
                                                           x = (ϕ1 ◦ ϕ2)(x).  
Simillarly 
                                                          ∀ y ∈ Y y = (ϕ2 ◦ ϕ1)(y).  
Thus, ϕ1 & ϕ2 are inverses of each others. Thus X and Y are homeomerphic.  
 
 The classical Banach-Stone theorem states that if X and Y are compact spaces and BX and 
BY are equivalent then X and Y are homeomerphic when B is the space of real numbers. 
Meyer Jerison  [Jorsin M., (1950), p. 14] extended this result for the space BX for strictly 
convex Banach space B. According to this if X and Y are compact spaces, B a strictly Banach 
space and ψ an equivalence of BY onto BX, then there exists a homeomerphism h of X onto Y 
and a continuous map ψx from X into the space Φ of rotation of B such that  
                                                           (ψB)(x) = φx[β(h(x))], β ∈ B Y .  
 
Acknowledgement: The author is grateful to prof. Dr. Prakash Muni Bajracharya who gave 
most useful guidelines during the work.  
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