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Abstract 

This paper evaluates the effectiveness of advanced Variational Autoencoder (VAE) models in overcoming latent space 

entanglement and insufficient disentanglement, common issues in traditional VAEs. Traditional VAEs often face challenges 

in separating distinct features within the latent space, leading to entangled representations that hinder interpretability and 

compression efficiency. The advanced VAE models examined in this study address these issues by enhancing 

disentanglement, which results in clearer separation of latent factors and more interpretable representations. However, this 

improvement in disentanglement may result in a trade-off with reconstruction quality. The article shows that, while these 

sophisticated models improve disentanglement, they may also have worse reconstruction quality than classic VAEs.  The 

findings highlight the necessity of hyperparameter optimization in successfully navigating this trade-off. Future study 

should investigate novel model architectures and hyperparameter optimization strategies to optimize the balance of 

disentanglement and reconstruction quality. Overall, the research emphasizes the ability of advanced VAE models to 

generate more interpretable representations and the importance of careful tuning to resolve the inherent trade-offs. 
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1. Introduction 

Traditional VAEs are powerful tools for handling complex data, but they often struggle with separating different 

features effectively. This means that the information they store can overlap, making it hard to interpret. For 

example, in image compression, this lack of clarity can lead to blurry or unclear images. This paper evaluates 

advanced VAE models that aim to improve this issue by enhancing the separation of features, leading to clearer 

representations. However, focusing too much on this separation can sometimes reduce the quality of the 

reconstructed images, creating a trade-off that needs careful attention. 

The main contribution of this research lies in its investigation of these advanced VAE models and their ability to 

tackle the challenges of feature separation. By highlighting the trade-offs between clearer representations and 

image quality, the paper underscores the importance of fine-tuning the value of β to for better reconstruction result 

Although the research might not clearly outline how it compares to existing models, it offers valuable insights 

into balancing interpretability and performance. Additionally, the paper suggests future research directions, 

encouraging the exploration of new model designs and optimization techniques. This focus on the delicate balance 

between clarity and quality adds depth to our understanding of VAEs and is a meaningful step toward making 

these models more effective and easier to use. 

The primary objectives of this research are: 
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1 To Evaluate the Effectiveness of β-VAE in Reducing Latent Space Entanglement. 

2 To Analyze the Trade-offs Between Disentanglement and Reconstruction Quality in VAE 

2. Related Work 

The complexity of learning a task for a given machine-learning approach might vary greatly depending on the 

data representation chosen. A well-suited representation of the specific task and data domain can considerably 

increase the learning success and robustness of the selected model (Bengio et al., 2013). Learning a disentangled 

representation of the data-generating factors has been reported to be effective for a wide range of tasks and 

domains (Bengio et al., 2013). A disentangled representation is one in which single latent units are sensitive to 

changes in a single generative factor but largely insensitive to changes in other variables (Bengio et al., 2013). 

The paper "Understanding Disentangling in β-VAE" by Christopher P. Burgess et al. provides an in-depth review 

of the β-VAE framework, focusing on its disentanglement capabilities. It discusses the challenges of achieving 

meaningful factor separation in latent spaces and introduces the trade-off parameter β, which influences 

disentanglement. The authors present empirical analyses, explore training challenges, and compare β-VAE with 

other methods, highlighting its strengths and limitations in generative modeling and latent space exploration 

(Burgess, 2018). 

In "β-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework," the authors extend the 

traditional VAE by introducing a parameter to balance data reconstruction quality and latent space 

disentanglement. Higher β values enhance interpretability, while lower values focus on reconstruction accuracy. 

This approach leads to improved factor separation, making β-VAE a promising tool for applications in image 

generation and compression, thus advancing generative modeling techniques (Higgins, 2017). 

In "Structured Disentangled Representations," Esmaeili et al. (2019) propose a framework that enhances 

disentanglement in representations through structured latent variables. The authors emphasize the importance of 

structured representations in improving the interpretability of learned features. By analyzing the trade-offs 

between flexibility and interpretability, the paper presents empirical results demonstrating that structured 

representations can lead to more meaningful and disentangled latent spaces, thus advancing the capabilities of 

models in various applications (Esmaeili, 2019). 

Vahdat and Kautz (2021) introduce "NVAE: A Deep Hierarchical Variational Autoencoder," which builds on the 

traditional VAE architecture by incorporating a hierarchical design. This approach allows for more expressive 

latent representations and improves the model's ability to capture complex data distributions. The authors 

showcase NVAE's strengths in generating high-quality samples and highlight its effectiveness in tasks requiring 

detailed feature extraction. The findings suggest that the hierarchical structure significantly enhances the VAE 

framework, making it suitable for a broader range of generative modeling tasks (Vahdat, 2021). 

