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INTRODUCTION 
Random numbers, crucial in various mathematical 
and computational applications, have a rich history of 
exploration and application. Early pursuits to under-
stand and utilize randomness are evident in historical 
games of chance, such as dice rolling.1 However, the 
evolution of technology has significantly expanded 
the scope and importance of random numbers, driv-
ing the development of sophisticated algorithms for 
their generation. In contemporary computing, the 
term "random number" often refers to pseudo-ran-
dom numbers, which are generated by algorithms de-
signed to simulate randomness. True randomness, in-
herently unpredictable and lacking a discernible pat-
tern, remains a challenging but sought-after concept 
in deterministic systems.2 The significance of random 
numbers spans a multitude of fields, from statistics 
and simulation to cryptography and gaming. In sta-
tistical analyses, random numbers serve to model un-
certainty and variability, essential for robust experi-
mental design.3 In the realm of cryptography, the gen-
eration of unpredictable sequences is fundamental to 
securing sensitive information and communications.4 

As we delve into the complexities of randomness, it 
becomes evident that the reliable generation of ran-

dom numbers is not only a technological necessity 
but also a critical component shaping the landscape 
of contemporary mathematics and computer science.

METHODS
Pseudo-random numbers

Pseudo-random numbers are sequences derived from 
algorithms known as pseudo-random number gener-
ators (PRNGs). These generators use an initial value, 
or seed, to produce sequences that exhibit statistical 
properties akin to truly random numbers. However, 
unlike true randomness, pseudo-random numbers are 
entirely deterministic and repeatable with the same 
seed. Pseudo-random numbers find widespread use 
in diverse applications. In simulations, they allow the 
modeling of stochastic processes, while in statistical 
analyses, they facilitate the generation of random sam-
ples. Cryptographic systems leverage pseudo-random 
numbers for key generation and secure communica-
tion.4 Computer graphics and gaming applications 
also heavily rely on pseudo-random numbers for pro-
cedural content generation and gameplay variability. 
The quality of a pseudo-random number generator 
is crucial to its effectiveness. A high-quality PRNG 
must pass rigorous statistical tests for randomness, 
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ensuring that the generated sequence exhibits prop-
erties such as uniform distribution and independence. 
Commonly used PRNGs include the Mersenne Twist-
er (Matsumoto & Nishimura, 1998), linear congruen-
tial generators, and XOR-shift algorithms.
True-random numbers

Various physical processes serve as sources for true 
random numbers. Quantum phenomena, such as the 
decay of radioactive particles or the measurement of 
quantum states, offer inherently unpredictable events 
(Stipčević, 2005). Other sources include atmospher-
ic noise, electronic noise in semiconductors, and the 
chaotic behavior of mechanical systems. True ran-
dom numbers play a pivotal role in cryptography, 
particularly in scenarios where the predictability of 
pseudo-random numbers poses security risks. Cryp-
tographic applications, such as key generation and 
nonce creation, benefit from the intrinsic unpredict-
ability of true randomness (NIST SP 800-90B, 2018). 
Additionally, true random numbers find use in secure 
communication protocols and cryptographic proto-
cols.

Proposed Algorithm

Proposed algorithm is based on the assumption 
that a random event is capable to produce further 
random events. Let’s consider a scenario where 
there exist a powerful machine (commonly termed 
as a server) which executes different processes 
following some rules, most commonly a queue 
system.  In Operating Systems, CPU Scheduling is 
a process that allows one process to use the CPU 
while another process is delayed (in standby) due 
to unavailability of any resources such as I / O etc., 
thus making full use of the CPU. Whenever the CPU 
becomes idle, the operating system must select one 
of the processes in the line ready for launch. The 
selection process is done by a temporary (CPU) 
scheduler. The Scheduler selects between memory 
processes ready to launch and assigns the CPU to 
one of them. 
Here, the arrival of processes doesn’t follow any 
rule, they are random. For instance, consider a 
mail server. Number of users who logins to the 

mail server at any instance of time do not follow 
any rule. Let’s consider this event (a user logins 
to the mail server) as a process, P. At a particular 
time instant, let the number of processes in Queue 
to the mail server be n. So we have processes P1, P2, 
…….., Pn in the queue. We add another Process U 
in the queue. Operating System scheduler manage 
to provide resources to the processes such that 
starvation doesn’t occur for any process.

