
businesses and government, which GDP is capable of delivering. We thus have an estimated 
nominal GDP (NGDP) which is used for the purpose of future planning by the finance ministry of 
the country. The real GDP (RGDP) is obtained after adjusting the estimated NGDP for inflation. 
The latter is also known as observed GDP in actual real-time. However, all budget planning and 
projections utilize the former, i.e., NGDP, whereas RGDP directly impacts the common citizen. 
Therefore, fluctuations in the level of GDP covariates are important in determining the gap 
between NGDP and RGDP. The effective mathematical relationship is represented as NGDP – 
inflation rate = RGDP.

 GDP computation is based on the principle of averages, which has an upward bias. There-
fore, GDP does not capture income, expenditure, or production changes at the regional level. For 
instance, if a large group of people experience declining income at a time when its complement 
group in the same population is smaller but experiences upwardly rising incomes, then GDP 
registers rise. To overcome this upward bias to a sufficiently large extent, in this paper, we focus 
on the concept of GDP per capita, which gives a more realistic picture of a nation's economic 
health. GDP measures an economy's current market value for all products and services generated 
during the assessment period. This value encompasses spending and costs on personal consump-
tion, government purchases, inventories, and the foreign trade balance. Thus, the total capital at 
stake and covered under the GDP envelope of a specific period can be viewed through (i) produc-
tion undertaken, (ii) income generated and (iii) expenditure accrued for the same period.

 Several research studies have been designed on the temporal data template where study 
units are macroeconomic units like countries or sub-regions like states, districts, or countries. In 
the present paper, we employ Autoregressive Integrated Moving Average (ARIMA) model 
proposed by Box and Jenkins (1970) for understanding the GDP movement with time. Past studies 
have used predictive ARIMA modelling for GDP of different countries. For instance, Kiriakidis 
and Kargas (2013) used predictive ARIMA model for predicting GDP of Greece, while correctly 
predicting recession in the near future. The RGDP in Greece for the period 2015-2017 was forecast 
by Dritsaki (2015) using an ARIMA (1, 1, 1) model based on data for the period of 1980-2013 
which correctly indicated a gradual rise in GDP. Wabomba et al. (2016) projected Kenya's GDP 
from 2013-2017 using an ARIMA (2, 2, 2) model based on data for period of 1960-2012. Predicted 
estimates correctly indicated that Kenya's GDP will expand faster over the next five years, from 
2013-2017. Agrawal (2018) estimated RGDP in India using publicly available quarterly RGDP 
data from Quarter 2 of 1996 to Quarter 2 of 2017 using ARIMA model. Abonazel et al. (2019) 
used an ARIMA (1, 2, 1) model over the period 1965-2016 to correctly forecast the rise in GDP for 
Egypt during for the period 2017-2026 and Eissa (2020) forecasted the GDP per capita for Egypt 
and Saudi Arabia, from 2019-2030 using the ARIMA (1, 1, 2) and ARIMA (1, 1, 1) models 
respectively based on data from the period 1968-2018. Their study showed that both Egypt's and 
Saudi Arabia's GDP per capita would continue to rise. In order to forecast the GDP and consumer 
`price index (CPI) for the Jordanian economy between 2020 and 2022, Ghazo (2021) employed 
ARIMA (3, 1, 1) model for GDP and ARIMA (1, 1, 0) model for CPI respectively, based on 
sample data from the period 19762019. They rightly anticipated stagflation for the Jordanian 
economy as a result of the predicted shrinkage in GDP and first rise in CPI. In order to escape the 
stagflationary cycle and achieve more stable CPI, this study provided inputs to the economic policy 
makers to develop sensible measures for boosting GDP and fending off inflationary forces. 
Mohamed (2022) used an ARIMA (5, 1, 2) model for the period between 1960-2022 to forecast 
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A nation's Gross Domestic Product (GDP) is an important index 
that reflects the health and performance of an economy and its 
aggregate income. In this paper, annual data of Nepal's GDP for 
the period 1960 – 2022 is used to forecast the GDP of Nepal 
through Autoregressive Integrated Moving Average (ARIMA) 
modelling techniques. We seek to make accurate long-term 
predictions for the period 2023 – 2037 to gain insights into the 
future expected trajectory of economic growth in Nepal. In the 
present empirical study, stationarity at the second-order differ-
encing with the ARIMA (2, 2, 1) model is identified to predict the 
GDP of Nepal for the next 15 years. The finding shows that the 
forecast values of Nepal’s GDP will be $1384.426 per capita in 
2023 and $2180.822per capita in 2037. Our study provides 
skeletal guidance for government bodies and investors who rely 
on planning and strategizing resources on accurate predictions of 
GDP per capita. By accurately predicting GDP per capita, 
administrators in investment and policy making can make 
informed economic decisions that may steer economic growth, 
stability, and development in an optimum direction. 
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trajectory of GDP in Somalia for the next fourteen quarters. In order to forecast the quarterly GDP 
of Philippines, Polintan et al. (2023) used data from 2018-2022 through an ARIMA (1, 2, 1) model 
for forecasting GDP in the Philippines, for 2022-2029 and predicted a steady growth trajectory. 
Lngale and Senan (2023) used predictive ARIMA (0, 2, 1) model for predicting GDP of India, 
pertaining to the period 1960-2020 and predicted a steady growth trajectory. Tolulope et al. (2023) 
used an ARIMA (2, 1, 2) model for predicting the Nigerian GDP using both in sample and out of 
sample prediction method, based on data for the period of 19602020 which correctly indicated a 
gradual rise in GDP. Urruttia (2019) used an ARIMA (1, 1, 1) model over the period from the first 
quarter of 1990 to the fourth quarter of 2017 with a total of 112 observations for forecasting future 
GDP. Remittance income in Nepal vis- a vis GDP has between studied by Gaudel (2006). Srivas-
tava and Chaudhary (2007) looked in to role of remittance in economic development of Nepal. 
Energy – GDP dependence in Nepal is focus of work under taken by Asghar (2008). Dahal (2010) 
studied role of GDP on educational enrolment and teaching strength in the school system of Nepal. 
GDP and oil consumption relations are analyzed by Bhusal (2010). Thagunna and Acharya (2013) 
assessed investment, saving, exports and imports as determinants of GDP. Chaudhary and Xiumin 
(2018) analysed determinants of inflation in Nepal. Interrelations between foreign trade and GDP 
of Nepal are investigated by Prajuli (2021). The present paper is the first study where a self-re-
gressed Bayesian investigation on GDP is made with identification of a unique TS statistical model 
to project future pattern of GDP in Nepal. One step ahead prediction for the year 2022 is validated 
by the recent World Bank report. Information about GDP can be quite advantageous for the 
business and economy, particularly for investors, business people and the governmental units 
aiming for cost effectiveness and maximizing profit in addition to guiding the government for 
framing future economic policies and in planning and control of various economic measures. 

The Study Region

 The Federal Democratic Republic of Nepal is a landlocked country in South Asia sharing 
its boundaries with India and Tibet. World Bank 2022 report the total GDP (hence froth, GDP) of 
Nepal to be 36.29 billion USD with 122 billion USD Purchasing Power Parity (PPP). GDP per 
capita is placed at 1,230 USD and PPP at 4,190 USD for the year 2021. GDP growth rate for Nepal 
is 2.7% while GDP of Nepal represents 0.02% of the world economy for the year 2021. The main 
economic sectors in Nepal are agricultural, hydro-power, natural resources, tourism and handi-
crafts. These sectors have a significant impact on Nepal economy in terms of their contribution to 
the GDP. Empirical research conducted by Nepal Rastra Bank (NRB) in the year 2020 concluded 
tourism to be a crucial economic sector for both the short-run and the long- run economic growth 
of Nepal. The NRB report indicated a significant relationship between tourism industry and the 
county’s economic growth which is one of the fasted growing industries in the country. More than 
a million indigenous people are engaged in the tourism industry for their livelihood. Tourism 
accounts for 7.9% of the total GDP while 65% of the population is engaged in agricultural activi-
ties contributing to 31.7% of GDP. About 20% of the area is cultivable, another 40.7 % is forested 
and the remaining land is mountainous. Thus, Nepal’s GDP is heavily dependent on remittance. 
According to the Central Bureau of Statistics Nepal (2022) report, Nepal has received remittance 
amounting to Nepalese Rupees (NRs.) 875 billion in the financial year 2019-20, which translates 
into a remittance to GDP ratio of 23.23%. Nepal is primarily a remittance-based country with 
remittance inflow amounting to more than a quarter of the country’s GDP. Nepal’s total labour 
force in the year 2020 was 16,016,900 with sectoral distribution by occupation as 43% in agricul-

ture 21% in industry and share of services at 35%. The inflation rate in Nepal was recorded at 6% 
and the unemployment rate at 1.4%. Nepal’s total exports were reported to be worth 918 million 
USD in the year 2020, its main exports being carpets, textiles, pulses, tea, etc. Its main export 
partners are India, USA, Japan, Malaysia, Singapore, Germany, and Bangladesh. Total imports for 
the same period were recorded at 10 billion USD with prominent import goods being petroleum, 
electrical goods, machinery, gold, etc. Its principal import partners are India and China. 

