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ABSTRACT

We analytically derive a discrete radial Green function for a hydrogenic system in terms of associated Leguerre
polynomials.We investigate the polarizability of the ground-state hydrogen using the so-called length gauge
approximation of electrodynamics.The polarizability is the sum of the polarization matrix elements for the negative
and the positive frequency values.We estimate the contribution of discrete wavefunctions to the static ground state
polarizability.We found that the contribution of continuum states dominates over that of discrete states to the
polarizability by an order of magnitude.
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INTRODUCTION

Electric polarizability of an atom or a molecule is their tendency to have separated positive and negative charge
centers, producing an electric dipole [1]. Polarizability is a scalar quantity for an isotropic medium or a spherical
system, while it is a tensor for an anisotropic medium or a non-spherical system. The polarizability of an atom can be
evaluated quantum electrodynamically with the help of Schrodinger-Coulomb Green function [2,3,4]. Polarizability
helps unearth many fundamental quantum phenomena, such as dispersion between two atoms in long-range
interaction [5,6,7,8], determining magic wavelength in atomic transitions [9,10,11,12], developing three-dimensional
(3D) crystallographic molecular stacking [13]. In addition, polarizability can be a great tool in understanding
cold-atom physics, time-keeping using atomic clocks, and the metrology of atomic frequency standards [14]. One
can also determine a system’s dielectric constant and refractive index using its dipole polarizability [15].

The detailed mathematical derivation is quite involved as it needs to evaluate matrix elements in Schrédinger
Coulomb propagator. The reduced discrete Green function is evaluated as the inverse of Hamiltonian minus energy
eigenvalue sandwiched between the position operators. The polarization matrix elements for any energy state | Q)

reads[5]
- 1 -
r<H—E—hw>r(p> M

where e is the electronic charge, 7 is the electron position operator, H is the Schrodinger Hamiltonian, E is the
energy of the reference state |@), i = 1.0545718 x 10~34Js is Planck’s eponymous constant, and @ is the angular
frequency of the transition. The sum of the polarization matrix elements for the negative and the positive frequency
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Oy () = Py(®) + Py(—w) is the dynamical polarizability for the atom for the state |¢). In this work, we evaluate
the contribution of the discrete wave functions and the continuous wave functions to the ground-state hydrogen atom
polarizability and compare them. This investigation confirms that the continuum contribution is not negligible;
instead, it is the dominating one for the hydrogen atom.

We organize the paper as follows. We first determine the discrete radial green function by solving the eigenvalue
equation corresponding to the radial wavefunctions of hydrogen. We use the fact that the total wave function can be
separated into the radial and angular components, and then the angular components are calculated separately from
the radial components. We first perform the Sturmian decomposition of the Schrodinger Green function to evaluate
the radial component, and then the radial integrations are carried out. Finally, the summation is carried out over the
discrete energy levels. In the next section, we determine the ground state polarizability of hydrogen due to discrete
energy levels and compare it with the polarizability due to the continuous part. Finally, we draw a conclusion and
present concluding remarks.

DISCRETE RADIAL GREEN FUNCTION

To solve a problem involving partial differential equations, Green function formalism provides a very powerful
technique. In what follows, we revisit a derivation of the discrete radial Green function. We begin our derivation with
the completeness relation in discrete representation (¥|7,), which can be written as

(F1|1|%) = Z (71 |nlm){nfm|7)
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where (F|nfm) = W, (1,0, @) is the complete eigenfunction for Schrodinger-Coulomb Hamiltonian; n, £, m are the
principal, orbital, and magnetic quantum numbers; and ag is the Bohr radius. We have used an ansatz which states
that the total eigenfunctions can be expressed as the product of a radial part and an angular part as

llfném(",eﬂP) :Rnl(r)yém(ea(p) (3)
where the radial wave function R,,;(r) is given by [16]
[(n—t—1)! 2641 r\' r\ o [ 2r
Rnf(r) - |: (n +€)y n2 a(3)/2 nag exp nag Ln—l—l naq (4)

