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Abstract 

 
Ulcers, especially chronic wounds and pressure sores, create significant healthcare challenges and need early detection 

for effective treatment. Due to the persistent challenges posed by human error in manual detection and classification 

processes, there is a need for automated methodologies that can offer robust and reliable solutions. To enhance the 

accuracy and generalization of the Convolutional Neural Network (CNN), a Generative Adversarial Network (GAN) 

based image augmentation technique is used in this study to classify the Kvasir dataset. With an initial 1512 ulcer 

images selected from the dataset, after stable 70 epochs, 70000 images were generated using GAN for 2 classes: Ulcer 

or Non-Ulcer. To remove the noise from an enhanced batch of images and classify the set of newly generated datasets, 

GAN-based CNN (G-CNN) was employed to get 99.00% training and 96.04% validation accuracy. The study was 

compared with conventional CNN which achieved a training accuracy of 98.5% and validation accuracy of 94.34%. 

A significant improvement has been observed in f1-scores of 0.94 and 0.97 for CNN and the proposed algorithm, 

respectively. The study is replicable across datasets with a limited number of images, thereby facilitating heightened 

accuracy levels. 
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1. Introduction 

The ulcer has become one of the most fatal diseases, especially in developing countries, and if it is not 

addressed on time, it may result in death (Ding et al., 2024). The rectification of image processing helps to 

resolve a wide variety of issues, particularly those related to medical imaging for brain tumors, ulcers, breast 

cancer, and other conditions (Rajinikanth et al., 2021). Automated early detection and classification 

techniques can enhance reliable diagnosis and therapy. Deep learning (DL) has established itself as an 

effective machine learning technology and has shown that it is capable of automating the diagnosis of diseases 

(Ajagbe and Adigun, 2024). As a result, its usage in medical picture analysis and recognition has been 

investigated. 

Strengthening the skills of physicians and other health-care workers associated with preliminary diagnosis 

can improve medical image examination. Conventional augmentation methods and enhancement techniques, 

such as cropping, flipping, rotating, and translating, may not adequately capture the intricate complexity and 

variability inherent in ulcer characteristics (Xu et al., 2024). As a promising alternative, leveraging Generative 

Adversarial Network (GAN)based image augmentation offers a solution to overcome the limitations of scarce 

and diverse ulcer datasets (Thakur et al., 2023). 

By generating synthetic ulcer images with realistic characteristics, the proposed study improves the 

generalization capabilities of the DL model. This ensures that the model can accurately detect ulcers in unseen 

cases. Addressing the critical need for accurate ulcer detection in medical diagnostics, where traditional 

methods may struggle due to poor image quality and limited data (Saeedi et al., 2024). Utilizing GANs for 
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image augmentation and Convolutional Neural Network (CNN) for denoising can significantly enrich the 

training dataset and enhance image clarity, leading to improved diagnostic precision and the potential for 

better patient outcomes. 

The resolve the current issues, this study focus: 

a. To construct a hybrid learning model (G-CNN), integrating Generative Adversarial Networks 

(GAN) for generating additional data samples 

b. To evaluate the proposed model through comparative analysis using ulcer imaging datasets. 

2. Literature Review 

Gastric ulcer detection during clinical interventions presents challenges, including diagnosis time and the 

need for expertise. 

A study by Bajhaiya and Unni (2022) explores automatic ulcer detection from wireless capsule endoscopic 

(WCE) images using transfer learning. DenseNet121, a pre-trained convolutional neural network, is 

employed for classification, achieving 99.94% accuracy, 100% precision, 97.67% recall, and 98.82% F1-

score on the test dataset. These results demonstrate the efficacy of deep learning for rapid and accurate gastric 

ulcer screening, addressing challenges associated with traditional diagnostic methods. 

Yang et al. (2018) proposed a new Computed Tomography (CT) image denoising method using GANs with 

Wasserstein distance and perceptual similarity. This approach, combining optimal transport theory and 

perceptual loss, aims to reduce noise while preserving critical information. Experimental results with clinical 

CT images demonstrate promising outcomes, highlighting the potential of this method. 

Auzine et al. (2022) presented a method for identifying ulcers in WCE images by employing a cutting-edge 

CNN. Improving ulcer detection in WCE images involves employing convolutional layers with pooling 

layers, two dense layers, and ReLu activation. This study explores different types of ulcers using a large 

database of WCE images. Optimal performance is achieved by carefully analyzing hyperparameters like batch 

size, optimizer with learning rate, pooling size, epochs, and dropout. The results indicated that the accuracy 

of the models improves significantly with data augmentation and GAN. Particularly, GAN achieved the 

highest accuracy of 94%, surpassing both the non-augmented training set and traditional data augmentation 

methods for the VGG16 model. 