 In this paper, we estimate and predict the GDP per capita of Nepal for next one and half 
decade by using ARIMA time series model. Section 2 describes model determination methodology 
used in the present work. Section 3 enumerates the models and the model adequacy measures. 
Section 4 focusses on data description and its analysis. Conclusion and recommendations are 
summarised in section 5. 

Methodology

 Time series models are characterized by the clustering effect or serial correlation in time. 
In the present paper, we employ ARIMA modelling to estimate and forecast Nepal's GDP. ARIMA 
modelling addresses such issues of dependent errors by introducing time lagged dependent variable 
and past error terms on the determinant side of the time series model. ARIMA model consists of 
AR, I, and MA segments where AR indicate the autoregressive part, I indicate integration i.e., the 
order of differencing in the observed series to achieve stationarity and MA indicate the moving 
average component in the model. The four stages of the iterative ARIMA model fitting process are 
Identification, estimation, diagnostic checking, and time series forecasting. (Figure 1). 

Figure 1
 Iterative ModellingProgression for a Stationary Variable in Box

 It employs a general technique for choosing a possible model from a large class of models. 
The chosen model is then evaluated to see if it can accurately explain the series using the historical 
data. Auto-correlation function (ACF) and partial auto-correlation function (PACF) are used to 
select one or more ARIMA models that seem appropriate during the identification stage. The next 
stage involves estimating the parameters of a specific Box-Jenkins model (1970) for a given time 
series. This step verifies the parsimony in terms of the number of model parameters or lack of 
over-specification by determining whether, in addition to the residuals being uncorrelated, the 
chosen least amount of squared residuals are found in the AR and/or MA parameters. A critical and 
sensitive aspect of an ARIMA model is parsimony. An over-parameterized model cannot predict as 
efficiently as a sparse model. Model diagnostics and testing is carried out in the third step. The 
underlying presumption is that the error terms, ε_t,  behave in a manner consistent with that of a 

stationary, unchanging process. If the residuals are drawn from a fixed distribution with constant 
mean and variance, they should be white noise. The most adequate Box-Jenkins model fulfils these 
prerequisites for the residual distribution. The best model needs to be decided based on these four 
paradigms. Thus, testing of the residuals would lead to a better suitable model. A graphical 
technique called a quantile-quantile (Q-Q) plot compares the distributional similarities of two 
datasets. In the context of ARIMA models, a Q-Q plot is often used to check whether the model's 
residuals follow a normal distribution. 

The Model and Forecast

1.  Autoregressive Model 

 With the intent to estimate the coefficients β_(j,) j = 1,2, …,p, an AR process for the 
univariate model is the one that shows a changing variable regressed on its own lagged values. AR 
model of order p, or AR (p), is expressed as,

ACF gives a correlation coefficient between the dependent variable and the same variable with 
different lags, but the effect of shorter lags is not kept constant, meaning that the effect of shorter 
lag is remained in the autocorrelation function. The correlation between y_t and y_(t-2) includes 
the correlation effect between y_t and y_(t-1). On the other hand, PACF gives a correlation coeffi-
cient between the dependent variable and its lag values while keeping the effect of shorter lags 
constant. The correlation between y_t and y_(t-2) does not include the effect of correlation 
between y_t and y_(t-1).

2.  Moving Average Model

 Let ε_t (t = 1,2,…)  be a white noise process, with t standing for a series of independent 
and identically distributed (iid) random variables expecting ε_t is zero and variance of ε_t is σ^2. 
After that, the qth order MA model, which accounts for the relationship between an observation 
and a residual error, is expressed as

  represents the impact of past errors on the response variable. Estimated coefficients θ_(j,) j 
= 1,2, …   ,q,  accounting for short-term memory help in forecasting.

3.   Autoregressive Moving Average Model

 The model AR, coupled with the MA modelling strategy is called Autoregressive Moving 
Average (ARMA) models intended for stationary data series. ARMA (p, q) model is expressed as:

 An amalgam of the AR and MA models is represented by (3). In this instance, the greatest 

order of p or q cannot be provided merely by ACF or PACF.

4.  Autoregressive Integrated Moving Average Model

 The extension of ARMA model is ARIMA model which enable to transform data by 
differencing to make data stationary. ARIMA model can be written as ARIMA (p, d, q), where p is 
the order of AR term, d is the number of differencing required to make series stationery and q is 
the order of MA term. For example, if y_it  is a non-stationary series, we will take a first-difference 
of y_t to make ∆y_t= stationary, and then the ARIMA (p, 1, q) model is expressed as: 
 

 Where ∆ y_t= y_t- y_(t-1), then d = 1, which implies a one-time differencing step. The 
model transforms into a random walk model, categorized as ARIMA (0.1,0), if p = q = 0.

Table 1 
ARIMA (p, d, q) Model for d = 0, 1, 2

5.  Model Adequacy Measures

 Before employing a model for predicting, diagnostic testing must be done on it. The 
residuals that remain after the model has been fitted are deemed sufficient if they are just white 
noise, and the residuals' ACF and PACF patterns may provide insight into how the model might be 
improved. Akaike (1973) developed a numerical score that can be used to identify the best model 
from among several candidate models for a specific data set. Akaike information criterion (AIC) 
results are helpful compared to other AIC scores for the same data set. A smaller AIC score 
indicates a better empirical fit. Estimated log-likelihood (L) is used to compute AIC as,
 
AIC = - 2(L + s)                                                                                                                         (5)          
 Such that s is the number of variables in the model plus the intercept term. Schwarz (1978) 
developed an alternative model comparison score known as Bayesian (Schwarz) information 
criterion BIC (or SIC) as an asymptotic approximation to the transformation of the Bayesian 
posterior probability of a candidate model expressed as,

BIC or SIC = - 2L + s log(n)                                                                                                     (6)             
 L is the maximum likelihood of the model, s is the number of parameters in the model, and 
n is the sample size. Like AIC, BIC also balances the goodness of fit and model complexity. 
However, BIC places a higher penalty on model complexity compared to AIC because it includes a 
term that depends on the sample size (s log(n)). As with AIC, the goal is to minimize the BIC value 
to select the best model.

 6.   Forecasting 

 Box-Jenkin's time series model method applies only to stationary and invertible time 
series. Lidiema (2017), Dritsakis and Klazoglou (2019). Future value forecasting can begin once 
the requirements have been met through procedures like differencing. We can utilize the chosen 
ARIMA model to predict when it meets the requirements of a stationary univariate process. 
Further, diagnostic checking is done to verify the forecasting accuracy of the ARIMA model. 
   
7.  Forecasting Accuracy

 We now present different measures listed to determine the accuracy of a prediction model.
 
 (i) Mean Absolute Error 

 The mean absolute difference between a dataset's actual (observed) values and the model's 
predicted values is computed using the Mean Absolute Error (MAE) algorithm. The absolute rather 
than squared differences make MAE more robust to the outliers. The formula to calculate the MAE 
is,
                                                     
 
 Where n is the total number of observations, y_(i )is the actual value of time series in data 
point i, and y _i denotes forecasted value of time series data point i.       