and the angular part ¥,,(0, @) is the usual spherical harmonics given by

Q20+ 1) (¢ —m)1]"? -
Y, 9 — Pm 6 ime 5
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Here, L?ffél_l nzaro and P} (cos(6)) are respectively the associated Laguerre and the associated Legendre

polynomials. Figure|IRadial functions for n = 11i.e., Ri,(r) and n = 2 i.e., Rys(r) and Ry, (r)figure.l|shows radial
functions for n =1, and 2 as an example.
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FIGURE 1. Radial functions for n = 11i.e., Ri4(r) and n =2 i.e., Ros(r) and Ry, (r).

One can express the Green function in terms of position operators, Hamiltonian and energy eigenvalues as[17,18,19]

. 1
G (1,7,E) = (7 g™ (©6)

which can be expanded with the help of the spectral decomposition of unity as
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Here, E, is the energy eigenvalues corresponding to the eigenvalue equation

-, akc
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Let us rewrite R,¢(r) as -
Ri(r) =Gy 1’ exp () L )
nao
where (n—t—1)! /2 5041 1\*
= el 1

Cre [ (n+0)! ] n? ag/Z <nao) 10

is a constant independent of r and L = erfzil (A)

nag
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With the aid of Egs. (8equation.0.8) and (9equation.0.9), one can write the eigenvalue equation as
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Using the fact that L = Li(le_l (n%’o) satisfies the associated Laguerre differential equation:

02 2r\ o0
rosL+ (2f+2—nao> Lt (n—-1L=0

Eq. (11) can be written as:
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Here, we have used ag = i/ (amec), where i = 1.0545718 x 107347 s is Plank’s eponymous constant,
o = 1/137.035999 is the fine structure constant, m, is the mass of an electron, and c is the speed of light in a
vacuum. From Eq. (13equation.0.13), the eigenvalues E,, can be written as

02m,c?

2n?

E,=— (14)

If we define a new quantum number k such that k = n — ¢ — 1, the associated Laguerre polynomials erfjll (}%)

20+1 2r : s L :
becomes L (W) and the energy eigenvalues, in this condition, can be written as

2. 2
a’m,c
Ey=—-——"" (15)
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The energy difference E,, — E in Eq. is thus given by
E_E— a’mec? o’mec? _ a’mec? [ 1 1y W n* —v? (16)
" N 2n? vz )2 V2o n2)  2mead \ nv?

where V is the principal quantun number associated with the energy E. Substituting the value of the energy
difference E, — E from Eq. (16equation.0.16)) to Eq. (6equation.0.6), we get
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The total discrete Green function can be expressed in terms of the discrete radial Green function gdls(r] ,12,V) as[17]

Gdlb 7‘1,7‘2, ngls rlar27 Yém(elv(Pl)Yl/m(BZa(pz) (18)

nfm

Comparing Eq.[18] with Eq.[17], we get the discrete radial Green function gdls(rl ,r2,V) as
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The (¢=1)-component of the discrete radial Green function g?lbl (r1,r, V) reads

i dm, & vz 2 3 r +r

dis v e 1 2

= ) b —_— —_——
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Note that the sum over n starts from 2 not from zero as L3 ,(x) = 0= L3 | (x)
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DISCRETE GROUND STATE POLARIZABILITY

The ground state static polarizability due to discrete energy levels is given by[5,17]
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Here, we have used the value of g?“l (r1,r2,v) from Eq. 206quati0n 0 20) with v = 1 and substituted the radial part

of the ground state wave function of hydrogen, i.e., Rjo(r) =2/ 3 e~"/%_ One can substitute the other excited

state’s radial functions and evaluate the excited state’s static polarlzablhty in a similar fashion.
Let us use dimensionless variables p defined as p; = 2r;/(nap) and make substitutions in Eq. (21equation.0.21) to get
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Interestingly, the p;-integral is identical to the p,-integral. Hence, one can write Eq. (22equation.0.22) as

oo 2
(=0 =%y " [/O ut e (Fmn2 13 () du (23)