In "Disentangling Disentanglement in Variational Autoencoders," Mathieu et al. (2019) explore the nuances of 

disentanglement in VAEs, proposing a systematic evaluation framework to assess various disentanglement 

metrics. The authors discuss the challenges associated with measuring disentanglement and provide insights into 

how different configurations of VAEs can achieve improved disentangled representations. Their work contributes 

to a better understanding of the trade-offs involved in VAE design and offers practical guidance for researchers 

aiming to enhance disentanglement in their models (Mathieu, 2019). 

The study’s outcomes demonstrate the effectiveness of the proposed approach is. When compared to conventional 

generative models, structured disentangled representations exhibit better disentanglement and more significant 

latent dimensions. Furthermore, the model ensures that the output data is loyal to the original input by maintaining 

acceptable reconstruction quality. All things considered, "Structured Disentangled Representations" presents a 

viable method for improving the interpretability and latent space representations of generative models.  
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3. Background 

3.1 . Input Data 

 

Figure 1. Block diagram of Modified Beta-VAE 

 

In a Variational Autoencoder (VAE), input data, such as images, are encoded into a lower-dimensional latent 

space representation. The dataset consists of disentangled representations featuring images of 2D shapes, with 

variations generated from distinct latent factors such as color, shape, scale, rotation, and position. 

3.2 . Encode Network 

The encoder employs several convolutional layers followed by a fully connected layer to process the input images. 

The convolutional layers extract hierarchical features and spatial dependencies from the images. The output of 

the fully connected layer consists of two sets of numbers: the mean and log-variance of the latent space. These 

values represent the probabilistic distribution of the latent variables conditioned on the input images (Zhang, 

2022). The encoder network plays a crucial role in mapping input data to a latent space representation. Instead of 

directly encoding input data into a fixed latent vector, the encoder outputs the parameters of a probability 

distribution that describes the latent space (Komanduri, 2023). Typically, this distribution is chosen to be 

Gaussian. Mathematically, the encoder network can be represented as:  

h = fe(x;We, be) 

𝝁 = Linear(h; W𝝁, b𝝁) 

log𝞂2 = Linear(h; W log𝞂2, blog𝞂2)   

(Equation 1) 

Where,  

fe represents the encoding function, such as a feedforward neural network with activation 

functions like ReLU or sigmoid. 

We and be denote the weights and biases of the encoder network. 

h is the hidden representation obtained after passing the input through the encoder network. 

μ and logσ2 represent the mean and log-variance of the approximate posterior distribution over 

the latent space, respectively. 

Wμ  bμ  Wlogσ2  and blogσ2   are the weights and biases of the linear layers used to compute the mean 

and log-variance. 

3.3. Latent Space 
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The mean (μ) and log-variance parameters obtained from the encoder represent the location and spread of the 

latent variables in the latent space, respectively. These parameters define a Gaussian distribution from which we 

sample latent vectors during training. When data is disentangled, it means that different aspects or attributes of 

the data are represented independently in the learned latent space or feature space (Yang, 2023). The latent space 

is taken as face, color, shape and so-on. 

3.4. Decoder 

The decoder reversely mirrors the encoder's architecture. It reconstructs the input images using the sampled latent 

vectors as input. Transposed convolutional layers, sometimes referred to as deconvolutional layers, make up the 

decoder. They upscale the latent representations to produce pixel-by-pixel reconstructions of the input pictures. 

The decoder attempts to extract the most important information from the original data by rebuilding the input 

images from the latent vectors (Higgins, 2017). 

3.5. Reconstructed Data 

To rebuilt the data, the decoder runs the sampled latent vectors through a sequence of fully connected layers and 

activation functions. The model can reconstruct the input images or other types of data using these fully connected 

layers, which transform the latent vectors into a representation that aligns with the input data (Zhang, 2022).  

3.6. Data Generation 

The Beta-VAE model is loaded and moved to the relevant device from the model route that has been provided. 

The model's evaluation mode indicates that it will be used for to generate a latent factor zf corresponding to a 

randomly selected factor f and its associated latent value vf, it can represent this process as: 

Let z1 and z2 be two latent representations obtained from pairs of conditioned images. The average difference Δz 

can be calculated as: 

Δ = 
1 

2
∑ |Z1i − 𝑍2𝑖|

𝑁
𝑖=1  (Equation 2) 

Where,  

z1 and z2 be two latent representations obtained from pairs of conditioned images 

 

3.7. Dataset Generation: 

To produce pairs of latent representations that correspond to disentangled factors and their related factors, the 

model generates the dataset. 

