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Abstract 

In today's world, leveraging Automatic Speech Recognition (ASR) technology to process and understand spoken 

language is highly desirable. Our proposed Nepali Speech Recognition employs an advanced generation to recognize 

and interpret spoken Nepali language. It approaches Nepali speech, allowing it to reply to user queries effectively. To 

attain this, we rent a mixture of superior neural network fashions. We extract Mel-frequency cepstral coefficients 

(MFCCs) from the preprocessed audio information; these MFCCs capture crucial spectral characteristics of Nepali 

speech and serve as essential input features for our neural network model. To design a top-rated version for textual 

content-based query processing, we make use of convolutional neural networks (CNN), residual networks (ResNet), 

and bidirectional long short-term memory (BiLSTM) layers. The CNN layers excel at extracting neighborhood patterns 

and spatial features from the MFCC input; the ResNet layers capture deeper representations to enhance performance. 

The BiLSTM layers are also employed to model temporal dependencies in the textual content-based query processing, 

we make use of convolutional neural networks (CNN), residual networks (ResNet), and bidirectional long short-term 

memory (BiLSTM) layers. The CNN layers excel at extracting neighborhood patterns and spatial features from the 

MFCC input; the ResNet layers capture deeper representations to enhance performance. The BiLSTM layers are also 

employed to model temporal dependencies in the textual content records. We hired the Connectionist Temporal 

classification (CTC) loss feature to enable sequence-to-series mapping, aligning the input speech with corresponding 

text outputs. This approach permits our gadget to successfully process textual content queries and provide correct 

responses, enhancing the user's usefulness. The model, after being trained with 1.55 million parameters in about 1 lakh 

57 thousand audio datasets for 47 epochs, achieved a CTC of 17.98% (82.02%-character accuracy rate) with this 

model. 
 

Keywords: Automatic Speech Recognition, Convolutional Neural Networks, Connectionist Temporal Classification, 

Mel-frequency cepstral coefficients, Residual Networks, Bidirectional Long Short-Term Memory. 

 

 

1. Introduction 

 

Speaking and writing are crucial methods of communication. Deficiencies in either can impact daily life. 

Many individuals in rural areas can speak well but struggle with writing. Communication technologies often 

require text input making familiarity with tools like Automatic Speech Recognition (ASR) valuable (Bhatta, 

et al., 2020). ASR technology converts spoken language into written textual content and has advanced use in 

telecommunications, transcription services, virtual assistants, and voice-controlled systems. It changed 

http://www.kec.edu.np/journal
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human-laptop interaction and allowed for more effective communication. ASR is necessary for numerous 

essential reasons. First, it permits a natural and intuitive method of interaction among humans and machines. 

Through speaking commands or questions in preference to typing or pressing buttons, users can interact with 

the system more easily, imparting convenience and accessibility. ASR also plays a key role in making digital 

content and offerings available to people with listening or speech impairments, enabling them to participate 

in conversations and get entry to data through captioning and transcription services. 

Similarly, ASR systems that aid multiple languages guide powerful communication within language 

boundaries and promote global connectivity and expertise. ASR appreciably increases performance and 

productivity in various areas, automating obligations such as transcription and simplifying workflows. 

Looking ahead, the long-term impact of developing ASR systems, particularly in underserved regions, could 

be transformative. These technologies can play a key role in the digital inclusion of marginalized 

communities, allowing people with limited literacy or access to digital tools to engage more fully with 

information and services. Moreover, advancements in ASR could lead to broader technological 

breakthroughs, particularly in fields like natural language processing, machine learning, and artificial 

intelligence. In the long run, investing in such systems can foster greater social and economic participation, 

particularly in rural or underrepresented areas, ultimately contributing to the closing of the digital divide. This 

system seamlessly converts spoken queries to textual content, extracts and interprets user input, and facilitates 

information evaluation and insights by using processing and analyzing huge speech datasets, enabling 

precious record extraction and knowledge discovery. In addition, ASR automates transcription and simplifies 

creation. A part of ASR is Nepali Speech Recognition, where the Nepali speech provided by the user is 

converted into Nepali text and can be processed further for useful interpretation. 

