
IJSIRT ǁ Vol-1 ǁ No. 2 ǁ Jul-Dec 2023 115

A Process based Algorithm for Random Number Generation

International Journal of Silkroad Institute of
Research and Training (IJSIRT)

Vol-1. No. 2, Jul-Dec 2023 DOI:10.3126/ijsirt.v1i2.61772 	 ISSN: 2990-7837 (Online & Print)

 Deep Raj Sharma1

1Department of Engineering, BP Koirala Memorial Cancer Hospital, Bharatpur Chitwan, Nepal.

Original Research Article

Received: 10th July, 2023 Accepted: 4th August, 2023 Published: 31th December, 2023

Correspondence:Mr. Deep Raj Sharma, Department of Engineering, BP Koirala Memorial Cancer Hospital, Bharatpur
Chitwan, Nepal. Email:deep48440@gmail.com, Phone: +977-9841963453.

INTRODUCTION
Random numbers, crucial in various mathematical
and computational applications, have a rich history of
exploration and application. Early pursuits to under-
stand and utilize randomness are evident in historical
games of chance, such as dice rolling.1 However, the
evolution of technology has significantly expanded
the scope and importance of random numbers, driv-
ing the development of sophisticated algorithms for
their generation. In contemporary computing, the
term "random number" often refers to pseudo-ran-
dom numbers, which are generated by algorithms de-
signed to simulate randomness. True randomness, in-
herently unpredictable and lacking a discernible pat-
tern, remains a challenging but sought-after concept
in deterministic systems.2 The significance of random
numbers spans a multitude of fields, from statistics
and simulation to cryptography and gaming. In sta-
tistical analyses, random numbers serve to model un-
certainty and variability, essential for robust experi-
mental design.3 In the realm of cryptography, the gen-
eration of unpredictable sequences is fundamental to
securing sensitive information and communications.4

As we delve into the complexities of randomness, it
becomes evident that the reliable generation of ran-

dom numbers is not only a technological necessity
but also a critical component shaping the landscape
of contemporary mathematics and computer science.

METHODS
Pseudo-random numbers

Pseudo-random numbers are sequences derived from
algorithms known as pseudo-random number gener-
ators (PRNGs). These generators use an initial value,
or seed, to produce sequences that exhibit statistical
properties akin to truly random numbers. However,
unlike true randomness, pseudo-random numbers are
entirely deterministic and repeatable with the same
seed. Pseudo-random numbers find widespread use
in diverse applications. In simulations, they allow the
modeling of stochastic processes, while in statistical
analyses, they facilitate the generation of random sam-
ples. Cryptographic systems leverage pseudo-random
numbers for key generation and secure communica-
tion.4 Computer graphics and gaming applications
also heavily rely on pseudo-random numbers for pro-
cedural content generation and gameplay variability.
The quality of a pseudo-random number generator
is crucial to its effectiveness. A high-quality PRNG
must pass rigorous statistical tests for randomness,

ABSTRACT
Background: Random number generation plays a crucial role in various scientific, computational, cryptographic applications
and stochastic processes. This paper introduces a novel algorithm designed to address the demand for high-quality random
numbers with improved statistical properties. The proposed Algorithm uses the elements of hardware-based entropy to generate
random numbers for efficiency and unpredictability.
Methods: Pseudo-random numbers are sequences derived from algorithms known as pseudo-random number generators
(PRNGs). These generators use an initial value, or seed, to produce sequences that exhibit statistical properties akin to
truly random numbers.
Results: z-test statistics provided enough evidence that the number generated using the proposed algorithm are random.
Conclusions: Module U behaves as a Random number generation algorithm. Further, we can test the module U for large
samples and we can use module U for simulation of different Random processes to verify it’s correctness.

Keywords: random numbers; hardware based random numbers; pseudo random numbers.

