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Abstract 

In the landscape of machine learning and data-driven 
decision-making, limited data availability often 
undermines classification model accuracy. This 
study pioneers a solution by leveraging Copula 
Generative Adversarial Networks (Copula GANs) to 
generate high-fidelity synthetic data, with a focus on 
mushroom classification. Copula GANs replicate 
original dataset characteristics, as confirmed by 
thorough Category Coverage and TV Complement 
evaluations that validate its ability to accurately 
emulate category distributions and multivariate 
dependencies. To substantiate the practical impact, a 
mushroom classification task employs a decision 
tree. Results showcase notable accuracy 
enhancement through the integration of synthetic 
data with real data. Fine-tuning Copula GAN 
parameters, exploring feature interpretability, 
extending the technique to diverse domains, and 
merging with traditional data augmentation methods 
are promising future avenues. In essence, this study 
pioneers Copula GAN-generated synthetic data as a 
novel solution to data scarcity. The outcomes 
highlight the efficacy of synthetic data 
augmentation, advancing the potential of machine 
learning models across real-world applications. 

Keywords: GAN, data synthesis, Copula GAN, 
mushroom classification, machine learning 

 

Introduction 

Mushrooms are the fleshy, edible fruit bodies of several species of fungi that belong to the 

Basidiomycetes class. They often grow on the surface of the soil or plant-derived materials like 

straw and wood. Since mushrooms lack chlorophyll, they are not autotrophs, yet they may still be 

able to obtain the nutrition needed for their growth by degrading complex substrates with their 

enzymes(Devika & Karegowda, 2021). Out of the estimated 1500,000 species in the world, the 

number of mushroom species that have been discovered so far is less than 69,000 (Wibowo et al., 
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2018). To date, it is identified that 7000 species of mushrooms are edible (Bhatt, 2016)but the 

remaining are not easily distinguishable as edible or non-edible.Because mushrooms are an 

essential source of protein and contain several medicinal components, including ones that can even 

treat cancer, consumption of mushrooms has been rising globally over the past ten years (Kaushik 

& Choudhury, 2022). A few mushroom species are extremely dangerous, therefore not all of the 

mushrooms found in nature may be eaten. Generally, family of Agaricus and Lepiota easily found 

in wild open-area with various shapes, colours and characteristics are poisonous (Wibowo et al., 
2018). It has been discovered that certain poisonous mushrooms resemble edible mushrooms quite 

a bit by physical appearance, therefore, they only are differentiated by one or two distinct traits, 

such as cap form, gill colour, odour, etc. (Wagner et al., 2021).  

Consequently, a lot of researchers are working to develop trustworthy ways to identify if a 

mushroom is poisonous or not. Traditionally, a method involves boiling mushrooms with rice in a 

pot, where a change in rice colour indicates the presence of a poisonous mushroom(Ketwongsa et 

al., 2022). Another traditional approach for identifying poisonous mushrooms involves using a 

silver spoon to stir a pot of boiling mushrooms; if the spoon changes from silver to black, it is 

considered an indicator of toxicity. The aforementioned methods, however, are not exact and 

reliable since certain deadly mushrooms do not react to them and lack standardization and 

objective quantification, leading to inconsistencies in results between different practitioners. This 

subjectivity reduces the reproducibility and reliability of the classification process. Furthermore, 

traditional methods are not adaptable to the evolving understanding of mushroom toxicity or the 

discovery of new species. As the scientific knowledge about mushrooms expands, the 

shortcomings of these methods become more pronounced. Their inability to accommodate new 

information limits their applicability in a rapidly changing field. These methods are prone to false 

positives and false negatives, leading to misclassification of mushrooms. 

The circle under the cap, multi-coloured scales on the cap, and the presence of vivid are the 

primary physical traits of deadly mushrooms (Ketwongsa et al., 2022). As a result, the intensive 

study of the precise, reliable and robust methods for the classification of edible and non-edible 

mushrooms is inevitable. With the development of artificial intelligence last decades, several 

machine learning and deep learning-based prediction models have been developed to increase 

classification accuracy. Although these deep learning models have significantly improved in terms 

of performance, a lot depends on the quality and quantity of the data utilized to train the model. If 

there is insufficient data or a lot of noise in the data, the prediction accuracy will drastically 

decrease due to inaccurate learning (Moon et al., 2020). On the other hand, gathering enough good-

quality data is costly and time-consuming. Synthetic data can be of considerably greater quality 

than actual data since they are created rather than gathered or measured(Chatterjee & Byun, 2023). 