In the study, Klang et al. (2021) illustrated the application of a CNN model for automated assessment of 

stomach ulcer images to detect malignancy. Their dataset, sourced from Sheba, consisted of 1978 images of 

gastric ulcers (GU), comprising 1894 benign GU images and 84 malignant ulcer images. The final CNN 

model achieved an Area Under the Curve (AUC) of 0.91 for detecting malignant ulcers. At a cut-off 

probability of 0.5, the network demonstrated a specificity of 75% and sensitivity of 92% for identifying 

malignant ulcers. 

Sutton et al. (2022) evaluated various CNN architectures using a dataset comprising 8000 tagged endoscopic 

still images sourced from hyper-kvasir, the largest multiclass gastrointestinal tract image and video dataset 

available. They initialized the weights using ImageNet and employed Grid Search to determine optimal 

hyperparameters through fivefold cross-validation. The DenseNet121 architecture yielded the highest 

accuracy of 87.50% and AUC of 0.90, outperforming the majority class prediction of “no skill” model which 

achieved only 72.02% accuracy and an AUC of 0.50. 

Tekchandani et al. (2020) address critical challenges in mediastinal lymph node (MLN) classification in lung 

cancer, where invasive tests carry significant risks and depend heavily on surgical expertise. They emphasize 

the need for a non-invasive, computer-aided system, highlighting previous work using fully convolutional 

networks (FCNs) and data augmentation to improve performance. However, FCNs often struggle with 

overfitting due to high parameter counts. To mitigate this, the authors propose using Generative Adversarial 

Networks (GANs) for data augmentation and an Inception-based model for efficient hierarchical feature 

extraction. Their approach achieves outstanding accuracy (94.95%), sensitivity (93.65%), and specificity 
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(96.67%), demonstrating its effectiveness. Barua et al. (2024) investigated multi-class classification of 

Corneal Ulcers using deep learning methods on the SUSTech-SYSU dataset, comprising 712 images from 

Sun Yat-sen University’s Zhongshan Ophthalmic Center. Post fluorescein staining, the images are used to 

enhance CNN models for ECU image classification. A customized hierarchical model is developed, achieving 

99% training accuracy and 90% validation accuracy. The dataset is expanded to 7,200 training, 3,000 testing, 

and 1,800 validation images. Employing categorical cross-entropy loss and the Adam optimizer, the model 

undergoes hyper-parameter tuning to maximize performance. This work seeks to advance automated Corneal 

Ulcer classification, aiding ophthalmologists in effective diagnosis and treatment. Table 1. shows the overall 

comparative study of current state of art methods. 

Table 1: List of different SOTA methods 

Author Nature of Dataset Algorithm Used Result 

Bajhaiya and Unni 

(2022) WCE images 
DenseNet 121 

 

Accuracy: 99.94% 

Recall: 97.67% 

Auzine et al. (2022) WCE images VGG16 Accuracy: 94% 

Klang et al. (2021) 
Sheba stomach ulcer 

dataset 
CNN 

Specificity: 75% 

Sensitivity: 92% 

AUCROC: 0.91 

Sutton et al. (2022) 
Hyper-Kasvir 

gastrointestinal dataset 
DenseNet121 

Accuracy: 87.50% 

AUC: 0.90 

Barua et al. (2024) SUSTech-SYSU dataset CNN Accuracy: 99% 

Compared with all the currents state-of-art methods, the major problems in traditional CNNs show limited 

performance in real-world applications due to dataset variety constraints and image noise. Combining GAN-

based image augmentation to create realistic synthetic images and Denoising CNNs to reduce noise in real 

images could significantly enhance model accuracy and robustness, addressing the limitations of conventional 

CNNs in diverse imaging conditions. 

3. Materials and Methodology  

 

Figure 1: Methodology 

The entire process of the study is shown in Figure 1. This study uses the Kvasir dataset to develop a model 

for classifying ulcerous and non-ulcerous images. The methodology includes image normalization to the 

range [−1, 1] and resizing to [128×128] pixels for uniform input. To improve model performance, GANs are 

used for image augmentation, enhancing the diversity of training data. Additionally, a denoising 

Convolutional Neural Network (CNN) is applied to reduce image noise and retain crucial features. The model 
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undergoes an iterative training process, involving accuracy evaluation and subsequent adjustments until the 

desired performance is achieved. The final model is evaluated and used for accurate ulcer classification. 

3.1. Dataset 

KVASIR dataset (Pogorelov et al., 2017) is used as the primary source of the dataset. A total of 1000 images 

were used for training whereas 512 images were used for testing. Ulcerous images were collected from the 

Ulcerative Colitis category of the KVASIR dataset, while normal images were collected from the Cecum 

category. The sample image for both the categories is shown in Figure 3. 