2. Problem Statement 

Limited English proficiency among some Nepali-speaking populations hampers their ability to perform tasks 

requiring English communication. According to the latest census data 2021, 44.86% of the population 

recorded Nepali as their mother tongue. This language barrier not only limits access to essential services but 

also has broader social and economic implications, such as reduced employment opportunities, limited access 

to education, and social exclusion. Furthermore, while there are existing language translation tools, they often 

lack accuracy for Nepali speech because of the insufficient data of different speakers for different languages 

spoken, which makes it difficult to translate the speech into its proper format. These challenges highlight the 

urgent need for a user-friendly Nepali speech recognition system that accurately converts Nepali speech into 

text, bridging the gap and enabling broader access to opportunities and resources for those with limited 

English proficiency. 

3. Related Works 

One notable ASR software for Nepali is the system developed by the Center for Speech and Language 

Technology (CSLT) at the University of Colorado Boulder (Tibet Himalaya Initiative, 2006). This system 

converts Nepali speech into written text and has been trained on extensive Nepali speech data to enhance 

accuracy. 

 The Kaldi toolkit, an open-source ASR framework developed by Johns Hopkins University researchers in 

2011, is a key contribution to the field (Kaldi ASR, 2011). It offers a comprehensive set of tools and libraries, 

making it a flexible platform for building advanced ASR systems. The toolkit's effectiveness provides a solid 

foundation for developing an ASR model for the Nepali language. The Kaldi toolkit, an open-source ASR 

framework developed by Johns Hopkins University researchers in 2011, is a key contribution to the field 

(Kaldi ASR, 2011). It offers a comprehensive set of tools and libraries, making it a flexible platform for 

building advanced ASR systems. The toolkit's effectiveness provides a solid foundation for developing an 

ASR model for the Nepali language. 

The proposed model for Nepali speech recognition combines CNN, GRU and CTC networks with MFCC 

feature extraction, showing promising potential for accurately transcribing spoken Nepali speech into written 
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text. This technology has the capacity to enhance interaction with communication devices and improve 

communication across various fields. Although the model achieves an 11% Word Error Rate (WER) using a 

dataset from Open Speech and Language Resources, further research and refinement are needed to enhance 

accuracy and real-world applicability. The 1D-CNN component captures high-level features from MFCC 

representations, while the GRU component, a type of recurrent neural network, excels in modeling sequential 

data, enabling the model to learn temporal dependencies and enhance recognition accuracy by capturing the 

context and structure of the Nepali language.(Bhatta, et al., 2020). 

4. Methodology 

4.1. Working Mechanism 

(Fig. 1) represents a block diagram of a Nepali Speech Recognition training model. The process begins with 

a training dataset (OpenSLR), which is subjected to preprocessing to clean and normalize the data. 

Following this, MFCCs (Mel-frequency cepstral coefficients) are extracted as features that represent the 

audio's frequency characteristics. These features are passed to the acoustic model (CNN), which captures 

patterns in the sound signals. The output is processed by CTC (Connectionist Temporal Classification) for 

decoding, aligning predictions with input sequences. Concurrently, a BiLSTM (Bidirectional Long Short-

Term Memory) model works as a language model, handling temporal dependencies. The network weights 

are updated during training based on testing data, and the final accuracy is calculated. 

 

Figure 1. Block diagram of the Nepali speech recognition training model. 

4.1.1 Data Acquisition and Cleaning 

Two datasets were used: High-quality TTS data for Nepali (openslr.org/43) (Sodimana, et al., 2018) and a 

large Nepali ASR training dataset (openslr.org/54) (Kjartansson, et al., 2018). The first dataset contains 

female-transcribed audio data for the Nepali language. It includes 2064 high-quality audio files from 18 

different speakers, with multiple audio files per speaker having similar word and character patterns. However, 

the vocabulary and text sequences might not be diverse, leading to bias in the ASR model’s predictions if 

used. On the other hand, the second data set provides a significant advantage with a larger vocabulary, more 

speakers, a greater number of audio files, and a more diverse sequence of characters and text. This dataset 

was used for training and testing the ASR model. It consists of 157,905 audio clips from 527 unique speakers, 

sampled at 16 kHz. The dataset was sourced from OpenSLR, a platform hosting speech and language 

resources for speech recognition. Before training, an initial cleansing process was performed on the dataset 

by eliminating numeric transcriptions to prevent degradation of the model’s overall performance. After 

removing these instances, approximately 143.6 hours of 148,188 audio clips remain as the foundation for 

training and testing the model. The dataset was acquired using OpenSLR, which provides a collection of 

speech and language resources. Firstly, the dataset underwent a cleansing process to eliminate numeric 

transcripts, as this type of data plays a minimal role and degrades the overall performance of the model. As 
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most of the dataset contained large silent gaps, the silent gaps were clipped. For cleaning, the window size 

was taken as 500. This process made the data more suitable for feature extraction and further processing, 

reducing errors. 