 (ii)  Root Mean Square Error 

 Root Mean Square Error (RMSE) is a popular accuracy measure in regression analysis 
based on the difference between a dataset's actual (observed) values and the model's predicted 
values. Lower RMSE indicates the alignment of the model's predictions with the actual data. The 
formula to calculate the RMSE is,
                  (8)
                                    
  
 However, due to the squaring of deviations, RMSE gives underweight to the outliers and 
may not be suitable for all types of datasets. Depending on the specific problem and characteristics 
of the data, we can use metrics such as Mean Absolute Error (MAE) or R-squared (coefficient of 
determination) may also be used in conjunction with RMSE to gain a more comprehensive under-
standing of the model's performance.            
                                                                                                                                                                                                              
                                                                                                                                                                                                                                                                                                                                                                                                                   
 (iii) Mean Absolute Percentage Error 

 Mean Absolute Percentage Error (MAPE) is used to measure the percentage variation 
between a dataset's actual (observed) values and the model's predicted values, and it is useful to 
understand the relative size of the errors compared to the actual values. The formula to calculate 
the MAPE is,

 However, it needs to be more well-defined when the actual values are zero or near zero, 
which can result in non-sensical very large MAPE values.

 (iv)  Mean Percentage Error 

 Mean Percentage Error (MPE) is instead of taking the absolute percentage difference like 
in MADE consider the signed percentage difference. Therefore, accounting for both the (positive 
and negative) magnitude of the errors. The formula to calculate the MPE is,
                                                      
                                              (10)        

 Such that, lower values of MPE indicate better forecast accuracy. A value of zero MPE 
would imply that the forecasted values match the actual values perfectly. However, MPE can have 
some limitations, such as the potential for the errors to cancel each other out, leading to an artifi-
cially low MPE even if the model's performance is unsatisfactory.

 (v) Mean Absolute Scaled Error 

 Mean Absolute Scaled Error (MASE) measures the performance of a model relative to the 
performance of a naive or benchmark model. The MASE provides a more interpretable measure of 
forecast accuracy than metrics like Mean Absolute Error (MAE), especially when dealing with 
time series data and comparing different forecasting models. It provides insights into whether a 
model provides meaningful improvements over a basic, naive forecasting approach. The formula to 
calculate the MASE is,   
                   (11)  
                                         

  where n is the length of the series and m is its frequency, i.e., m=1 for yearly data, m=4 for 
quarterly, m=12 for monthly, etc.
 MASE measures how well the model performs relative to the naive model's forecast errors taken 
as a benchmark. A value of MASE less than 1 indicates that the model performs better than the 
naive model regarding absolute forecast errors, while a value greater than 1 shows worse perfor-
mance than the naive model.

Data and Analysis

 For modelling and forecasting non-seasonal time series data of the annual GDP of Nepal, 
we have obtained data from the website of World Bank for the period 1960 – 2022. This implies 
that we have 63 observations of GDP, based on this data, we have proposed the ARIMA (2, 2, 1) 
model to forecast the GDP of Nepal for the next fifteen years (2023 – 2037).    

1. Model Identification for GDP

 Progression of GDP per capita of Nepal is graphed in Figure 2. A steady long-term rise is 
observed during 1960 – 2022. Beyond 2010 the rate of upward trend increases sharply. The time 
series may be quickly and easily determined to be unstable because of the GDP of Nepal's clearly 

marked increasing trend. Autocorrelation Function (ACF) (Figure 3) and Partial Autocorrelation 
Function (PACF) (Figure 4) are studied further to understand genesis of data structure. It is evident 
from the PACF that a single prominence indicates the fictitious primary value of n=1 when it 
crosses the confidence intervals. Furthermore, at ACF 11 heights, the same issue occurs. Accord-
ing to the ACF plot, the autocorrelations in the observed series is very high, and positive. A slow 
decay in ACF suggests that there may be changes in both the mean and the variability over time for 
this series. The arithmetic mean may be moving upward, with rising variability. Variability can be 
managed by calculating the natural logarithm of the given data, and the mean trend can be elimi-
nated by differencing once or twice as needed to achieve stationarity in the original observed 
series. An instantaneous nonlinear transformation applied to the optimal forecast of a variable may 
not produce the transformed variable's ideal forecast (Granger and Newbold, 1976). In particular, 
using the exponential function to forecasts for the original variable when excellent forecasts of the 
logs are available may not always be the best course of action. Therefore, we further employ the 
differencing process on the untransformed actual data series.

Flgure 2
The GDP Data During 1960 to 2021

 GROSS DEMESTIC PRODUCT (GDP) is a strategic compo-
nent in measuring National Income and Product Accounts. GDP 
represents the total value of final goods and services. GDP assessment 
is based on the quantum of consumption and investment by house-
holds and businesses in addition to the governmental expenditure and 
net exports. GDP is, therefore, crucial in maintaining a healthy 
economy as it embodies all financial transactions, including banking 
aspects. Planning and decision-making for the entire economy is thus 
conditioned on accurate information with respect of all the three 
stakeholders in the economic transactions, namely, households, 
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businesses and government, which GDP is capable of delivering. We thus have an estimated 
nominal GDP (NGDP) which is used for the purpose of future planning by the finance ministry of 
the country. The real GDP (RGDP) is obtained after adjusting the estimated NGDP for inflation. 
The latter is also known as observed GDP in actual real-time. However, all budget planning and 
projections utilize the former, i.e., NGDP, whereas RGDP directly impacts the common citizen. 
Therefore, fluctuations in the level of GDP covariates are important in determining the gap 
between NGDP and RGDP. The effective mathematical relationship is represented as NGDP – 
inflation rate = RGDP.

 GDP computation is based on the principle of averages, which has an upward bias. There-
fore, GDP does not capture income, expenditure, or production changes at the regional level. For 
instance, if a large group of people experience declining income at a time when its complement 
group in the same population is smaller but experiences upwardly rising incomes, then GDP 
registers rise. To overcome this upward bias to a sufficiently large extent, in this paper, we focus 
on the concept of GDP per capita, which gives a more realistic picture of a nation's economic 
health. GDP measures an economy's current market value for all products and services generated 
during the assessment period. This value encompasses spending and costs on personal consump-
tion, government purchases, inventories, and the foreign trade balance. Thus, the total capital at 
stake and covered under the GDP envelope of a specific period can be viewed through (i) produc-
tion undertaken, (ii) income generated and (iii) expenditure accrued for the same period.

 Several research studies have been designed on the temporal data template where study 
units are macroeconomic units like countries or sub-regions like states, districts, or countries. In 
the present paper, we employ Autoregressive Integrated Moving Average (ARIMA) model 
proposed by Box and Jenkins (1970) for understanding the GDP movement with time. Past studies 
have used predictive ARIMA modelling for GDP of different countries. For instance, Kiriakidis 
and Kargas (2013) used predictive ARIMA model for predicting GDP of Greece, while correctly 
predicting recession in the near future. The RGDP in Greece for the period 2015-2017 was forecast 
by Dritsaki (2015) using an ARIMA (1, 1, 1) model based on data for the period of 1980-2013 
which correctly indicated a gradual rise in GDP. Wabomba et al. (2016) projected Kenya's GDP 
from 2013-2017 using an ARIMA (2, 2, 2) model based on data for period of 1960-2012. Predicted 
estimates correctly indicated that Kenya's GDP will expand faster over the next five years, from 
2013-2017. Agrawal (2018) estimated RGDP in India using publicly available quarterly RGDP 
data from Quarter 2 of 1996 to Quarter 2 of 2017 using ARIMA model. Abonazel et al. (2019) 
used an ARIMA (1, 2, 1) model over the period 1965-2016 to correctly forecast the rise in GDP for 
Egypt during for the period 2017-2026 and Eissa (2020) forecasted the GDP per capita for Egypt 
and Saudi Arabia, from 2019-2030 using the ARIMA (1, 1, 2) and ARIMA (1, 1, 1) models 
respectively based on data from the period 1968-2018. Their study showed that both Egypt's and 
Saudi Arabia's GDP per capita would continue to rise. In order to forecast the GDP and consumer 
`price index (CPI) for the Jordanian economy between 2020 and 2022, Ghazo (2021) employed 
ARIMA (3, 1, 1) model for GDP and ARIMA (1, 1, 0) model for CPI respectively, based on 
sample data from the period 19762019. They rightly anticipated stagflation for the Jordanian 
economy as a result of the predicted shrinkage in GDP and first rise in CPI. In order to escape the 
stagflationary cycle and achieve more stable CPI, this study provided inputs to the economic policy 
makers to develop sensible measures for boosting GDP and fending off inflationary forces. 
Mohamed (2022) used an ARIMA (5, 1, 2) model for the period between 1960-2022 to forecast 