Furthermore, privacy restrictions can be used to ensure that the synthetic data does not expose any 

significant information, such the clinical records of patients. Along with this, creating diverse 

datasets for testing and analysis, and data augmentation are additional benefits of synthetic data.  

To address the challenges of limited and imbalanced datasets, researchers have turned to 

Generative Adversarial Networks (GANs) as a promising solution for tabular data synthesis. GANs 
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are a class of deep learning models that involve a generator network and a discriminator network 

engaged in a competitive learning process. The generator network aims to produce synthetic data 

samples that resemble the real data, while the discriminator network attempts to distinguish 

between real and synthetic data. Through this adversarial training, GANs have demonstrated 

remarkable capabilities in generating high-quality synthetic data across various domains. This 

study is concentrated on creating synthetic tabular data using CopulaGAN(CopulaGAN Model — 

SDV 0.18.0 Documentation, n.d.), TGAN(Xu & Veeramachaneni, 2018), and CTGAN(Xu et al., 

2019) which addressed the following research section. 

The summary of the contribution follows: 

 Addressing Data Limitations: Limited and imbalanced datasets have been a challenge in 

mushroom classification. This research  aim to address this issue by employing a synthetic 

tabular data generation techniques using CopulaGAN(CopulaGAN Model — SDV 0.18.0 

Documentation, n.d.), TGAN(Xu & Veeramachaneni, 2018), and CTGAN (Xu et al., 

2019)for improving the classification accuracy of mushrooms. 

 Enhanced Classification Accuracy: This study focuses on the application of GANs, 

specifically CopulaGAN, TGAN, and CTGAN, to create synthetic tabular data. By 

combining these synthetic datasets with the original data, the study aims to improve the 

accuracy of mushroom classification algorithms. 

 The comparative analysis of various supervised machine learning algorithms for the 

classification by using the synthetic data, original data, and combined data. 

The paper’s organization is divided into five sections: The related works, methods for (tabular) 

synthetic data generation, the existing research on using GANs to synthesize tabular data and the 

various methods used to do so are also covered in Section 2. Section 3 Provides a summary of the 

proposed methodology. Analysis and explanation of the results obtained from experiments are 

discussed in Section 4. The conclusion and additional recommendations for future works are 

described in Section 5.  

 

Related Work 

Mushroom Classification using Deep learning and Machine Learning 

The paper by (Sunita & Bishan, 2015) focuses on the use of classification techniques for analyzing 

mushroom data sets using WEKA. Several methods namely naive Bayes, Bayes net, and ZeroR are 

used to identify mushrooms and used accuracy, mean absolute error, and kappa statistic for the 

evaluation of the performance of the classification techniques.  The Bayes net outperformed the 

other algorithms with the highest accuracy, and lowest mean absolute error. Specifically, a 

fascinating finding arises in the context of mushroom classification, indicating that greater training 

set sizes lead to enhanced model accuracy. 
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The paper(Verma & Dutta, 2018) compared three classification algorithms(ANN, Adaptive Neuro-

fuzzy inference System (ANFIS), and Naive Bayes) to classify the mushrooms. The performance 

of the methods is evaluated using accuracy, MAE, and kappa statistics. Their study revealed 

ANFIS as the superior method, surpassing others in accuracy (99.8769%), MAE (0.0008), kappa 

statistics (0.9980), with ANN ranking second (accuracy:96.738%, MAE: 0.0338, kappa statistics: 

(0.9338). This paper also distinguished that as in (Sunita & Bishan, 2015), accuracy increased as 

the training size increased. In (Ottom et al., 2019) applied several methods neural networks (NN), 

support vector machines (SVM), decision trees, and k Nearest Neighbors (KNN) to the image 

dataset of mushroom for classification task. The findings demonstrate that the most accurate 

method (accuracy is 94%) for identifying mushroom images is KNN and NN’s performance (59% 

accuracy) is not satisfactory due to the problem of data insufficiency during training phase. The  

(Chitayae & Sunyoto, 2020) compared KNN and Decision Tree methods and the decision tree 

algorithm has the highest degree of accuracy (91.93%). Further, the paper (Kousalya et al., 

2022)used four classification methods such as Naive Bayes, Decision Tree (C4.5), SVM, and 

Logistic Regression and the decision tree algorithm has the highest degree of accuracy (93.34%) 

and is faster than the other algorithms. Also, in (Paudel & Bhatta, 2022)the performance of two 

Reduced Error Pruning (REP) Tree and Random Forest tree-based classification algorithms are 

compared and Random Forest method beats the REP Tree technique with a value of 100% for 

accuracy, precision, and recall. 