ALGORITHM 1: Clipping of silent gap from both ends 

wav ← sampled audio signal 

Δ ← appropriate window length 

INPUT: wav, Δ 

PROCESS: 

    wavAvg ← Average(|wav|) 

    N ← Length(wav) 

        /* Removing the silent gap from the start */ 

    for idx = 0, Δ, 2Δ, ..., N - Δ do 

        win ← wav[idx : idx + Δ] 

        winAvg ← Average(|win|) 

        if winAvg > wavAvg then 

            wav ← wav[idx :] 

            break 

        end if 

    end for 

        /* Removing the silent gap from the end */ 

    for idx = N - Δ, N - 2Δ, ..., 0 do 

        win ← wav[idx : idx + Δ] 

        winAvg ← Average(|win|) 

        if winAvg > wavAvg then 

            wav ← wav[: idx] 

            break 

        end if 

    end for 

 OUTPUT: processed_wav ← wav 

4.1.2 Feature Extraction 

After the Data cleaning part, the extraction of the best parametric representation of acoustic signals was an 

important task to produce better recognition performance. Mel Frequency Cepstral Coefficients (MFCCs) are 

used as a powerful feature extraction mechanism (Muda, et al., 2010). This feature extraction mechanism 

includes six stages. Pre-emphasis emphasizes higher frequencies, increasing the energy of the signal; framing 

segments of a speech signal into small duration blocks; and windowing reduces the discontinuity and smooths 

out the edges using a Hanning window function. The resultant is passed through a discrete Fourier transform 

to represent the frequency domain, and the Mel Filter Bank has a collection of bandpass filters over the Mel 

scale (i.e., 13). Mel scale measures the frequency of non-linear perception of pitch by human ears. The signal 

is passed through it, and the MFCCs finally obtained are converted to the time domain using a discrete cosine 

transform. (Fig. 2) displays a Mel-frequency cepstral coefficients (MFCCs) plot, which visualizes the 

frequency characteristics of an audio signal over time. The x-axis represents time (in seconds), while the y-

axis shows the different MFCC coefficients. The x-axis represents time (in seconds), while the y-axis shows 

the different MFCC coefficients. The color scale on the right indicates the intensity, with warmer colors (red) 

representing higher energy levels or amplitude and cooler colors (blue) indicating lower energy. This 

visualization helps in identifying how different frequency components evolve, making it useful for speech 

and audio recognition tasks. The obtained results are quite favorable with multiple machine-learning 

components for signal processing. The equation involved in the calculation of the Mel scale from the 

frequency in Hertz (f) is given by: 
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𝑀𝑒𝑙(𝑓)  =  2595  ⋅   log (1 +
𝑓

700
) 

(1) 

 

Figure 2. MFCCs of the audio where warmer colors (red) representing higher energy levels and cooler colors (blue) indicating lower 

energy. 

4.1.3 Acoustic and Language Model 

4.1.3.1 1D-CNN 

After the residual block, the model employs a 1D-CNN layer for localized feature extraction. The 1D-CNN 

performed convolution operations on the temporal direction of the signal and used a trained weight filter 

(Kernels) to extract localized features. For the input in the 1D-CNN layer, the output shape was: (batch size: 

2, sequence length: 1000, output dimension: 52). 

4.1.3.2 ResNet 

The ASR model begins with the implementation of residual blocks. The blocks utilized the shortcut 

connections to add the input of a block into the output of our stacked layers, such that the output will not be 

too skewed from the input. For the implementation of residual blocks in our model, there exists 1D-CNN and 

batch normalization (BN). 1D-CNN localized the features. BN adds stability and speed to gradient descent, 

speeds up training, and also normalizes the CNN layer’s output vector. The activation function for the output 

of BN is parametric ReLU (PReLU). Lastly, the output of PReLU is added to the input of the residual block. 

The PReLU also doesn’t change shape or dimensions, so its output was (2,100,50). (Fig. 3) illustrates a 

residual learning block commonly used in deep learning networks. The input x passes through three layers: a 

1D Convolutional Neural Network (1D-CNN) layer that extracts features from the input data, followed by 

batch normalization, which normalizes these features to stabilize and speed up training. Afterward, a PReLU 

(Parametric Rectified Linear Unit) activation function is applied, which introduces non-linearity and helps 

the network learn more complex patterns. Simultaneously, the input x bypasses these layers through a shortcut 

connection and is added elementwise to the transformed output G(x), forming G(x)+xG(x). This skip 

connection allows the network to retain the original input information, making it easier to learn identity 

mappings and improving the training of very deep networks. 