trajectory of GDP in Somalia for the next fourteen quarters. In order to forecast the quarterly GDP 
of Philippines, Polintan et al. (2023) used data from 2018-2022 through an ARIMA (1, 2, 1) model 
for forecasting GDP in the Philippines, for 2022-2029 and predicted a steady growth trajectory. 
Lngale and Senan (2023) used predictive ARIMA (0, 2, 1) model for predicting GDP of India, 
pertaining to the period 1960-2020 and predicted a steady growth trajectory. Tolulope et al. (2023) 
used an ARIMA (2, 1, 2) model for predicting the Nigerian GDP using both in sample and out of 
sample prediction method, based on data for the period of 19602020 which correctly indicated a 
gradual rise in GDP. Urruttia (2019) used an ARIMA (1, 1, 1) model over the period from the first 
quarter of 1990 to the fourth quarter of 2017 with a total of 112 observations for forecasting future 
GDP. Remittance income in Nepal vis- a vis GDP has between studied by Gaudel (2006). Srivas-
tava and Chaudhary (2007) looked in to role of remittance in economic development of Nepal. 
Energy – GDP dependence in Nepal is focus of work under taken by Asghar (2008). Dahal (2010) 
studied role of GDP on educational enrolment and teaching strength in the school system of Nepal. 
GDP and oil consumption relations are analyzed by Bhusal (2010). Thagunna and Acharya (2013) 
assessed investment, saving, exports and imports as determinants of GDP. Chaudhary and Xiumin 
(2018) analysed determinants of inflation in Nepal. Interrelations between foreign trade and GDP 
of Nepal are investigated by Prajuli (2021). The present paper is the first study where a self-re-
gressed Bayesian investigation on GDP is made with identification of a unique TS statistical model 
to project future pattern of GDP in Nepal. One step ahead prediction for the year 2022 is validated 
by the recent World Bank report. Information about GDP can be quite advantageous for the 
business and economy, particularly for investors, business people and the governmental units 
aiming for cost effectiveness and maximizing profit in addition to guiding the government for 
framing future economic policies and in planning and control of various economic measures. 

The Study Region

 The Federal Democratic Republic of Nepal is a landlocked country in South Asia sharing 
its boundaries with India and Tibet. World Bank 2022 report the total GDP (hence froth, GDP) of 
Nepal to be 36.29 billion USD with 122 billion USD Purchasing Power Parity (PPP). GDP per 
capita is placed at 1,230 USD and PPP at 4,190 USD for the year 2021. GDP growth rate for Nepal 
is 2.7% while GDP of Nepal represents 0.02% of the world economy for the year 2021. The main 
economic sectors in Nepal are agricultural, hydro-power, natural resources, tourism and handi-
crafts. These sectors have a significant impact on Nepal economy in terms of their contribution to 
the GDP. Empirical research conducted by Nepal Rastra Bank (NRB) in the year 2020 concluded 
tourism to be a crucial economic sector for both the short-run and the long- run economic growth 
of Nepal. The NRB report indicated a significant relationship between tourism industry and the 
county’s economic growth which is one of the fasted growing industries in the country. More than 
a million indigenous people are engaged in the tourism industry for their livelihood. Tourism 
accounts for 7.9% of the total GDP while 65% of the population is engaged in agricultural activi-
ties contributing to 31.7% of GDP. About 20% of the area is cultivable, another 40.7 % is forested 
and the remaining land is mountainous. Thus, Nepal’s GDP is heavily dependent on remittance. 
According to the Central Bureau of Statistics Nepal (2022) report, Nepal has received remittance 
amounting to Nepalese Rupees (NRs.) 875 billion in the financial year 2019-20, which translates 
into a remittance to GDP ratio of 23.23%. Nepal is primarily a remittance-based country with 
remittance inflow amounting to more than a quarter of the country’s GDP. Nepal’s total labour 
force in the year 2020 was 16,016,900 with sectoral distribution by occupation as 43% in agricul-

ture 21% in industry and share of services at 35%. The inflation rate in Nepal was recorded at 6% 
and the unemployment rate at 1.4%. Nepal’s total exports were reported to be worth 918 million 
USD in the year 2020, its main exports being carpets, textiles, pulses, tea, etc. Its main export 
partners are India, USA, Japan, Malaysia, Singapore, Germany, and Bangladesh. Total imports for 
the same period were recorded at 10 billion USD with prominent import goods being petroleum, 
electrical goods, machinery, gold, etc. Its principal import partners are India and China. 

 In this paper, we estimate and predict the GDP per capita of Nepal for next one and half 
decade by using ARIMA time series model. Section 2 describes model determination methodology 
used in the present work. Section 3 enumerates the models and the model adequacy measures. 
Section 4 focusses on data description and its analysis. Conclusion and recommendations are 
summarised in section 5. 

Methodology

 Time series models are characterized by the clustering effect or serial correlation in time. 
In the present paper, we employ ARIMA modelling to estimate and forecast Nepal's GDP. ARIMA 
modelling addresses such issues of dependent errors by introducing time lagged dependent variable 
and past error terms on the determinant side of the time series model. ARIMA model consists of 
AR, I, and MA segments where AR indicate the autoregressive part, I indicate integration i.e., the 
order of differencing in the observed series to achieve stationarity and MA indicate the moving 
average component in the model. The four stages of the iterative ARIMA model fitting process are 
Identification, estimation, diagnostic checking, and time series forecasting. (Figure 1). 

Figure 1
 Iterative ModellingProgression for a Stationary Variable in Box

 It employs a general technique for choosing a possible model from a large class of models. 
The chosen model is then evaluated to see if it can accurately explain the series using the historical 
data. Auto-correlation function (ACF) and partial auto-correlation function (PACF) are used to 
select one or more ARIMA models that seem appropriate during the identification stage. The next 
stage involves estimating the parameters of a specific Box-Jenkins model (1970) for a given time 
series. This step verifies the parsimony in terms of the number of model parameters or lack of 
over-specification by determining whether, in addition to the residuals being uncorrelated, the 
chosen least amount of squared residuals are found in the AR and/or MA parameters. A critical and 
sensitive aspect of an ARIMA model is parsimony. An over-parameterized model cannot predict as 
efficiently as a sparse model. Model diagnostics and testing is carried out in the third step. The 
underlying presumption is that the error terms, ε_t,  behave in a manner consistent with that of a 

stationary, unchanging process. If the residuals are drawn from a fixed distribution with constant 
mean and variance, they should be white noise. The most adequate Box-Jenkins model fulfils these 
prerequisites for the residual distribution. The best model needs to be decided based on these four 
paradigms. Thus, testing of the residuals would lead to a better suitable model. A graphical 
technique called a quantile-quantile (Q-Q) plot compares the distributional similarities of two 
datasets. In the context of ARIMA models, a Q-Q plot is often used to check whether the model's 
residuals follow a normal distribution. 

The Model and Forecast

1.  Autoregressive Model 

 With the intent to estimate the coefficients β_(j,) j = 1,2, …,p, an AR process for the 
univariate model is the one that shows a changing variable regressed on its own lagged values. AR 
model of order p, or AR (p), is expressed as,

ACF gives a correlation coefficient between the dependent variable and the same variable with 
different lags, but the effect of shorter lags is not kept constant, meaning that the effect of shorter 
lag is remained in the autocorrelation function. The correlation between y_t and y_(t-2) includes 
the correlation effect between y_t and y_(t-1). On the other hand, PACF gives a correlation coeffi-
cient between the dependent variable and its lag values while keeping the effect of shorter lags 
constant. The correlation between y_t and y_(t-2) does not include the effect of correlation 
between y_t and y_(t-1).

2.  Moving Average Model

 Let ε_t (t = 1,2,…)  be a white noise process, with t standing for a series of independent 
and identically distributed (iid) random variables expecting ε_t is zero and variance of ε_t is σ^2. 
After that, the qth order MA model, which accounts for the relationship between an observation 
and a residual error, is expressed as

  represents the impact of past errors on the response variable. Estimated coefficients θ_(j,) j 
= 1,2, …   ,q,  accounting for short-term memory help in forecasting.