 

In the research work carried out by (Wagner et al., 2021), natural language processing was used for 

the creation of primary data that contains 173 species from 23 families as well as secondary data 

was also generated. The secondary data is employed as pilot data for the classification and various 

machine learning algorithms, including naive Bayes, logistic regression, linear discriminant 

analysis (LDA), and random forests (RF), have been evaluated and the RF provided the best results 

with a five-fold Cross-Validation accuracy and F2-score of 1.0. Furthermore, the pilot data yielded 

conclusive outcomes, indicating non-linear separability. This finding underscores the opportunity 

for the use of alternative methods to generate the synthetic data for classification, suggesting the 

synthetic data has the potential to enhance classification accuracy. The study by (Ketwongsa et al., 

2022) used convolutional neural networks (CNN) and region convolutional neural networks (R-

CNN)to distinguish between five dominant types of mushrooms and 98.50% and 95.50% accuracy 

is achieved respectively. In (Alkronz et al., 2019)a multi-layer ANN model is employed to 

determine if a mushroom is edible or toxic and only 99.25% accuracy is achieved. This due to 

insufficient training data and the features present in the dataset. Also, in the paper by (Moon et al., 

2020), conditional tabular GAN (CTGAN) is used to solve the problem of data shortage for the 

electric load. The data used for the training is a mixture of generated data and real data. Their 

results were very outstanding and concluded that CTGAN is one of the effective ways to produce 

synthetic data. 

 

Having thoroughly reviewed the existing literature on mushroom classification utilizing various 

machine learning techniques, we now pivot to our proposed research endeavor. Building upon the 

insights gained from the limitations and trends highlighted in the prior studies, our research seeks 
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to contribute to the field by leveraging Generative Adversarial Networks (GANs) for the synthesis 

of enhanced training datasets. As elucidated by the works of (Sunita & Bishan, 2015), (Verma & 

Dutta, 2018), (Ottom et al., 2019), and others, challenges such as data insufficiency, imbalanced 

class distributions, and the need for effective feature representation have been recurrent 

impediments in achieving higher prediction accuracy. Drawing inspiration from recent 

advancements in GANs for tabular data synthesis (Bourou et al., 2021), we aim to harness the 

power of GANs to augment our training data with synthetically generated samples that capture the 

intricate distributions present in real-world tabular data. This innovative approach holds the 

potential to address the aforementioned limitations, enabling us to achieve a substantial 

enhancement in the accuracy and robustness of our mushroom classification model. In the 

subsequent sections, we will delve into the specifics of our GAN-based data synthesis technique, 

its design, implementation, and the anticipated benefits it brings to the realm of mushroom 

classification. 

 

GANs for Data Synthesis 

GANs is a breakthrough concept in the field of artificial intelligence developed by Ian Goodfellow 

and his colleagues in 2014(Goodfellow et al., 2014) to create new data samples that resemble a 

given dataset. A GAN consists of two main components: generator G and the discriminator D. The 

generator learns to produce realistic data, and the data it generates serves as negative examples for 

the discriminator. The discriminator learns to differentiate between the fake data generated by the 

generator and real data, penalizing the generator for creating implausible results. During training, 

the generator initially generates obviously fake data, prompting the discriminator to quickly detect 

its falseness. As training progresses, the generator improves, gradually creating output that can 

deceive the discriminator. Ultimately, if the generator is successful, the discriminator struggles to 

distinguish between real and fake data, classifying some fake data as real, and its accuracy drops. 