4. Methodology 

Addressing the challenges in VAE-based image compression, such as hazy reconstructions and inadequate 

disentanglement, is crucial for advancing image compression technology. The β-VAE model provides a flexible 

approach to balance data reconstruction quality and latent space disentanglement, promising significant 

improvements in compressed image quality and efficiency. 
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Figure 2. Methodology of Modified Beta-VAE 

4.1. Dataset Experimentation 

Preparation, training, and evaluation phases are involved in a journey from raw data to trained data, and the 

process ends with the creation of fresh data samples utilizing the learnt model. The development and evaluation 

of the model depends on each step, which helps the model acquire meaningful representations of the input data 

and produce new samples with the desired properties. 

4.2. Encoder Network 

The encoder model comprises several layers designed to capture essential features from the input data and encode 

them into a lower-dimensional latent space representation. It typically starts with convolutional layers, each 

applying a set of learnable filters to the input data to extract spatial features. These convolutional layers are often 

followed by activation functions such as ReLU (Rectified Linear Unit), which introduce non-linearity to the 

model.  

4.3. Latent Space 

The latent space, defined by the mean and log-variance parameters, allows for the independent representation of 

various attributes of the data. The latent space is structured to represent factors such as face, color, and shape, 

enabling effective disentanglement (Gao, 2020). 

4.4. Decoder Network 

The decoder mirrors the encoder architecture, using transposed convolutional layers to reconstruct the input 

images from the sampled latent vectors. The process starts with low-dimensional latent representations, 

progressively up sampling them to generate pixel-by-pixel reconstructions of the original images. The final layer 

applies a sigmoid activation function to ensure pixel values are normalized to the range [0, 1]. 

4.5. Data Generation 

To generate new samples, the Model VAE model is loaded and evaluated to produce a latent factor corresponding 

to a randomly selected factor and its associated latent value. The average difference between latent representations 

from pairs of conditioned images is computed to facilitate data generation. 

5. Results and Discussions 



International Journal on Engineering Technology (InJET) Volume 2, issue no. 1, Dec 2024 

43 

 

5.1. β -VAE with MNIST Dataset 

In order to enhance VAE performance and guarantee accurate representations of the input data, optimization 

attempts are guided by an understanding of the characteristics and patterns found in the reconstruction. 

The reconstruction loss helps the model create well-defined clusters of data, while the KL divergence loss 

encourages the model to pack these clusters closely together. This balance allows the model to decode or generate 

accurate outputs from these distinct clusters. This is advantageous because it means that when randomly 

generating samples, if you draw a vector from the same prior distribution of the encoded vectors, N (0, 1), the 

decoder will successfully decode it. In cases of interpolation, there are no sudden gaps between clusters, but rather 

a smooth mix of features that the decoder can understand (Higgins, 2017). Analyzing variables such as model 

architecture, training data quality, hyperparameters, preprocessing techniques, and reconstruction evaluation is 

crucial for addressing unforeseen reconstruction challenges in the MNIST dataset. By carefully tuning these 

aspects, it is feasible to improve the reconstruction performance of the VAE and obtain more accurate 

representations of the original input data. 

  

Figure 3. MNIST Dataset Cluster using Modified Beta-VAE Figure 4. MNIST Dataset Representation using Modified Beta-VAE 

5.2. Beta VAE with DSPRITE 

 

Figure 5. DSPRITE with Change in Latent Positions using Modified Beta-VAE 
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The traversal values applied to each latent dimension determine the position of each generated image within the 

latent space. These traversal values are used to adjust the latent vectors along each dimension, ranging from min(t) 

to max (t, y). Reconstruction loss and KL divergence are traded off, with beta controlling this trade-off, allowing 

the learned latent distribution to approach a predetermined prior distribution (Esmaeili, 2019). A higher beta value 

may result in less reconstruction fidelity but also better-structured latent representations, as it emphasizes the KL 

divergence term. Achieving the desired outcomes in terms of image quality and the interpretability of the latent 

space requires fine-tuning these hyperparameters (Zhang, 2022). 

5.3. Model Representation 

 

Figure 6. Training and Validation Loss Traditional vs using Modified Beta-VAE  

When examining the behavior of the loss vs. epoch graph, it indicates that the model's training is progressing well 

if the loss curve exhibits an inverse exponential form. Initially, the model experiences a relatively high loss as it 

adjusts its parameters to minimize the discrepancy between predicted and actual values. An exponential increase 

in accuracy signifies that the model is rapidly improving its predictive performance and effectively recognizing 

underlying patterns in the data. This significant increase can be a sign of effective learning and adaptation to the 

training data (Chen, 2021). 