3.   Autoregressive Moving Average Model

 The model AR, coupled with the MA modelling strategy is called Autoregressive Moving 
Average (ARMA) models intended for stationary data series. ARMA (p, q) model is expressed as:

 An amalgam of the AR and MA models is represented by (3). In this instance, the greatest 

order of p or q cannot be provided merely by ACF or PACF.

4.  Autoregressive Integrated Moving Average Model

 The extension of ARMA model is ARIMA model which enable to transform data by 
differencing to make data stationary. ARIMA model can be written as ARIMA (p, d, q), where p is 
the order of AR term, d is the number of differencing required to make series stationery and q is 
the order of MA term. For example, if y_it  is a non-stationary series, we will take a first-difference 
of y_t to make ∆y_t= stationary, and then the ARIMA (p, 1, q) model is expressed as: 
 

 Where ∆ y_t= y_t- y_(t-1), then d = 1, which implies a one-time differencing step. The 
model transforms into a random walk model, categorized as ARIMA (0.1,0), if p = q = 0.

Table 1 
ARIMA (p, d, q) Model for d = 0, 1, 2

5.  Model Adequacy Measures

 Before employing a model for predicting, diagnostic testing must be done on it. The 
residuals that remain after the model has been fitted are deemed sufficient if they are just white 
noise, and the residuals' ACF and PACF patterns may provide insight into how the model might be 
improved. Akaike (1973) developed a numerical score that can be used to identify the best model 
from among several candidate models for a specific data set. Akaike information criterion (AIC) 
results are helpful compared to other AIC scores for the same data set. A smaller AIC score 
indicates a better empirical fit. Estimated log-likelihood (L) is used to compute AIC as,
 
AIC = - 2(L + s)                                                                                                                         (5)          
 Such that s is the number of variables in the model plus the intercept term. Schwarz (1978) 
developed an alternative model comparison score known as Bayesian (Schwarz) information 
criterion BIC (or SIC) as an asymptotic approximation to the transformation of the Bayesian 
posterior probability of a candidate model expressed as,

BIC or SIC = - 2L + s log(n)                                                                                                     (6)             
 L is the maximum likelihood of the model, s is the number of parameters in the model, and 
n is the sample size. Like AIC, BIC also balances the goodness of fit and model complexity. 
However, BIC places a higher penalty on model complexity compared to AIC because it includes a 
term that depends on the sample size (s log(n)). As with AIC, the goal is to minimize the BIC value 
to select the best model.

 6.   Forecasting 

 Box-Jenkin's time series model method applies only to stationary and invertible time 
series. Lidiema (2017), Dritsakis and Klazoglou (2019). Future value forecasting can begin once 
the requirements have been met through procedures like differencing. We can utilize the chosen 
ARIMA model to predict when it meets the requirements of a stationary univariate process. 
Further, diagnostic checking is done to verify the forecasting accuracy of the ARIMA model. 
   
7.  Forecasting Accuracy

 We now present different measures listed to determine the accuracy of a prediction model.
 
 (i) Mean Absolute Error 

 The mean absolute difference between a dataset's actual (observed) values and the model's 
predicted values is computed using the Mean Absolute Error (MAE) algorithm. The absolute rather 
than squared differences make MAE more robust to the outliers. The formula to calculate the MAE 
is,
                                                     
 
 Where n is the total number of observations, y_(i )is the actual value of time series in data 
point i, and y _i denotes forecasted value of time series data point i.       

 (ii)  Root Mean Square Error 

 Root Mean Square Error (RMSE) is a popular accuracy measure in regression analysis 
based on the difference between a dataset's actual (observed) values and the model's predicted 
values. Lower RMSE indicates the alignment of the model's predictions with the actual data. The 
formula to calculate the RMSE is,
                  (8)
                                    
  
 However, due to the squaring of deviations, RMSE gives underweight to the outliers and 
may not be suitable for all types of datasets. Depending on the specific problem and characteristics 
of the data, we can use metrics such as Mean Absolute Error (MAE) or R-squared (coefficient of 
determination) may also be used in conjunction with RMSE to gain a more comprehensive under-
standing of the model's performance.            
                                                                                                                                                                                                              
                                                                                                                                                                                                                                                                                                                                                                                                                   
 (iii) Mean Absolute Percentage Error 

 Mean Absolute Percentage Error (MAPE) is used to measure the percentage variation 
between a dataset's actual (observed) values and the model's predicted values, and it is useful to 
understand the relative size of the errors compared to the actual values. The formula to calculate 
the MAPE is,

 However, it needs to be more well-defined when the actual values are zero or near zero, 
which can result in non-sensical very large MAPE values.

 (iv)  Mean Percentage Error 

 Mean Percentage Error (MPE) is instead of taking the absolute percentage difference like 
in MADE consider the signed percentage difference. Therefore, accounting for both the (positive 
and negative) magnitude of the errors. The formula to calculate the MPE is,
                                                      
                                              (10)        

 Such that, lower values of MPE indicate better forecast accuracy. A value of zero MPE 
would imply that the forecasted values match the actual values perfectly. However, MPE can have 
some limitations, such as the potential for the errors to cancel each other out, leading to an artifi-
cially low MPE even if the model's performance is unsatisfactory.

 (v) Mean Absolute Scaled Error 

 Mean Absolute Scaled Error (MASE) measures the performance of a model relative to the 
performance of a naive or benchmark model. The MASE provides a more interpretable measure of 
forecast accuracy than metrics like Mean Absolute Error (MAE), especially when dealing with 
time series data and comparing different forecasting models. It provides insights into whether a 
model provides meaningful improvements over a basic, naive forecasting approach. The formula to 
calculate the MASE is,   
                   (11)  
                                         

  where n is the length of the series and m is its frequency, i.e., m=1 for yearly data, m=4 for 
quarterly, m=12 for monthly, etc.
 MASE measures how well the model performs relative to the naive model's forecast errors taken 
as a benchmark. A value of MASE less than 1 indicates that the model performs better than the 
naive model regarding absolute forecast errors, while a value greater than 1 shows worse perfor-
mance than the naive model.

Data and Analysis

 For modelling and forecasting non-seasonal time series data of the annual GDP of Nepal, 
we have obtained data from the website of World Bank for the period 1960 – 2022. This implies 
that we have 63 observations of GDP, based on this data, we have proposed the ARIMA (2, 2, 1) 
model to forecast the GDP of Nepal for the next fifteen years (2023 – 2037).    

1. Model Identification for GDP

 Progression of GDP per capita of Nepal is graphed in Figure 2. A steady long-term rise is 
observed during 1960 – 2022. Beyond 2010 the rate of upward trend increases sharply. The time 
series may be quickly and easily determined to be unstable because of the GDP of Nepal's clearly 

marked increasing trend. Autocorrelation Function (ACF) (Figure 3) and Partial Autocorrelation 
Function (PACF) (Figure 4) are studied further to understand genesis of data structure. It is evident 
from the PACF that a single prominence indicates the fictitious primary value of n=1 when it 
crosses the confidence intervals. Furthermore, at ACF 11 heights, the same issue occurs. Accord-
ing to the ACF plot, the autocorrelations in the observed series is very high, and positive. A slow 
decay in ACF suggests that there may be changes in both the mean and the variability over time for 
this series. The arithmetic mean may be moving upward, with rising variability. Variability can be 
managed by calculating the natural logarithm of the given data, and the mean trend can be elimi-
nated by differencing once or twice as needed to achieve stationarity in the original observed 
series. An instantaneous nonlinear transformation applied to the optimal forecast of a variable may 
not produce the transformed variable's ideal forecast (Granger and Newbold, 1976). In particular, 
using the exponential function to forecasts for the original variable when excellent forecasts of the 
logs are available may not always be the best course of action. Therefore, we further employ the 
differencing process on the untransformed actual data series.

Flgure 2
The GDP Data During 1960 to 2021

 GROSS DEMESTIC PRODUCT (GDP) is a strategic compo-
nent in measuring National Income and Product Accounts. GDP 
represents the total value of final goods and services. GDP assessment 
is based on the quantum of consumption and investment by house-
holds and businesses in addition to the governmental expenditure and 
net exports. GDP is, therefore, crucial in maintaining a healthy 
economy as it embodies all financial transactions, including banking 
aspects. Planning and decision-making for the entire economy is thus 
conditioned on accurate information with respect of all the three 
stakeholders in the economic transactions, namely, households, 



businesses and government, which GDP is capable of delivering. We thus have an estimated 
nominal GDP (NGDP) which is used for the purpose of future planning by the finance ministry of 
the country. The real GDP (RGDP) is obtained after adjusting the estimated NGDP for inflation. 
The latter is also known as observed GDP in actual real-time. However, all budget planning and 
projections utilize the former, i.e., NGDP, whereas RGDP directly impacts the common citizen. 
Therefore, fluctuations in the level of GDP covariates are important in determining the gap 
between NGDP and RGDP. The effective mathematical relationship is represented as NGDP – 
inflation rate = RGDP.