  

(a) (b) 

Figure 2. Sample images for each of the classes. Note that (a) and (b) denote “Ulcer” and “Normal” cases respectively. 

3.2. Dataset Preprocessing 

The images in the dataset hold images in the range 720 × 576 up to 1920 × 1072. All the images under 

consideration were resized to 128 × 128 and normalized to fall in the range of [-1, 1]. 

3.3. Data Augmentation Using GAN 

GAN, having generator and discriminator, is trained to create realistic samples and identify them as real or 

generated for KVASIR dataset in our study. Loss function used in our study is defined as: 

MinG  MaxD V (D, G)=Ex∼pdata(x) [LogD(x)] + Ez∼pz(z) [log  (1−D (G (z) )) ]                                (i) 

Here,  Ex∼pdata(x) is expectation over the real data distribution for KVASIR dataset, Ez∼pz(z) is expectation 

over the input noise variables z to the generator, D(x) is discriminator's estimate of the probability that real 

data instance x is real, G(z) is data generated by the generator from noise z. and D(G(z)) is the discriminator's 

estimate of the probability that a fake instance is real (Creswell et al.). 

3.3.1. Generative Architecture 

The GAN generator consists of four transpose convolutional layers with kernel sizes of (4, 4) and Leaky 

ReLU activation functions. It starts with a dense layer taking a noise vector of length 80. The final layer 

outputs a 3-channel image with tanh activation. The generative model summary is shown in Table 2. 

Table 2. Layer summary of Generative Network 

Layer (type) Output Shape Param # 

Dense (None, 16384) 1,327,104 

Reshape (None, 8, 8, 256) 0 

Conv2DTranspose (None, 16, 16, 128) 524,416 

Leaky ReLU  (None, 16, 16, 128) 0 

BatchNormalization (None, 16, 16, 128) 512 
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Conv2DTranspose (None, 32, 32, 64) 131,136 

Leaky ReLU  (None, 32, 32, 64) 0 

BatchNormalization (None, 32, 32, 64) 256 

Conv2DTranspose (None, 64, 64, 32) 32,800 

Leaky ReLU  (None, 64, 64, 32) 0 

BatchNormalization (None, 64, 64, 32) 128 

Conv2DTranspose (None, 128, 128, 3) 1,539 

Total params: 2,017,891 

Trainable params: 2,017,443 

Non-trainable params: 448 

3.3.2. Discriminative Architecture 

The discriminator is a sequential model with two convolutional layers: 64 filters of size (3, 3) and 128 filters 

of size (3, 3). Leaky ReLU activation functions with alpha=0.2 and dropout layers are applied. It ends with a 

dense layer using sigmoid activation. The discriminator architecture summary is shown in Table 3. Using the 

GAN architecture, a total of 70000 images were generated.  

Table 3. Layer summary of Discriminator Network 

Layer (type) Output Shape Param # 

Conv2D (None, 128, 128, 64) 1,792 

Leaky ReLU (None, 128, 128, 64) 0 

Dropout (None, 128, 128, 64) 0 

Conv2D (None, 128, 128, 128) 73,856 

Leaky ReLU (None, 128, 128, 128) 0 

Dropout (None, 128, 128, 128) 0 

Flatten (None, 2097152) 0 

Dense (None, 1) 2,097,153 

Total params: 2,172,801 

Trainable params: 0 

Non-trainable params: 2,172,801 

 

3.4. Conventional CNN 

Table 4 outlines a CNN model architecture, listing each layer’s type, output shape, and parameter count. It 

includes three Conv2D layers (32, 64, and 128 filters), each followed by MaxPooling2D layers. A flattened 

layer converts the output to a 1D vector (25,088 units). This is followed by a Dense layer (128 units), a 

Dropout layer, Batch normalization, and a final Dense layer for classification. The model has 3,304,281 

parameters in total. 

Table 4: Layer Summary of CNN model 

Layer (type) Output Shape Parameter # 

Conv2D (None, 126, 126, 32) 896 

MaxPooling2D (None, 63, 63, 32) 0 

Conv2D (None, 61, 61, 64) 18,496 

MaxPooling2D (None, 30, 30, 64) 0 

Conv2D (None, 28, 28, 128) 73,856 

MaxPooling2D (None, 14, 14, 128) 0 

Flatten (None, 25,088) 0 

Dense (None, 128) 3,211,392 

Dropout (None, 128) 0 

Batch Normalization (None, 128) 512 

Dense (None, 1) 129 
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3.5. Evaluation Metrics 

Different evaluation metrics, including accuracy, loss, classification report, and confusion matrix, are 

computed to assess the model’s performance 

3.6. Implementation Details 

The experiment is performed using an NVIDIA Tesla T4 GPU equipped with 16GB of GDDR6 RAM in 

Google Colab. 