Both the generator and the discriminator are neural networks, with the generator's output directly 

connected to the discriminator's input. Through backpropagation, the discriminator's classification 

informs the generator's weight updates, allowing it to refine its output based on the feedback 

received from the discriminator. This adversarial nature of GANs leads to a tug-of-war between the 

generator and discriminator, pushing them to improve iteratively. When the generator becomes 

skilled enough to generate data that can deceive the discriminator into misclassifying fake data as 

real, it indicates that the generator has learned to produce realistic samples. 
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Figure 1 GAN architecture 

 
Figure 2 Backpropagation in discriminator training 

 
Figure 3 Backpropagation in generator training 
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The GAN's generative component, denoted as G, grasps the underlying data distribution p(g) in the 

genuine data space x. By incorporating an input noise variable, G creates novel adversarial 

instances G(z) designed to mirror the x distribution. The training of Generator G revolves around 

maximizing the likelihood that the Discriminator D accurately identifies generated examples as 

authentic, while D's training centers on discerning whether a given sample originates from the real 

data or has been produced by Generator G. The mathematical formulation of the Vanilla GAN is 

rooted in the cross-entropy comparison between the actual and generated distributions, and it is 

expressed as follows(Bourou et al., 2021): 

 
For those looking for further understanding into GANs, we suggest consulting the original paper 

by(Goodfellow et al., 2014). 

 

GANs for Tabular Data Synthesis 

Deep neural networks frequently exhibit inferior performance in contrast to more conventional 

machine learning techniques such as methods based on decision trees when confronted with tabular 

data(Borisov et al., 2022). Nonetheless, the reasons behind why deep learning struggles to attain 

equivalent predictive excellence as observed in other domains like image classification, computer 

vision, and natural language processing often remain ambiguous. According to (Borisov et al., 

2022) the four potential major reasons for aforementioned problem are :  

A. Low Quality Training Data: The quality of data poses a prevalent concern in real-world 

tabular datasets. These datasets commonly exhibit several issues, such as missing values, 

outliers, data that is incorrect or inconsistent, imbalance in class distribution due to costly 

nature of data collection, and they also tend to be relatively small in size compared to the 

high-dimensional feature vectors derived from the data. While these hurdles impact all 

machine learning algorithms, a majority of contemporary decision tree-based algorithms 

possess the capability to internally manage missing values and address variations in 

variable ranges, achieved by identifying suitable approximations and determining split 

points. 

B. Missing or Complex Irregular Spatial Dependencies: Spatial correlation is frequently 

absent among variables within tabular datasets, and the interconnections between features 

often exhibit intricate and irregular patterns. When dealing with tabular data, it becomes 

necessary to establish the structure and associations among its features through learning 

from the ground up. Consequently, the inherent biases employed by well-known models 

designed for uniform data types, like convolutional neural networks, prove inadequate for 

effectively representing this particular data category. 

C. Dependency on Pre-processing: A key advantage of deep learning on homogeneous data 

is that it includes an implicit representation learning step, so only a minimal amount of 

pre-processing or explicit feature construction is required. However, for tabular data and 

deep neural networks the performance may strongly depend on the selected pre-processing 

strategy. Handling the categorical features remains particularly challenging and can easily 

lead to a very sparse feature matrix (e.g., by using a one-hot encoding scheme) or 
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introduce a synthetic ordering of previously unordered values (e.g., by using an ordinal 

encoding scheme). Lastly, pre-processing methods for deep neural networks may lead to 

information loss, leading to a reduction in predictive performance. 

D. Importance of Single Features: While typically changing the class of an image requires a 

coordinated change in many features, i.e., pixels, the smallest possible change of a 

categorical (or binary) feature can entirely flip a prediction on tabular data. In contrast to 

deep neural networks, decision-tree algorithms can handle varying feature importance 

exceptionally well by selecting a single feature and appropriate threshold (i.e., splitting) 

values and “ignoring” the rest of the data sample. Individual weight regularization may 

mitigate this challenge and motivate more work in this direction. 

 

GAN models have demonstrated significant potential in generating synthetic images and text. 

Recently, researchers have been exploring the application of GANs for generating tabular data due 

to their ability to effectively model data distributions, which traditional statistical techniques may 
struggle with. The process involves creating a synthetic table, Tsyn, from an existing table, Treal, 

consisting of both a training set, Ttrain, and a test set, Ttest. The GAN model is trained on Ttrain, 

where the data generator G learns the data distribution for each column in the table T and uses this 

knowledge to generate synthetic data for Tsyn(Bourou et al., 2021). 

 

A successful data generator G for tabular data needs to address various challenges inherent in real-

world tabular data. Notably, T can contain mixed data types, including numerical and categorical 

columns. The numerical columns can have either discrete or continuous values, requiring the 

Generator G to learn and generate a mix of data types simultaneously. Additionally, the shape 

distribution of each column can vary, often following non-Gaussian and multimodal patterns, 

which can cause vanishing gradient problems when applying min-max transformations.In the 

context of categorical columns in real-world tabular data, an imbalance problem frequently arises, 

with some classes having significantly more instances than others. This imbalance can lead to 
mode collapse and inadequate training of the minor classes. Moreover, the presence of sparse one-

hot-encoded vectors can cause issues during the training procedure of the Discriminator D, as it 

may rely on the distribution's rareness rather than the realness of the values to distinguish real from 

fake data. To overcome these challenges, innovative techniques and tailored approaches are 

required to develop an effective and robust GAN model for generating high-quality synthetic 

tabular data. 
 