IJSIRT ǁ Vol-1 ǁ No. 2 ǁ Jul-Dec 2023 116

ensuring that the generated sequence exhibits prop-
erties such as uniform distribution and independence.
Commonly used PRNGs include the Mersenne Twist-
er (Matsumoto & Nishimura, 1998), linear congruen-
tial generators, and XOR-shift algorithms.
True-random numbers

Various physical processes serve as sources for true
random numbers. Quantum phenomena, such as the
decay of radioactive particles or the measurement of
quantum states, offer inherently unpredictable events
(Stipčević, 2005). Other sources include atmospher-
ic noise, electronic noise in semiconductors, and the
chaotic behavior of mechanical systems. True ran-
dom numbers play a pivotal role in cryptography,
particularly in scenarios where the predictability of
pseudo-random numbers poses security risks. Cryp-
tographic applications, such as key generation and
nonce creation, benefit from the intrinsic unpredict-
ability of true randomness (NIST SP 800-90B, 2018).
Additionally, true random numbers find use in secure
communication protocols and cryptographic proto-
cols.

Proposed Algorithm

Proposed algorithm is based on the assumption
that a random event is capable to produce further
random events. Let’s consider a scenario where
there exist a powerful machine (commonly termed
as a server) which executes different processes
following some rules, most commonly a queue
system. In Operating Systems, CPU Scheduling is
a process that allows one process to use the CPU
while another process is delayed (in standby) due
to unavailability of any resources such as I / O etc.,
thus making full use of the CPU. Whenever the CPU
becomes idle, the operating system must select one
of the processes in the line ready for launch. The
selection process is done by a temporary (CPU)
scheduler. The Scheduler selects between memory
processes ready to launch and assigns the CPU to
one of them.
Here, the arrival of processes doesn’t follow any
rule, they are random. For instance, consider a
mail server. Number of users who logins to the

mail server at any instance of time do not follow
any rule. Let’s consider this event (a user logins
to the mail server) as a process, P. At a particular
time instant, let the number of processes in Queue
to the mail server be n. So we have processes P1, P2,
…….., Pn in the queue. We add another Process U
in the queue. Operating System scheduler manage
to provide resources to the processes such that
starvation doesn’t occur for any process.

RESULTS
Process U is a small module defined as follows:

Runs test over the proposed algorithm
Runs test has been applied to the data generated
using module U. The five samples with their
z values and p values are presented in the table
below. Each sample consists of 20 numbers
generated using the module U:
For the z-test statistic and the corresponding
p-value in the above five samples we found that
p-value is not less than α = 0.05, therefore we fail
to reject the null hypothesis. We have sufficient
evidence to say that the data was produced in a
random manner. Similarly, the table below sample
consists of 50 numbers generated using the
module U:
For these sample too, z-test statistic and the
corresponding p-value we found that p-value is
not less than α = .05, therefore we fail to reject

Ghimire et al. Knowledge, Attitude and Practice Regarding Cardiopulmonary Resuscitation..

Figure 1. Proposed algorithm.

IJSIRT ǁ Vol-1 ǁ No. 2 ǁ Jul-Dec 2023 117

the null hypothesis. We have sufficient evidence
to say that the data was produced in a random
manner.

CONCLUSIONS
Hence, we found that for a small sample, Module U
behaves as a Random number generation algorithm.
Further, we can test the module U for large samples
and we can use module U for simulation of different
Random processes to verify it’s correctness.

Ghimire et al. Knowledge, Attitude and Practice Regarding Cardiopulmonary Resuscitation..

Table 1. Data samples of size 20.

Data Sample z value p-value

14, 9, 1, 12, 9, 8, 12, 11, 5, 1, 10, 13,
7, 5, 7, 11, 12, 9, 12, 13 0 1

2, 13, 9, 3, 14, 13, 13, 12, 7, 6, 9, 3, 1,
11, 6, 5, 13, 3, 12, 5 0.9158 0.35812

7, 1, 10, 4, 1, 8, 11, 4, 6, 5, 5, 9, 4, 3,
14, 2, 9, 6, 3, 11 1.15133 0.24959

12, 10, 5, 7, 9, 2, 11, 6, 3, 12, 7, 12,
14, 11, 3, 6, 10, 6, 2, 4 0.510807 0.249593

0, 3, 3, 9, 4, 12, 10, 12, 2, 4, 1, 2, 11,
4, 9, 4, 2, 8, 6, 14 -0.4179 0.67599

Table 2. Data samples of size 50.