4. Results Analysis 

4.1. Conventional CNN 

Normal CNN model without augmentation was trained. The loss and accuracy metrics for training are 0.0456 

and 98.50%, respectively. For validation, the loss and accuracy metrics are 0.2399 and 94.34%, respectively 

as shown in Figure 3. 

According to Table 5, the Non-Ulcerous class has a precision of 0.91, recall of 0.98, and F1-score of 0.95, 

while the Ulcerous class has a precision of 0.98, recall of 0.90, and F1-score of 0.94. Overall accuracy is 0.94. 

For a total 462 test samples, 228 ulcerous and 208 non-ulcerous images were correctly predicted while rest 

26 images were incorrectly predicted as shown in Table 6. 

  
(a) (b) 

Figure 3: Accuracy and Loss Graph for Conventional CNN. Note that (a) denotes training and validation accuracy whereas 

(b) denotes training and validation loss 

 

Table 5: Classification Metrics for CNN 

Class Precision Recall F1-Score 

Non-Ulcerous 0.91 0.98 0.95 

Ulcerous 0.98 0.90 0.94 

Accuracy   0.94 

Macro Average 0.95 0.94 0.94 

Weighted Average 0.95 0.94 0.94 
 

Table 6: Confusion Matrix for CNN 

 
 

Predicted 

Ulcerous 
Non-

Ulcerous 

A
ct

u
al

 Ulcerous 228 4 

Non-Ulcerous 22 208 
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(a) (b) 

Figure 4.: Accuracy and Loss Graph for Conventional CNN. Note that (a) denotes training and validation accuracy whereas 

(b) denotes training and validation loss 

4.2. GAN based CNN 

Throughout the training process, the model consistently improved with a training loss of just 0.04 and an 

impressive accuracy of 99.5%. In validation, it showed a bit more loss at 0.1221 but still performed admirably 

well with an accuracy of 96.04% as shown in Figure 4. Additionally, starting from the 70th epoch, a total of 

70,000 images were generated. Table 7 displays classification metrics for GAN-based CNN. The non-

ulcerous class achieved precision, recall, and an F1-score of 0.96, 0.98, and 0.97, respectively. ulcerous class 

showed precision, recall, and F1-score of 0.98, 0.96, and 0.97. Overall accuracy reached 97.0%, with macro 

and weighted averages also at 97.0%. 

 

 

The confusion matrix (Table 8) shows that out of 462 total images, 447 were correctly classified by the 

conventional CNN, resulting in an overall accuracy of approximately 96.74%. 

5. Discussion 

512 images were first taken as testing datasets and 1000 images as training datasets. The total number of 

images created during the 70 epochs training phase is 70,000. GCNN receives the enhanced collection of 

images to filter out any unwanted noise and categorize the images as ulcer or non-ulcer. Using the Kvasir 

dataset, 96.04% validation accuracy and 99.5% training accuracy were attained. The accuracy of 94.34% was 

attained by the traditional CNN in comparison to the suggested approach. F1-scores of 0.94 and 0.97 for CNN 

and the suggested method, respectively, show a notable improvement. Ulcer Class maintains better precision, 

recall and f1-score for around 0.94, while non-ulcerous exhibits a slightly lower value of 0.95. By using GAN, 

with an overall accuracy of 97.00%, the model is effective in correctly classifying cases for precision, recall, 

and f1-score. These outcomes demonstrate the GAN’s suitability for challenging classification tasks. 

Table 7: Classification metrics for GAN-based CNN 

Class Precision Recall F1-Score 

Non-Ulcerous 0.96 0.98 0.97 

Ulcerous 0.98 0.96 0.97 

Accuracy   0.97 

Macro Average 0.97 0.97 0.97 

Weighted Average 0.97 0.97 0.97 

Table 8: Confusion Matrix for GAN based CNN 

 Predicted 

Ulcerous Non-Ulcerous 

A
ct

u
al

 

Ulcerous 226 5 

Non-Ulcerous 10 221 
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6. Conclusions 

This study focuses on ulcer diagnosis in the Kvasir dataset by integrating GAN for augmentation. The G-

CNN architecture is proposed and fine-tuned for optimal performance, adjusting hyperparameters such as 

epochs, batch size, optimizer with learning rate, dropout, and pooling size. The proposed algorithm achieves 

a remarkable 96.04% validation accuracy with high precision, recall, and F1 scores, underscoring the efficacy 

of data augmentation for small datasets. 

Future research should explore GAN performance across diverse domains and data types, and efforts to 

enhance the robustness and interpretability of GAN-generated classifications are warranted to increase 

practical utility and trustworthiness. Investigating methods to mitigate biases and uncertainties in GAN-based 

classifications is essential for advancing their application in real-world scenarios. 
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