Methodology 

Dataset Description 

The dataset utilized in this study is publicly accessible and has been sourced from The Audubon 

Society Field Guide to North American Mushrooms. This dataset was contributed by Jeff 

Schlimmer, a contributor associated with the University of California, Irvine (UCI). For those 

interested in exploring the dataset further, it is available for access at the following URL: 
https://archive.ics.uci.edu/ml/datasets.html. 
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Within this dataset, one can explore into a rich collection of 8124 distinct data points, each offering 

a unique glimpse into the world of mushrooms. These data set are meticulously organized and 

characterized by 22 different variables. The focus of this dataset centers on a fascinating array of 
23 distinct species of fungi, all of which belong to the Agaricus and Lepiota families. These 

species, known for their diverse characteristics and intriguing attributes, fall under the category of 

nominal data type. Mushroom classification datasets used for distinguishing between edible and 

non-edible mushroom species possess several characteristic features and attributes. Understanding 

these dataset characteristics is essential for effectively applying data synthesis techniques using 

GANs. In below table, the key characteristics of datasets are presented. 

 
Feature Meaning Representation in Datasets 

Cap Shape Shape of mushroom cap 

bell=b, conical=c, convex=x, flat=f, 

knobbed=k, sunken=s 

Cap Surface Texture of mushroom cap surface fibrous=f, grooves=g, scaly=y, smooth=s 

Cap Color Color of mushroom cap 

brown=n, buff=b, cinnamon=c, gray=g, 

green=r, pink=p, purple=u, red=e, 

white=w, yellow=y 

Bruises Presence of bruises when touched bruises=t, no=f 

Odor Scent of the mushroom 

almond=a, anise=l, creosote=c, fishy=y, 

foul=f, musty=m, none=n, pungent=p, 

spicy=s 

Gill 

Attachment Attachment of gills to cap 

attached=a, descending=d, free=f, 

notched=n 

Gill Spacing Spacing between gills close=c, crowded=w, distant=d 

Gill Size Size of gills broad=b, narrow=n 

Gill Color Color of gills 

black=k, brown=n, buff=b, chocolate=h, 

gray=g, green=r, orange=o, pink=p, 

purple=u, red=e, white=w, yellow=y 

Stalk Shape Shape of the stalk enlarging=e, tapering=t 

Stalk Root Type of stalk root 

bulbous=b, club=c, cup=u, equal=e, 

rhizomorphs=z, rooted=r, missing=? 

Stalk Surface 

Above Ring 

Texture of stalk surface above the 

ring fibrous=f, scaly=y, silky=k, smooth=s 

Stalk Surface 

Below Ring 

Texture of stalk surface below the 

ring fibrous=f, scaly=y, silky=k, smooth=s 

Stalk Color 

Above Ring Color of stalk above the ring 

brown=n, buff=b, cinnamon=c, gray=g, 

orange=o, pink=p, red=e, white=w, 

yellow=y 

Stalk Color 

Below Ring Color of stalk below the ring 

brown=n, buff=b, cinnamon=c, gray=g, 

orange=o, pink=p, red=e, white=w, 

yellow=y 

Veil Type Type of veil covering the gills partial=p, universal=u 

Veil Color Color of the veil brown=n, orange=o, white=w, yellow=y 
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Feature Meaning Representation in Datasets 

Ring Number Number of rings on the stalk none=n, one=o, two=t 

Ring Type Type of ring on the stalk 

cobwebby=c, evanescent=e, flaring=f, 

large=l, none=n, pendant=p, sheathing=s, 

zone=z 

Spore Print 

Color Color of spore print 

black=k, brown=n, buff=b, chocolate=h, 

green=r, orange=o, purple=u, white=w, 

yellow=y 

Population Density of mushroom sightings 

abundant=a, clustered=c, numerous=n, 

scattered=s, several=v, solitary=y 

Habitat Environment where mushrooms 

are found 

grasses=g, leaves=l, meadows=m, 

paths=p, urban=u, waste=w, woods=d 

 
Understanding these characteristic features of mushroom classification datasets is essential for 

synthesizing realistic and representative synthetic data using GANs. Addressing class imbalance 

and accurately modelling the complex relationships between the features contribute to the 

generation of high-quality synthetic mushroom datasets, which can enhance the effectiveness of 

classification algorithms and promote accurate edible and non-edible mushroom identification. 