Data Sample z value p-value

4, 3, 3, 12, 2, 6, 9, 6, 11, 3, 7, 9, 2, 11,
12, 3, 1, 0, 12, 8, 7, 13, 5, 9, 12, 10,
14, 10, 6, 11, 5, 1, 12, 14, 10, 14, 4, 5,
9, 6, 15, 6, 9, 12, 4, 13, 7, 11, 2, 9

1.728898 0.083827

8, 7, 1, 6, 13, 2, 8, 6, 7, 7, 8, 2, 2, 4, 6,
11, 4, 2, 13, 10, 8, 6, 3, 4, 6, 1, 6, 7, 4,
6, 11, 6, 4, 5, 4, 7, 10, 11, 10, 6, 3, 0,
4, 9, 12, 9, 9, 2, 8, 14

-1.39224 0.16384

5, 0, 1, 14, 12, 9, 4, 3, 13, 14, 8, 5, 13,
6, 11, 12, 11, 13, 6, 14, 3, 8, 10, 10,
12, 6, 14, 7, 4, 10, 12, 6, 9, 12, 6, 9, 5,
5, 7, 11, 9, 6, 3, 11, 2, 9, 4, 3, 5, 6

0.29769 0.0764

14, 4, 15, 10, 9, 5, 8, 11, 12, 3, 5, 2,
11, 6, 1, 4, 10, 6, 9, 8, 2, 9, 6, 12, 7, 9,
1, 14, 12, 1, 14, 9, 6, 1, 7, 1, 3, 12, 5,
12, 3, 10, 3, 4, 5, 6, 14, 7, 9, 3

0.510807 0.765939

7, 1, 5, 1, 12, 10, 4, 6, 13, 2, 8, 6, 11,
14, 10, 12, 6, 1, 5, 8, 6, 8, 13, 2, 1, 13,
1, 5, 9, 14, 11, 8, 6, 9, 13, 6, 14, 3, 8,
6, 10, 12, 2, 1, 5, 9, 14, 8, 4, 6

0.28577 0.77505

REFERENCES
1.	 Smith G. An Analog History of Procedural

Content Generation. InFDG 2015 Jun 22.
2.	 Knuth DE. Art of computer programming,

volume 2: Seminumerical algorithms. Addison-
Wesley Professional; 2014 May 6.

3.	 Box GE, Hunter JS, Hunter WG. Statistics for
experimenters. InWiley series in probability and
statistics 2005. Hoboken, NJ: Wiley.

4.	 Menezes AJ, Van Oorschot PC, Vanstone SA.
Handbook of applied cryptography. CRC press;
2018 Dec 7.

5.	 Atsumoto M, Nishimura T. Mersenne twister:
a 623-dimensionally equidistributed uniform

pseudo-random number generator. ACM
Transactions on Modeling and Computer
Simulation (TOMACS). 1998 Jan 1;8(1):3-0

6.	 Tuna M, Fidan CB. A Study on the importance
of chaotic oscillators based on FPGA for true
random number generating (TRNG) and chaotic
systems. Journal of the Faculty of Engineering
and Architecture of Gazi University. 2018 Jan
1;33(2):469-86.

7.	 Sönmez Turan M, Barker E, Kelsey J, McKay
K, Baish M, Boyle M. Recommendation for the
entropy sources used for random bit generation.
National Institute of Standards and Technology;
2016 Jan 27.

Citation: Sharma DR. A Process based Algorithm for Random Number Generation. IJSIRT. 2023; 1(2): 115-17.