 GDP computation is based on the principle of averages, which has an upward bias. There-
fore, GDP does not capture income, expenditure, or production changes at the regional level. For 
instance, if a large group of people experience declining income at a time when its complement 
group in the same population is smaller but experiences upwardly rising incomes, then GDP 
registers rise. To overcome this upward bias to a sufficiently large extent, in this paper, we focus 
on the concept of GDP per capita, which gives a more realistic picture of a nation's economic 
health. GDP measures an economy's current market value for all products and services generated 
during the assessment period. This value encompasses spending and costs on personal consump-
tion, government purchases, inventories, and the foreign trade balance. Thus, the total capital at 
stake and covered under the GDP envelope of a specific period can be viewed through (i) produc-
tion undertaken, (ii) income generated and (iii) expenditure accrued for the same period.

 Several research studies have been designed on the temporal data template where study 
units are macroeconomic units like countries or sub-regions like states, districts, or countries. In 
the present paper, we employ Autoregressive Integrated Moving Average (ARIMA) model 
proposed by Box and Jenkins (1970) for understanding the GDP movement with time. Past studies 
have used predictive ARIMA modelling for GDP of different countries. For instance, Kiriakidis 
and Kargas (2013) used predictive ARIMA model for predicting GDP of Greece, while correctly 
predicting recession in the near future. The RGDP in Greece for the period 2015-2017 was forecast 
by Dritsaki (2015) using an ARIMA (1, 1, 1) model based on data for the period of 1980-2013 
which correctly indicated a gradual rise in GDP. Wabomba et al. (2016) projected Kenya's GDP 
from 2013-2017 using an ARIMA (2, 2, 2) model based on data for period of 1960-2012. Predicted 
estimates correctly indicated that Kenya's GDP will expand faster over the next five years, from 
2013-2017. Agrawal (2018) estimated RGDP in India using publicly available quarterly RGDP 
data from Quarter 2 of 1996 to Quarter 2 of 2017 using ARIMA model. Abonazel et al. (2019) 
used an ARIMA (1, 2, 1) model over the period 1965-2016 to correctly forecast the rise in GDP for 
Egypt during for the period 2017-2026 and Eissa (2020) forecasted the GDP per capita for Egypt 
and Saudi Arabia, from 2019-2030 using the ARIMA (1, 1, 2) and ARIMA (1, 1, 1) models 
respectively based on data from the period 1968-2018. Their study showed that both Egypt's and 
Saudi Arabia's GDP per capita would continue to rise. In order to forecast the GDP and consumer 
`price index (CPI) for the Jordanian economy between 2020 and 2022, Ghazo (2021) employed 
ARIMA (3, 1, 1) model for GDP and ARIMA (1, 1, 0) model for CPI respectively, based on 
sample data from the period 19762019. They rightly anticipated stagflation for the Jordanian 
economy as a result of the predicted shrinkage in GDP and first rise in CPI. In order to escape the 
stagflationary cycle and achieve more stable CPI, this study provided inputs to the economic policy 
makers to develop sensible measures for boosting GDP and fending off inflationary forces. 
Mohamed (2022) used an ARIMA (5, 1, 2) model for the period between 1960-2022 to forecast 
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trajectory of GDP in Somalia for the next fourteen quarters. In order to forecast the quarterly GDP 
of Philippines, Polintan et al. (2023) used data from 2018-2022 through an ARIMA (1, 2, 1) model 
for forecasting GDP in the Philippines, for 2022-2029 and predicted a steady growth trajectory. 
Lngale and Senan (2023) used predictive ARIMA (0, 2, 1) model for predicting GDP of India, 
pertaining to the period 1960-2020 and predicted a steady growth trajectory. Tolulope et al. (2023) 
used an ARIMA (2, 1, 2) model for predicting the Nigerian GDP using both in sample and out of 
sample prediction method, based on data for the period of 19602020 which correctly indicated a 
gradual rise in GDP. Urruttia (2019) used an ARIMA (1, 1, 1) model over the period from the first 
quarter of 1990 to the fourth quarter of 2017 with a total of 112 observations for forecasting future 
GDP. Remittance income in Nepal vis- a vis GDP has between studied by Gaudel (2006). Srivas-
tava and Chaudhary (2007) looked in to role of remittance in economic development of Nepal. 
Energy – GDP dependence in Nepal is focus of work under taken by Asghar (2008). Dahal (2010) 
studied role of GDP on educational enrolment and teaching strength in the school system of Nepal. 
GDP and oil consumption relations are analyzed by Bhusal (2010). Thagunna and Acharya (2013) 
assessed investment, saving, exports and imports as determinants of GDP. Chaudhary and Xiumin 
(2018) analysed determinants of inflation in Nepal. Interrelations between foreign trade and GDP 
of Nepal are investigated by Prajuli (2021). The present paper is the first study where a self-re-
gressed Bayesian investigation on GDP is made with identification of a unique TS statistical model 
to project future pattern of GDP in Nepal. One step ahead prediction for the year 2022 is validated 
by the recent World Bank report. Information about GDP can be quite advantageous for the 
business and economy, particularly for investors, business people and the governmental units 
aiming for cost effectiveness and maximizing profit in addition to guiding the government for 
framing future economic policies and in planning and control of various economic measures. 

The Study Region

 The Federal Democratic Republic of Nepal is a landlocked country in South Asia sharing 
its boundaries with India and Tibet. World Bank 2022 report the total GDP (hence froth, GDP) of 
Nepal to be 36.29 billion USD with 122 billion USD Purchasing Power Parity (PPP). GDP per 
capita is placed at 1,230 USD and PPP at 4,190 USD for the year 2021. GDP growth rate for Nepal 
is 2.7% while GDP of Nepal represents 0.02% of the world economy for the year 2021. The main 
economic sectors in Nepal are agricultural, hydro-power, natural resources, tourism and handi-
crafts. These sectors have a significant impact on Nepal economy in terms of their contribution to 
the GDP. Empirical research conducted by Nepal Rastra Bank (NRB) in the year 2020 concluded 
tourism to be a crucial economic sector for both the short-run and the long- run economic growth 
of Nepal. The NRB report indicated a significant relationship between tourism industry and the 
county’s economic growth which is one of the fasted growing industries in the country. More than 
a million indigenous people are engaged in the tourism industry for their livelihood. Tourism 
accounts for 7.9% of the total GDP while 65% of the population is engaged in agricultural activi-
ties contributing to 31.7% of GDP. About 20% of the area is cultivable, another 40.7 % is forested 
and the remaining land is mountainous. Thus, Nepal’s GDP is heavily dependent on remittance. 
According to the Central Bureau of Statistics Nepal (2022) report, Nepal has received remittance 
amounting to Nepalese Rupees (NRs.) 875 billion in the financial year 2019-20, which translates 
into a remittance to GDP ratio of 23.23%. Nepal is primarily a remittance-based country with 
remittance inflow amounting to more than a quarter of the country’s GDP. Nepal’s total labour 
force in the year 2020 was 16,016,900 with sectoral distribution by occupation as 43% in agricul-
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ture 21% in industry and share of services at 35%. The inflation rate in Nepal was recorded at 6% 
and the unemployment rate at 1.4%. Nepal’s total exports were reported to be worth 918 million 
USD in the year 2020, its main exports being carpets, textiles, pulses, tea, etc. Its main export 
partners are India, USA, Japan, Malaysia, Singapore, Germany, and Bangladesh. Total imports for 
the same period were recorded at 10 billion USD with prominent import goods being petroleum, 
electrical goods, machinery, gold, etc. Its principal import partners are India and China. 

 In this paper, we estimate and predict the GDP per capita of Nepal for next one and half 
decade by using ARIMA time series model. Section 2 describes model determination methodology 
used in the present work. Section 3 enumerates the models and the model adequacy measures. 
Section 4 focusses on data description and its analysis. Conclusion and recommendations are 
summarised in section 5. 