 

Tabular Data Generation UsingCopulaGAN 
The CopulaGAN(CopulaGAN Model — SDV 0.18.0 Documentation, n.d.) model, a modified 

version of CTGAN available in the SDV open-source library, employs a transformation method 

based on the Cumulative Distribution Function (CDF) through GaussianCopula. Specifically, 

CopulaGAN leverages these variations of CTGAN to facilitate data learning. Copulas, rooted in 

probability theory, depict the associations among random variables. Throughout training, 

CopulaGAN strives to grasp the data characteristics and structure of the training dataset. Non-

numeric and missing data are converted using Reversible Data Transformation (RDT), leading to a 

completely numerical representation that enables the model to comprehend the probability 

distributions for each column in the table. Moreover, CopulaGAN endeavors to capture the 

relationships between the various columns within the table. 

 

Synthetic Data Evaluation 
Category Coverage: This measurement assesses the extent to which a synthetic column 

encompasses all potential categories found within areal column, while disregarding any missing 

values. The process involves two steps: initially, it determines the count of distinct categories, 

denoted as "c," existing within the genuine column "r." Subsequently, it tallies the number of these 

categories that appear in the synthetic column "s." The outcome is a ratio representing the portion 

of actual categories that have been replicated in the synthetic dataset. 

score=  

TV Complement: This measurement calculates the resemblance between an authentic column and 

a fabricated one concerning their shapes, specifically focusing on the marginal distribution or one-

dimensional histogram. Designed for discrete, categorical data, this assessment employs the Total 
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Variation Distance (TVD) to quantify the dissimilarity between the genuine and generated 

columns. To achieve this, it initiates by determining the occurrence frequency for each category 

value, subsequently converting it into a probability representation. The TVD metric then gauges 
disparities in probabilities, as depicted in the provided formula. 

 
Here, ω describes all the possible categories in a column, Ω. Meanwhile, R and S refer to the real 

and synthetic frequencies for those categories. The TVComplement returns 1-TVD so that a higher 

score means higher quality. 

 

Decision Tree as a Learning Algorithms 
A decision tree is a versatile machine learning algorithm tailored for effectively handling 

categorical features, which are discrete and qualitative in nature. This algorithm constructs a 

hierarchical tree-like structure of decisions by recursively partitioning the dataset based on feature 

values. It begins at the root node and progressively splits the data into branches according to 

specific feature thresholds. These divisions lead to subgroups, ultimately culminating in terminal 

nodes where categorical labels or values are assigned. Decision trees excel in scenarios involving 

categorical features due to their inherent ability to capture complex relationships and interactions 
between discrete variables. Their interpretability makes them valuable for understanding the 

decision-making process. Each internal node of the tree represents a decision based on a categorical 

attribute, while each leaf node corresponds to a class or an outcome. The algorithm is capable of 

handling nonlinearity and interactions among categorical attributes, making it a valuable tool in 

tasks such as customer segmentation, recommendation systems, and fraud detection, where 

understanding intricate categorical patterns is crucial for accurate predictions.  

Evaluation of Performance for Machine Learning Models 

Accuracy: Accuracy is a widely used performance metric that measures the correctness of a 

machine learning model's predictions. It calculates the ratio of correctly predicted instances to the 
total instances in a dataset. While intuitive and easy to interpret, accuracy may be misleading when 

dealing with imbalanced datasets, where one class has significantly more samples than the other. In 

such cases, a high accuracy can result from the model simply predicting the majority class. It's 

essential to consider additional metrics, especially for imbalanced scenarios. 