 

 

 

 

 

 

Figure 3. Residual Block: Input passes through 1D-CNN; output adds to input, enabling improved gradient flow and faster 

convergence during training. 
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4.1.3.3 RNN Layers 

The last residual block's output was used as the source for multilayer RNN layers, primarily BiLSTM. An 

RNN is a type of neural network where the input for the current time step is the output from the previous time 

step. RNNs were able to capture contextual information throughout time and were appropriate for sequential 

data. In order to generalize patterns in data, RNN layers provide higher abstraction levels of features. Our 

model primarily uses two-way long-term short-term memory (BiLSTM), an RNN version. It concurrently 

processed the input sequence backward and forward, gathering data from both the past and the future. To 

capture complicated relationships, several BiLSTM layers were built on top of one another. As a result, the 

ASR model was better able to comprehend and accurately transcribe voice input. The output shape was 

(2,100,170) for both BiLSTM layers. 

4.1.3.4 Dense Layers and SoftMax Output 

The output of RNN layers (i.e., BiLSTM layers) was fed into the dense layers of the neural network, which 

further processed the features learned by RNNs. The output of the 1st Dense Layer output shape was 

(2,100,340), and after activation through ReLU and passing to the 2nd Dense Layer’s output was (2,100,66), 

as the dimension of output 66 helps the softmax layer for probability calculation. Finally, a softmax layer was 

applied to obtain a probability distribution over the 66 unique characters. The softmax output can be 

represented as Softmax_output = Softmax(Dense (RNN_output)). 

4.1.3.5 CTC (Connectionist Temporal Classification) Loss 

The CTC loss function was used to compare the softmax output with the targeted transcriptions. The CTC 

loss helped handle the alignment problem between input audio and output characters. It computed an 

alignment-free loss value using a blank token introduced during training and inference. The CTC loss can be 

calculated as CTC_loss = -log (p (Y | X)), where p (Y | X) will represent the probability of the target 

transcription Y given the input audio X. And the objective function (i.e., probability p(Y | X)) is the sum of 

all possible valid sequences. Mathematically, 

𝑝(𝑌|𝑋) = ∑ (∏𝑝𝑡(𝑎𝑡|𝑋)

𝑇

𝑡=1

)

 

𝐴∈𝐴𝑥,𝑦 

 
(2) 

 

 

Where 𝐴𝑥,𝑦 is the valid alignment of Y given X. 

4.1.4 Decoding Algorithm 

The SoftMax outputs were decoded to produce a character sequence during prediction. In our model, the CTC 

beam search decoding technique was applied. CTC Beam Search identified the most likely output sequence 

by taking into account many alignments at each time step. To choose the final sequence, a series of steps 

including tokenization, beam initialization, expansion, scoring, and pruning were performed. Accurate and 

contextually coherent transcriptions were produced by successfully addressing the problem of matching audio 

inputs with output characters using CTC Beam Search. (Fig. 4) represents the architecture of a Nepali Speech 

Recognition Model. In order to identify significant sound properties from short portions of the speech input, 

the Nepali Speech Recognition Model initially employs a 1D Convolutional Neural Network (1D-CNN). The 

result is then scaled for faster and more reliable learning by batch normalization. Repetitive residual blocks, 

which help the model learn efficiently by holding onto crucial information from previous layers, are applied 

five times to the input. Next, in order to extract context from the complete speech sequence, Bidirectional 

LSTMs (BiLSTM) process the sequence both forward and backward. ReLU adds non-linearity to the output 

after it has been refined by a thick layer, allowing the model to recognize more intricate patterns. In order to 

determine the likely words or phonemes in the detected speech, a Softmax output is used to translate the result 

into probabilities. 
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Figure 4. Model Architecture: Input passes through 1D-CNN and BiLSTM layers, producing a SoftMax output for classification 

 

 

 

 

 

 

 

 

Figure 5. Train and test loss of trained model (1D-CNN+BiLSTM+RESNET) 