Methodology

 Time series models are characterized by the clustering effect or serial correlation in time. 
In the present paper, we employ ARIMA modelling to estimate and forecast Nepal's GDP. ARIMA 
modelling addresses such issues of dependent errors by introducing time lagged dependent variable 
and past error terms on the determinant side of the time series model. ARIMA model consists of 
AR, I, and MA segments where AR indicate the autoregressive part, I indicate integration i.e., the 
order of differencing in the observed series to achieve stationarity and MA indicate the moving 
average component in the model. The four stages of the iterative ARIMA model fitting process are 
Identification, estimation, diagnostic checking, and time series forecasting. (Figure 1). 

Figure 1
 Iterative ModellingProgression for a Stationary Variable in Box

 It employs a general technique for choosing a possible model from a large class of models. 
The chosen model is then evaluated to see if it can accurately explain the series using the historical 
data. Auto-correlation function (ACF) and partial auto-correlation function (PACF) are used to 
select one or more ARIMA models that seem appropriate during the identification stage. The next 
stage involves estimating the parameters of a specific Box-Jenkins model (1970) for a given time 
series. This step verifies the parsimony in terms of the number of model parameters or lack of 
over-specification by determining whether, in addition to the residuals being uncorrelated, the 
chosen least amount of squared residuals are found in the AR and/or MA parameters. A critical and 
sensitive aspect of an ARIMA model is parsimony. An over-parameterized model cannot predict as 
efficiently as a sparse model. Model diagnostics and testing is carried out in the third step. The 
underlying presumption is that the error terms, ε_t,  behave in a manner consistent with that of a 

stationary, unchanging process. If the residuals are drawn from a fixed distribution with constant 
mean and variance, they should be white noise. The most adequate Box-Jenkins model fulfils these 
prerequisites for the residual distribution. The best model needs to be decided based on these four 
paradigms. Thus, testing of the residuals would lead to a better suitable model. A graphical 
technique called a quantile-quantile (Q-Q) plot compares the distributional similarities of two 
datasets. In the context of ARIMA models, a Q-Q plot is often used to check whether the model's 
residuals follow a normal distribution. 

The Model and Forecast

1.  Autoregressive Model 

 With the intent to estimate the coefficients β_(j,) j = 1,2, …,p, an AR process for the 
univariate model is the one that shows a changing variable regressed on its own lagged values. AR 
model of order p, or AR (p), is expressed as,

ACF gives a correlation coefficient between the dependent variable and the same variable with 
different lags, but the effect of shorter lags is not kept constant, meaning that the effect of shorter 
lag is remained in the autocorrelation function. The correlation between y_t and y_(t-2) includes 
the correlation effect between y_t and y_(t-1). On the other hand, PACF gives a correlation coeffi-
cient between the dependent variable and its lag values while keeping the effect of shorter lags 
constant. The correlation between y_t and y_(t-2) does not include the effect of correlation 
between y_t and y_(t-1).

2.  Moving Average Model

 Let ε_t (t = 1,2,…)  be a white noise process, with t standing for a series of independent 
and identically distributed (iid) random variables expecting ε_t is zero and variance of ε_t is σ^2. 
After that, the qth order MA model, which accounts for the relationship between an observation 
and a residual error, is expressed as

  represents the impact of past errors on the response variable. Estimated coefficients θ_(j,) j 
= 1,2, …   ,q,  accounting for short-term memory help in forecasting.

3.   Autoregressive Moving Average Model

 The model AR, coupled with the MA modelling strategy is called Autoregressive Moving 
Average (ARMA) models intended for stationary data series. ARMA (p, q) model is expressed as:

 An amalgam of the AR and MA models is represented by (3). In this instance, the greatest 

order of p or q cannot be provided merely by ACF or PACF.

4.  Autoregressive Integrated Moving Average Model

 The extension of ARMA model is ARIMA model which enable to transform data by 
differencing to make data stationary. ARIMA model can be written as ARIMA (p, d, q), where p is 
the order of AR term, d is the number of differencing required to make series stationery and q is 
the order of MA term. For example, if y_it  is a non-stationary series, we will take a first-difference 
of y_t to make ∆y_t= stationary, and then the ARIMA (p, 1, q) model is expressed as: 
 

 Where ∆ y_t= y_t- y_(t-1), then d = 1, which implies a one-time differencing step. The 
model transforms into a random walk model, categorized as ARIMA (0.1,0), if p = q = 0.

Table 1 
ARIMA (p, d, q) Model for d = 0, 1, 2

5.  Model Adequacy Measures

 Before employing a model for predicting, diagnostic testing must be done on it. The 
residuals that remain after the model has been fitted are deemed sufficient if they are just white 
noise, and the residuals' ACF and PACF patterns may provide insight into how the model might be 
improved. Akaike (1973) developed a numerical score that can be used to identify the best model 
from among several candidate models for a specific data set. Akaike information criterion (AIC) 
results are helpful compared to other AIC scores for the same data set. A smaller AIC score 
indicates a better empirical fit. Estimated log-likelihood (L) is used to compute AIC as,
 
AIC = - 2(L + s)                                                                                                                         (5)          
 Such that s is the number of variables in the model plus the intercept term. Schwarz (1978) 
developed an alternative model comparison score known as Bayesian (Schwarz) information 
criterion BIC (or SIC) as an asymptotic approximation to the transformation of the Bayesian 
posterior probability of a candidate model expressed as,

BIC or SIC = - 2L + s log(n)                                                                                                     (6)             
 L is the maximum likelihood of the model, s is the number of parameters in the model, and 
n is the sample size. Like AIC, BIC also balances the goodness of fit and model complexity. 
However, BIC places a higher penalty on model complexity compared to AIC because it includes a 
term that depends on the sample size (s log(n)). As with AIC, the goal is to minimize the BIC value 
to select the best model.

 6.   Forecasting 

 Box-Jenkin's time series model method applies only to stationary and invertible time 
series. Lidiema (2017), Dritsakis and Klazoglou (2019). Future value forecasting can begin once 
the requirements have been met through procedures like differencing. We can utilize the chosen 
ARIMA model to predict when it meets the requirements of a stationary univariate process. 
Further, diagnostic checking is done to verify the forecasting accuracy of the ARIMA model. 
   
7.  Forecasting Accuracy

 We now present different measures listed to determine the accuracy of a prediction model.
 
 (i) Mean Absolute Error 

 The mean absolute difference between a dataset's actual (observed) values and the model's 
predicted values is computed using the Mean Absolute Error (MAE) algorithm. The absolute rather 
than squared differences make MAE more robust to the outliers. The formula to calculate the MAE 
is,
                                                     
 
 Where n is the total number of observations, y_(i )is the actual value of time series in data 
point i, and y _i denotes forecasted value of time series data point i.       

 (ii)  Root Mean Square Error 

 Root Mean Square Error (RMSE) is a popular accuracy measure in regression analysis 
based on the difference between a dataset's actual (observed) values and the model's predicted 
values. Lower RMSE indicates the alignment of the model's predictions with the actual data. The 
formula to calculate the RMSE is,
                  (8)
                                    
  
 However, due to the squaring of deviations, RMSE gives underweight to the outliers and 
may not be suitable for all types of datasets. Depending on the specific problem and characteristics 
of the data, we can use metrics such as Mean Absolute Error (MAE) or R-squared (coefficient of 
determination) may also be used in conjunction with RMSE to gain a more comprehensive under-
standing of the model's performance.            
                                                                                                                                                                                                              
                                                                                                                                                                                                                                                                                                                                                                                                                   
 (iii) Mean Absolute Percentage Error 

 Mean Absolute Percentage Error (MAPE) is used to measure the percentage variation 
between a dataset's actual (observed) values and the model's predicted values, and it is useful to 
understand the relative size of the errors compared to the actual values. The formula to calculate 
the MAPE is,

 However, it needs to be more well-defined when the actual values are zero or near zero, 
which can result in non-sensical very large MAPE values.