ROC and AUC: The Receiver Operating Characteristic (ROC) curve is a graphical tool that 

evaluates a model's classification ability across various threshold settings. It plots the true positive 
rate (sensitivity) against the false positive rate (1-specificity). The Area Under the Curve (AUC) 

quantifies the overall performance of the ROC curve. AUC ranges from 0 to 1, with a higher value 

indicating better discrimination between classes. ROC and AUC are valuable for binary 

classification tasks, helping to assess the model's capability to differentiate between positive and 

negative instances, regardless of the chosen decision threshold. AUC provides a single scalar value 

that captures the model's performance across different threshold levels, making it a robust metric 

for model comparison and selection. 
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Result and Discussion 

The experiments are designed for the investigation of performance, reliability, and validity of 

Copula GAN for the purpose of generation of synthetic mushroom data. As the main focus of this 

study involved creating synthetic data through Copula GANs and evaluate the reliability and 

validity of the data generated. For the aforementioned task, 1500 epochs are used to generate data 

that closely mirrored the characteristics and distribution of the original dataset. We have generated 

the synthetic data of the same size as the original dataset because we can compare the distribution 

of original dataset and to avoid the biasness. A graphical representation of the generator and 

discriminator loss during training further shed light on the GAN learning dynamics. The plotted 

loss graph shown in Figure 4 provides a visual understanding of the adversarial competition 
between the generator and discriminator. The decreasing generator loss and increasing 

discriminator loss over the training epochs signify a converging process. This convergence 

suggests that the GAN architecture successfully navigated the intricate task of generating data that 

aligns more closely with the original distribution. The average data quality of feature cap_color is 

the lowest and veil-type is the highest as can be seen from Figure 5. The quality score of 92 % 

indicates Copula GANs excel at capturing intricate relationships between multiple categorical 

variables, making them a promising option for generating data. 

 
Figure 4 Generator vs Discriminator Loss 

 
Figure 5 Data Quality of Each Feature 
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Further, additionally, we used two important measures, Category Coverage and TV Complement, 

to assess the quality of the generated synthetic data. The achieved average scores of 0.99 and 0.90, 

respectively, validate the efficacy of our synthetic data. These high scores indicate that the 

synthetic dataset effectively covers the categories present in the original data and captures the 

underlying distribution accurately. Accurately replicating the data's natural traits is crucial to 

ensure that the generated data is valuable for improving classification models. 

We used a decision tree model with the Gini impurity criterion to measure the effect of the 

generated synthetic data on classification accuracy. The model was tested on three distinct datasets: 

real data only, synthetic data only, and a combined dataset comprising real and synthetic data. The 

obtained accuracy scores underscore the potential of synthetic data augmentation which can be 

seen from Figure 6. While the real data achieved an accuracy of 0.99 and the synthetic data 

achieved 1.0, the combined dataset yielded a remarkable accuracy of 1.0. This outcome accentuates 

the utility of incorporating high-quality synthetic samples in enhancing the performance of 

classification models. 

 
Data Type used Accuracy 

Real 0.99 

Synthetic 1 

Real + Synthetic 1 

 

Figure 6 Accuracy for each type of dataset 

   

Figure 7 ROC Curve a. Real data b. Synthetic data c. Real+ synthetic data 

 

Conclusion 

In this study, we have demonstrated the efficacy of a Copula GAN-based synthetic data technique 

to enhance the accuracy of mushroom classification. The successful generation of synthetic data 

that closely replicates the characteristics of the original dataset highlights the potential of 

generative modelling in addressing the challenges posed by limited data availability. The 

remarkable evaluation scores for Category Coverage and TV Complement further validate the 

quality and representativeness of the generated synthetic data. 

Our exploration extended to the classification realm, where we employed a decision tree model to 

assess the impact of synthetic data augmentation. The substantial increase in accuracy achieved 
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with the combined dataset underscores the practical utility of our approach. The convergence of the 

generator and discriminator loss during training adds an insightful dimension, shedding light on the 

internal dynamics of the GAN architecture. 

As we look ahead, several avenues for future research beckon. Firstly, investigating the 

interpretability of the features generated by the GAN and their contribution to model performance 

could unravel valuable insights. Moreover, extending our approach to diverse domains beyond 

mushroom classification holds promise. Exploring the applicability of Copula GAN-generated 

synthetic data in other complex classification tasks could pave the way for novel insights and 

improvements in various fields. Furthermore, the potential of hybrid approaches, combining GAN-

generated data with traditional data augmentation techniques, remains to be explored. Such a fusion 

could harness the strengths of both methodologies to further enhance classification outcomes. In 

conclusion, our study introduces a robust approach for data enhancement using Copula GAN-

generated synthetic data, with promising implications for classification tasks. The groundwork laid 

herein opens the door to a realm of possibilities for further advancement and innovation in data 

synthesis and classification methodologies. 
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