Table 1. Models and their CER on test data 

Model Test Data CER # Prams 

BiLSTM 23.69% 1.12M 

1D-CNN + ResNet + BiLSTM 17.06% 1.55M 

Transformer CNN 22.72% 4.13M 

 

Table 2. Models and their transcription of real time speeches 

Actual Transcription Model Predicted Transcription 

 1D -CNN+BiLSTM+RESNET मानिसहरू अन्नाको सघर्थिमा 

मानिसहरू अन्नाको समर्थिमा Transformer CNN मानिस र अन्नाको समर्थिमा 

 

BilLSTM 

 

मानिस र अक्यगोसम्धिमा 

 

 1D-CNN+BiLSTM+RESNET गानिसहरूको लेखसँग यो 

गानिसहरूको लेखसँग यो 

 

Transformer CNN 

 गानिसहरूको लेखसँग यो 
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BiLSTM 

 

गानिसहरूको ले गयो 

 

 1D-CNN+BiLSTM+RESNET 

ध्टे डुकुर िेपालमा पाइिी एक प्रकारको चराको 

िाम हो 

धके ढुकुर िेपालमा पाइिे एक प्रकारको चराको िाम 

हो। Transformer CNN 

तट्कीय रूपकुर िेपालमा पाइन्य एक प्रकारको 

िेपालमा पाइि् हो। 

 

BiLSTM 

 

तपेरुकु िेपालमा ऐाइिे एकव्यारको चलाकुदाि 

हो 

 

 1D-CNN+BiLSTM+RESNET असोजमा भएको नर्यो 

असोजमा भएको नर्यो Transformer CNN असमा भएको नर्यो 

 

BiLSTM 

 

असरि भएको नर्यो 

 

 1D-CNN+BiLSTM+RESNET समयमा अनघ चल 

समयमा अनघ चल Transformer CNN समयमा आयु चला 

 BiLSTM सरयाम आनि चल 

 

5.  Result and Discussion 

We have completed the design and development of the project, successfully obtaining the desired output of 

transcribing audio input from either a file or real-time recording and providing the most probable 

transcription. To evaluate the effectiveness of our model’s training, we utilized crucial metrics such as the 

optimizer (Adam), the CTC loss function, and accuracy. The CTC loss of the sequence model, as depicted in 

our loss plot (Fig. 5), was calculated on both the training and test datasets. A lower CTC loss value indicates 

a closer match between the decoded character sequence and its intended transcription. We considered 

additional blank tokens and redundant character duplications in the model’s output, removing them after CTC 

beam search decoding to obtain a more understandable prediction of the character sequence. Furthermore, we 

quantified the model’s performance using the Character Error Rate (CER) metric on the test dataset, 

measuring the rate of incorrect character predictions. Our model, a combination of ResNet, 1D-CNN, and 

BiLSTM with 1.55 million parameters, was trained for 47 epochs. With an optimal epoch of 46, we achieved 

a CTC of 17.98%, corresponding to an 82.02%-character accuracy rate, on the unseen test dataset. These 

metrics demonstrate the effectiveness of our model in accurately transcribing audio input.  

We also employed a bidirectional LSTM architecture to process speech features as input, with the 

bidirectional LSTM layers capturing temporal dependencies in the speech. Following these layers, dense 

layers and a SoftMax layer predict the probability distribution of words or characters in the speech input. The 

model is lightweight with 1.1 million parameters, ensuring efficiency and reduced resource consumption. It 

consists of around 7 layers, striking a balance between complexity and performance. The model was trained 

for 35 epochs, achieving the desired outcomes in speech transcription tasks while maintaining a streamlined 

structure. We evaluated the model's performance using the Character Error Rate (CER), a metric that 

measures the rate of incorrect character predictions in the transcription. Our model achieved a CER of 

23.69%, indicating the proportion of characters that were incorrectly predicted in the transcriptions. This CER 

value highlights the effectiveness of our model in transcribing speech. 

A transformer model was employed to process speech data and convert it into text. This model utilizes 

advanced self-attention mechanisms to capture and understand the sequence and context of the speech. The 

workflow includes text preprocessing and embedding layers, followed by transformer encoder and decoder 

layers. As a deep neural network, it excels at capturing long-range dependencies in speech data. With 4 

million parameters, the model strikes a balance between complexity and performance. Trained for 30 epochs, 

it achieved a Character Error Rate (CER) of 22.72%, indicating its effectiveness in accurately transcribing 

speech. 
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For hyperparameter tuning, we experimented with several key configurations to optimize model performance. 