Here, we have also used o = i/ (apmec), and Ej, = (xzmecz, where o and Ej, are respectively the fine-structure
constant and the Hartree energy. We can evaluate the u-integral in Eq. (23equation.0.23)) using the standard integral
identity [20]

C(y+Dl(n+p+1)
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oo 1
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which yields
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Substituting the value of the integral in Eq. and simplifying the expression using standard integral
identity [20]
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The total ground state dynamical polarizability of a hydrogen atom is the sum of polarization matrix elements
Pls(i(l))
Ol]s((x)) = ZPLY(:ECO) (29)
£
where Pi;(®) is given as[11,21]
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where t = (1 +2hw/ Eh)_l/ 2 is a dimensionless energy parameter. One obtains the total ground state static
polarizability os(@ = 0) of a hydrogen atom expanding the series for os(®) and substituting @ =0 or 7 = 1 and
convinces that it comes out to be

22
geao

0613((1) = 0) 22 Eh

(3D
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FIGURE 2. Comparison of different contributions to the polarizability of the ground state hydrogen. Polarizabilities are plotted
as a function of energy /. The static polarizabilities are constant with frequency while the dynamical polarizability a(®) does
vary with the frequency.

For illustrative purposes, the comparison of dynamical polarizability, static polarizability, and the discrete
wavefunction contribution to the polarizability on the ground state hydrogen atom are presented in Fig. 2Comparison|
of different contributions to the polarizability of the ground state hydrogen. Polarizabilities are plotted as a function
of energy fiw. The static polarizabilities are constant with frequency while the dynamical polarizability a(®) does
vary with the frequencyfigure.2] The comparison shows that the major contribution in the ground state, static
polarizability comes from the continuum wave functions.

CONCLUSION

Starting from the completeness relation, we derived the total discrete Green function and the radial discrete
Green function in terms of the associated Laguerre polynomial. We obtained an analytical expression for the
polarizability of the ground-state hydrogen atom. The polarizability can be expressed as the sum of the polarization
matrix elements calculated using position operators for frequency’s positive and negative values. The static value of
polarizability is obtained from the dynamic polarizability as a special case of @ = 0 or t = 1. We carried out the
numerical value for the discrete ground state polarizability and found that the contribution of the discrete
wavefunctions is smaller by an order of magnitude compared to the continuum states, revealing that the continuous
wave functions dominate the ground state static polarizability. This is consistent with the result presented in Ref.
[22] for the Stark shift for the ground state of hydrogen.

ACKNOWLEDGMENTS

The author acknowledges insightful communications with Professor Ulrich Jentschura.

REFERENCES

1. D. J. Griffiths, Introduction to Electrodynamics, 4th ed., Pearson, New York, USA, 2013.

2. R. A. Swainson and G. W. F. Drake, A unified treatment of the non-relativistic and relativistic hydrogen

atom I: The wavefunctions, J. Phys. A Math. Gen. 24, 79 (1991).

3. R. A. Swainson and G. W. F. Drake, A unified treatment of the non-relativistic and relativistic hydrogen
atom II: The green functions, J. Phys. A Math. Gen. 24, 95 (1991).

4. R. A. Swainson and G. W. F. Drake, A unified treatment of the non-relativistic and relativistic hydrogen
atom Il1: The reduced green functions, J. Phys. A Math. Gen. 24, 1801 (1991).

32 C. M. Adhikari



IJORN 11 (2023) Contribution of Discrete ....

5.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

C. M. Adhikari, V. Debierre, A. Matveev, N. Kolachevsky, and U. D. Jentschura, Long-range
interactions of hydrogen atoms in excited states. 1. 2s-1s interactions and Dirac-A perturbations, Phys.
Rev. A 95, 022703 (2017).