When viewed as a whole, these visualizations provide insightful information about the encoding space's 

distribution and properties, facilitating a better understanding of how the Variational Autoencoder (VAE) model 

represents and differentiates between various features in the dataset (Esmaeili, 2019). 

In comparing traditional VAE and model VAE, the model VAE demonstrates superior performance in 

disentangling latent space factors, offering clearer and more interpretable representations of distinct data features. 

This improvement in disentanglement allows the model VAE to effectively separate different latent dimensions, 

enhancing its ability to model complex variations in the data (Xian, 2019). However, this advantage comes with 

a trade-off, as the model VAE tends to have a higher reconstruction loss compared to the traditional VAE, leading 

to slightly less accurate reconstructions of the original data. The traditional VAE, while providing better 

reconstruction fidelity, struggles with latent space entanglement, where multiple features are combined within 

single dimensions. Thus, the model VAE is better suited for tasks requiring distinct feature separation and 

interpretability, whereas the traditional VAE may be preferable for prioritizing high-quality reconstructions. 
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Figure 7. Comparison between Traditional and Modified Beta-VAE  

The mean latent space values represent the average values of the latent space across different beta values. 

Variations in these mean latent space values illustrate how the distribution of the latent space changes as the beta 

value is adjusted. Higher mean latent space values indicate that the latent space is more dispersed, with a wider 

range of values. Conversely, lower mean latent space values suggest a more condensed or limited distribution of 

values within the latent space. (Park, 2023).  Conversely, the mean latent space initially increases slightly at a 

beta value of 0.01 and then rises sharply at beta values ranging from 0.1 to 1. This indicates that the latent space 

distribution is more balanced within this ideal range of beta values (Chen, 2021). However, once the beta value 

exceeds this optimal range, the mean latent space tends to decrease again. When beta increases to 0.001 and 0.01 

the regularization term becomes increasingly prominent, leading to a more concentrated latent space. However, 

when beta values approach 0.1 and 1, the regularization term dominates, leading to a significant reduction in the 

latent space (Zhao, 2020).  The β parameter controls the trade-off between reconstruction quality and latent space 

disentanglement in the VAE to enhance the reconstructions. 
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Figure 8. Mean Latent Space VS Beta Values for Modified Beta-VAE 

5.4. Model Comparison 

Table 1. Comparative analysis of your Model VAE against various established VAE variations 

Model Strengths Weakness Reconstruction 

Loss Accuracy 

Traditional VAE Good reconstruction quality for simple 

datasets. 

Struggles with disentanglement; leads to 

entangled latent representations. 

Moderate accuracy 

Structured Disentangled 

Representations (Esmaeili et al., 

2019)  

Focuses on structured representations, 

enhancing latent space organization. 

Limited generalization across diverse 

datasets. 

High accuracy 

NVAE (Vahdat and Kautz, 2021)  Captures complex patterns with a 

hierarchical structure 

Computationally intensive; risk of 

overfitting. 

Moderate accuracy 

Disentanglement (Mathieu et al., 

2019) 

Provides theoretical insights and 

evaluation methods for disentanglement. 

May prioritize metrics over practical 

reconstruction quality 

High accuracy 

Modified Beta-VAE Excels in both disentanglement and 

reconstruction quality with lower loss. 

Implementation complexity may increase 

as tuning of β is required for better result 

High accuracy 

6. Conclusion 

The research compares the efficiency of Variational Autoencoder (VAE) models in learning disentangled 

representations to that of classic VAE models. Traditional VAEs may not always successfully disentangle latent 

elements, resulting in mixed or entangled representations in which distinct factors are not clearly separated. In 

contrast, the examined approach shows a significant improvement in disentanglement. It achieves a more precise 

separation of latent components, with each dimension in the latent space representing a unique and separate source 

of variation in the data. This advancement in disentanglement is noteworthy, as it enables a clearer and more 

interpretable portrayal of the underlying elements in the data. 

However, this improved disentanglement comes at a cost in terms of reconstruction fidelity. When compared to 

typical VAEs, this approach may result in lower-quality data reconstruction. Nonetheless, the potential to achieve 

greater disentanglement is a considerable improvement over traditional VAE models. Overall, the enhanced 

disentanglement capabilities provided by this approach give it a significant advantage over traditional VAEs, 

making it more effective for applications that require clear and distinct representation of latent factors, even if 

reconstruction accuracy may be compromised. Future research should seek to improve the balance between 

disentanglement and reconstruction quality. 
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