The learning rate, which controls the size of the model's weight updates during training, was tested over a 

range of values between 0.001 and 0.0001. We found that a learning rate of 0.0005 provides the best balance 

and ensures stable convergence without overshoot or undershoot. In addition, the batch size, which 

determines the number of training samples processed before updating the model parameters, was tuned 

between 32 and 64. This allowed us to balance computational efficiency and model accuracy. The model 

architecture was also modified by changing the number of layers in BiLSTM and CNN, testing different 

combinations to find the most efficient configuration. We used the Adam optimizer, known for its adaptive 

learning speed and ability to handle sparse transitions, which helped speed up convergence. Training took 

place in 47 epochs, with optimal performance achieved after 46 epochs, as additional epochs did not lead to 

significant improvements. For evaluation, we used Character Error Rate (CER) as the primary metric to assess 

transcription accuracy. CER measures the proportion of incorrect character predictions and provides a fine-

grained assessment of how well the model transcribed the speech input. In addition, the Temporal Connection 

Classification (CTC) loss feature was used to solve the alignment problem between the input audio and the 

corresponding text output. CTC is well-suited for cross-sequence problems where the input and output lengths 

may differ, and helped refine the alignment of predicted transcripts with real speech. 

The 1D-CNN+ResNet+BiLSTM model performed better than both the Transformer and the BiLSTM models 

because it handled speech data more completely. The 1D-CNN helped the model pick up on small details in 

speech, like sounds and how they change over time, which are important for accurate transcription. ResNet 

was able to extract important patterns from the speech spectrograms without losing information, making the 

model better at handling challenges like different accents or background noise. The BiLSTM then processed 

the speech sequence by looking at both past and future information, improving how well the model 

understood the context of the speech. Together, these parts worked more effectively than the Transformer, 

which is good at capturing long-term connections in speech but doesn’t extract local details as well as the 

CNN and ResNet layers. The BiLSTM-only model, while able to process sequences, lacked the feature 

extraction power provided by CNN and ResNet, making it less effective. As a result, the 1D-

CNN+ResNet+BiLSTM model had a much lower error rate, making it the most accurate option for 

transcribing speech in this comparison.Table (1) evaluates multiple model combinations on the dataset to 

assess their performance in transcription accuracy. The models tested include 1D-CNN+RESNET+BiLSTM, 

Transformer CNN, and BiLSTM. Among these, the combination of 1D-CNN+RESNET+BiLSTM 

consistently produced the best results, achieving a Character Error Rate (CER) of 17.06%, which is the lowest 

CER among the three models tested.Table (2) highlights the predicted transcriptions generated by each model 

for a variety of actual transcriptions. The results show that 1D-CNN+RESNET+BiLSTM produced 

transcriptions that closely match the actual text, outperforming both the Transformer CNN and BiLSTM 

models. The errors observed in the 1D-CNN+RESNET+BiLSTM model are relatively minor compared to 

the more pronounced inaccuracies in the other two models. This suggests that the residual connection and 

bidirectional LSTM layers in the hybrid architecture effectively capture both local and contextual 

information, leading to more accurate predictions.In contrast, the Transformer CNN and BiLSTM models 

struggled more with complex sentence structures, often missing keywords or generating irrelevant 

predictions. Thus, Table (2) provides strong evidence that the 1D-CNN+RESNET+BiLSTM combination is 

better suited for this transcription task, as it delivers the most accurate and reliable results. 

6.  Conclusion and Future Enhancements 

We have trained several models and discovered that ResNet combined with 1D-CNN and BiLSTM produces 

the optimal result. Because of the efficient data-cleaning process, the alignment between the audio frames 

and their corresponding characters is improved. Furthermore, we can enhance this system by using diverse 

datasets collected through organic methods, employing sophisticated machine learning algorithms to build 

the query system and produce tailored outputs, and conducting more research on live speech-to-text 

conversion. While our study builds upon established architectures such as 1D-CNN, ResNet, and BiLSTM, 

the novelty lies in the integration and optimization of these techniques specifically for Nepali speech 

recognition, an under-researched language in the ASR domain. By carefully fine-tuning these models with 
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Nepali-specific datasets and employing advanced preprocessing techniques like silent gap clipping and 

numeric transcript removal, we achieved a significant improvement in Character Error Rate (CER). This 

combination of models, alongside our novel preprocessing strategies, represents an important step forward in 

the development of more effective ASR systems for under-resourced languages. 
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