RESULTS
Process U is a small module defined as follows:

Runs test over the proposed algorithm
Runs test has been applied to the data generated 
using module U. The five samples with their 
z values and p values are presented in the table 
below. Each sample consists of 20 numbers 
generated using the module U:
For the z-test statistic and the corresponding 
p-value in the above five samples we found that  
p-value is not less than α = 0.05, therefore we fail 
to reject the null hypothesis. We have sufficient 
evidence to say that the data was produced in a 
random manner. Similarly, the table below sample 
consists of 50 numbers generated using the 
module U:
For these sample too, z-test statistic and the 
corresponding p-value we found that  p-value is 
not less than α = .05, therefore we fail to reject 
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Figure 1. Proposed algorithm.
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the null hypothesis. We have sufficient evidence 
to say that the data was produced in a random 
manner.

CONCLUSIONS
Hence, we found that for a small sample, Module U
behaves as a Random number generation algorithm. 
Further, we can test the module U for large samples 
and we can use module U for simulation of different 
Random processes to verify it’s correctness.
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Table 1. Data samples of size 20.

Data Sample z value p-value

14, 9, 1, 12, 9, 8, 12, 11, 5, 1, 10, 13, 
7, 5, 7, 11, 12, 9, 12, 13 0 1

2, 13, 9, 3, 14, 13, 13, 12, 7, 6, 9, 3, 1, 
11, 6, 5, 13, 3, 12, 5 0.9158 0.35812

7, 1, 10, 4, 1, 8, 11, 4, 6, 5, 5, 9, 4, 3, 
14, 2, 9, 6, 3, 11 1.15133 0.24959

12, 10, 5, 7, 9, 2, 11, 6, 3, 12, 7, 12, 
14, 11, 3, 6, 10, 6, 2, 4 0.510807 0.249593

0, 3, 3, 9, 4, 12, 10, 12, 2, 4, 1, 2, 11, 
4, 9, 4, 2, 8, 6, 14 -0.4179 0.67599

Table 2. Data samples of size 50. 

Data Sample z value p-value

4, 3, 3, 12, 2, 6, 9, 6, 11, 3, 7, 9, 2, 11, 
12, 3, 1, 0, 12, 8, 7, 13, 5, 9, 12, 10, 
14, 10, 6, 11, 5, 1, 12, 14, 10, 14, 4, 5, 
9, 6, 15, 6, 9, 12, 4, 13, 7, 11, 2, 9

1.728898 0.083827

8, 7, 1, 6, 13, 2, 8, 6, 7, 7, 8, 2, 2, 4, 6, 
11, 4, 2, 13, 10, 8, 6, 3, 4, 6, 1, 6, 7, 4, 
6, 11, 6, 4, 5, 4, 7, 10, 11, 10, 6, 3, 0, 
4, 9, 12, 9, 9, 2, 8, 14

-1.39224 0.16384

5, 0, 1, 14, 12, 9, 4, 3, 13, 14, 8, 5, 13, 
6, 11, 12, 11, 13, 6, 14, 3, 8, 10, 10, 
12, 6, 14, 7, 4, 10, 12, 6, 9, 12, 6, 9, 5, 
5, 7, 11, 9, 6, 3, 11, 2, 9, 4, 3, 5, 6

0.29769 0.0764

14, 4, 15, 10, 9, 5, 8, 11, 12, 3, 5, 2, 
11, 6, 1, 4, 10, 6, 9, 8, 2, 9, 6, 12, 7, 9, 
1, 14, 12, 1, 14, 9, 6, 1, 7, 1, 3, 12, 5, 
12, 3, 10, 3, 4, 5, 6, 14, 7, 9, 3

0.510807 0.765939

7, 1, 5, 1, 12, 10, 4, 6, 13, 2, 8, 6, 11, 
14, 10, 12, 6, 1, 5, 8, 6, 8, 13, 2, 1, 13, 
1, 5, 9, 14, 11, 8, 6, 9, 13, 6, 14, 3, 8, 
6, 10, 12, 2, 1, 5, 9, 14, 8, 4, 6

0.28577 0.77505
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