. U. D. Jentschura, V. Debierre, C. M. Adhikari, A. Matveev, and N. Kolachevsky, Long-range

interactions of hydrogen atoms in excited states. II. Hyperfine-resolved 2s-2s systems, Phys. Rev. A 95,
022704 (2017).

. C. M. Adhikari, V. Debierre, and U. D. Jentschura, Long-range interactions of hydrogen atoms in excited

states. I11. ns-1s interactions for n > 3, Phys. Rev. A 96, 032702 (2017).

. U. D. Jentschura, C. M. Adhikari, and V. Debierre, Virtual resonant emission and oscillatory long-range

tails in van der Waals interactions of excited states: QED treatment and applications, Phys. Rev. Lett.
118, 123001 (2017).

. Y. Geng-Hua, Z. Jia-Qi, L. Run-Bing, W. Jin, and Z. Ming-Sheng, Magic wavelength of an optical clock

transition of barium, Chin. Phys. Lett. 28, 073201 (2011).

M. S. Safronova, U. L. Safronova, and C. W. Clark, Magic wavelengths for optical cooling and trapping
of lithium, Phys. Rev. A 86, 042505 (2012).

C. M. Adhikari, A. Kawasaki, and U. D. Jentschura, Magic wavelength for the hydrogen 1s-2s transition:
Contribution of the continuum and the reduced-mass correction, Phys. Rev. A 94, 032510 (2016).

C. M. Adhikari, J. C. Canales, T. P. W. Arthanayaka, and U. D. Jentschura, Magic wavelengths for 1s-ns
and 2s-2s transitions in hydrogen-like systems, Atoms 10 (2022).

D. Lide, The CRC Handbook of Chemistry and Physics, The Chemical Rubber Publishing Company,
1998, p. 12.

J. Mitroy, M. S. Safronova, and C. W. Clark, Theory and applications of atomic and ionic
polarizabilities, J. Phys. B: At. Mol. Opt. Phys. 43, 202001 (2010).

A. Natan, N. Kuritz, and L. Kronik, Polarizability, susceptibility, and dielectric constant of
nanometer-scale molecular films: A microscopic view, Adv. Funct. Mater. 20, 2077 (2010).

G. B. Arfken, H. J. Weber, and F. E. Harris, Chapter 18 - more special functions, in Mathematical
Methods for Physicists (Seventh Edition), edited by G. B. Arfken, H. J. Weber, and F. E. Harris,
Academic Press, Massachusetts, USA, Boston, 2013, seventh edition ed., p. 871.

U. D. Jentschura and G. S. Adkins, Quantum Electrodynamics: Atoms, Lasers and Gravity, World
Scientific Publishing, Singapore, 2022.

E. Economou, Green’s Functions in Quantum Physics, Springer Series in Solid-State Sciences, Springer,
2006.

N. Zettili, Quantum Mechanics: Concepts and Applications, Wiley, 2009.

B. M. Project, H. Bateman, and A. Erdélyi, Higher Transcendental Functions, Higher Transcendental
Functions No. v. 1, Dover Publications, 2006.

C. M. Adhikari, Long-Range Interatomic Interactions: Oscillatory Tails and Hyperfine Perturbations,

Ph.D. thesis, Rolla, MO, USA, 2017.

L. Castillejo, I. C. Percival, M. J. Seaton, and H. S. W. Massey, On the theory of elastic collisions
between electrons and hydrogen atoms, Proceedings of the Royal Society of London. Series A.
Mathematical and Physical Sciences 254, 259 (1960).

33

C. M. Adhikari



	Contribution of Discrete and Continuum Wave Functions in the Ground State Polarizability of Hydrogen
	ABSTRACT
	Introduction
	 DISCRETE RADIAL GREEN FUNCTION
	DISCRETE GROUND STATE POLARIZABILITY
	Conclusion
	Acknowledgments
	References