 (iv)  Mean Percentage Error 

 Mean Percentage Error (MPE) is instead of taking the absolute percentage difference like 
in MADE consider the signed percentage difference. Therefore, accounting for both the (positive 
and negative) magnitude of the errors. The formula to calculate the MPE is,
                                                      
                                              (10)        

 Such that, lower values of MPE indicate better forecast accuracy. A value of zero MPE 
would imply that the forecasted values match the actual values perfectly. However, MPE can have 
some limitations, such as the potential for the errors to cancel each other out, leading to an artifi-
cially low MPE even if the model's performance is unsatisfactory.

 (v) Mean Absolute Scaled Error 

 Mean Absolute Scaled Error (MASE) measures the performance of a model relative to the 
performance of a naive or benchmark model. The MASE provides a more interpretable measure of 
forecast accuracy than metrics like Mean Absolute Error (MAE), especially when dealing with 
time series data and comparing different forecasting models. It provides insights into whether a 
model provides meaningful improvements over a basic, naive forecasting approach. The formula to 
calculate the MASE is,   
                   (11)  
                                         

  where n is the length of the series and m is its frequency, i.e., m=1 for yearly data, m=4 for 
quarterly, m=12 for monthly, etc.
 MASE measures how well the model performs relative to the naive model's forecast errors taken 
as a benchmark. A value of MASE less than 1 indicates that the model performs better than the 
naive model regarding absolute forecast errors, while a value greater than 1 shows worse perfor-
mance than the naive model.

Data and Analysis

 For modelling and forecasting non-seasonal time series data of the annual GDP of Nepal, 
we have obtained data from the website of World Bank for the period 1960 – 2022. This implies 
that we have 63 observations of GDP, based on this data, we have proposed the ARIMA (2, 2, 1) 
model to forecast the GDP of Nepal for the next fifteen years (2023 – 2037).    

1. Model Identification for GDP

 Progression of GDP per capita of Nepal is graphed in Figure 2. A steady long-term rise is 
observed during 1960 – 2022. Beyond 2010 the rate of upward trend increases sharply. The time 
series may be quickly and easily determined to be unstable because of the GDP of Nepal's clearly 

marked increasing trend. Autocorrelation Function (ACF) (Figure 3) and Partial Autocorrelation 
Function (PACF) (Figure 4) are studied further to understand genesis of data structure. It is evident 
from the PACF that a single prominence indicates the fictitious primary value of n=1 when it 
crosses the confidence intervals. Furthermore, at ACF 11 heights, the same issue occurs. Accord-
ing to the ACF plot, the autocorrelations in the observed series is very high, and positive. A slow 
decay in ACF suggests that there may be changes in both the mean and the variability over time for 
this series. The arithmetic mean may be moving upward, with rising variability. Variability can be 
managed by calculating the natural logarithm of the given data, and the mean trend can be elimi-
nated by differencing once or twice as needed to achieve stationarity in the original observed 
series. An instantaneous nonlinear transformation applied to the optimal forecast of a variable may 
not produce the transformed variable's ideal forecast (Granger and Newbold, 1976). In particular, 
using the exponential function to forecasts for the original variable when excellent forecasts of the 
logs are available may not always be the best course of action. Therefore, we further employ the 
differencing process on the untransformed actual data series.

Flgure 2
The GDP Data During 1960 to 2021

 GROSS DEMESTIC PRODUCT (GDP) is a strategic compo-
nent in measuring National Income and Product Accounts. GDP 
represents the total value of final goods and services. GDP assessment 
is based on the quantum of consumption and investment by house-
holds and businesses in addition to the governmental expenditure and 
net exports. GDP is, therefore, crucial in maintaining a healthy 
economy as it embodies all financial transactions, including banking 
aspects. Planning and decision-making for the entire economy is thus 
conditioned on accurate information with respect of all the three 
stakeholders in the economic transactions, namely, households, 



businesses and government, which GDP is capable of delivering. We thus have an estimated 
nominal GDP (NGDP) which is used for the purpose of future planning by the finance ministry of 
the country. The real GDP (RGDP) is obtained after adjusting the estimated NGDP for inflation. 
The latter is also known as observed GDP in actual real-time. However, all budget planning and 
projections utilize the former, i.e., NGDP, whereas RGDP directly impacts the common citizen. 
Therefore, fluctuations in the level of GDP covariates are important in determining the gap 
between NGDP and RGDP. The effective mathematical relationship is represented as NGDP – 
inflation rate = RGDP.

 GDP computation is based on the principle of averages, which has an upward bias. There-
fore, GDP does not capture income, expenditure, or production changes at the regional level. For 
instance, if a large group of people experience declining income at a time when its complement 
group in the same population is smaller but experiences upwardly rising incomes, then GDP 
registers rise. To overcome this upward bias to a sufficiently large extent, in this paper, we focus 
on the concept of GDP per capita, which gives a more realistic picture of a nation's economic 
health. GDP measures an economy's current market value for all products and services generated 
during the assessment period. This value encompasses spending and costs on personal consump-
tion, government purchases, inventories, and the foreign trade balance. Thus, the total capital at 
stake and covered under the GDP envelope of a specific period can be viewed through (i) produc-
tion undertaken, (ii) income generated and (iii) expenditure accrued for the same period.

 Several research studies have been designed on the temporal data template where study 
units are macroeconomic units like countries or sub-regions like states, districts, or countries. In 
the present paper, we employ Autoregressive Integrated Moving Average (ARIMA) model 
proposed by Box and Jenkins (1970) for understanding the GDP movement with time. Past studies 
have used predictive ARIMA modelling for GDP of different countries. For instance, Kiriakidis 
and Kargas (2013) used predictive ARIMA model for predicting GDP of Greece, while correctly 
predicting recession in the near future. The RGDP in Greece for the period 2015-2017 was forecast 
by Dritsaki (2015) using an ARIMA (1, 1, 1) model based on data for the period of 1980-2013 
which correctly indicated a gradual rise in GDP. Wabomba et al. (2016) projected Kenya's GDP 
from 2013-2017 using an ARIMA (2, 2, 2) model based on data for period of 1960-2012. Predicted 
estimates correctly indicated that Kenya's GDP will expand faster over the next five years, from 
2013-2017. Agrawal (2018) estimated RGDP in India using publicly available quarterly RGDP 
data from Quarter 2 of 1996 to Quarter 2 of 2017 using ARIMA model. Abonazel et al. (2019) 
used an ARIMA (1, 2, 1) model over the period 1965-2016 to correctly forecast the rise in GDP for 
Egypt during for the period 2017-2026 and Eissa (2020) forecasted the GDP per capita for Egypt 
and Saudi Arabia, from 2019-2030 using the ARIMA (1, 1, 2) and ARIMA (1, 1, 1) models 
respectively based on data from the period 1968-2018. Their study showed that both Egypt's and 
Saudi Arabia's GDP per capita would continue to rise. In order to forecast the GDP and consumer 
`price index (CPI) for the Jordanian economy between 2020 and 2022, Ghazo (2021) employed 
ARIMA (3, 1, 1) model for GDP and ARIMA (1, 1, 0) model for CPI respectively, based on 
sample data from the period 19762019. They rightly anticipated stagflation for the Jordanian 
economy as a result of the predicted shrinkage in GDP and first rise in CPI. In order to escape the 
stagflationary cycle and achieve more stable CPI, this study provided inputs to the economic policy 
makers to develop sensible measures for boosting GDP and fending off inflationary forces. 
Mohamed (2022) used an ARIMA (5, 1, 2) model for the period between 1960-2022 to forecast 

trajectory of GDP in Somalia for the next fourteen quarters. In order to forecast the quarterly GDP 
of Philippines, Polintan et al. (2023) used data from 2018-2022 through an ARIMA (1, 2, 1) model 
for forecasting GDP in the Philippines, for 2022-2029 and predicted a steady growth trajectory. 
Lngale and Senan (2023) used predictive ARIMA (0, 2, 1) model for predicting GDP of India, 
pertaining to the period 1960-2020 and predicted a steady growth trajectory. Tolulope et al. (2023) 
used an ARIMA (2, 1, 2) model for predicting the Nigerian GDP using both in sample and out of 
sample prediction method, based on data for the period of 19602020 which correctly indicated a 
gradual rise in GDP. Urruttia (2019) used an ARIMA (1, 1, 1) model over the period from the first 
quarter of 1990 to the fourth quarter of 2017 with a total of 112 observations for forecasting future 
GDP. Remittance income in Nepal vis- a vis GDP has between studied by Gaudel (2006). Srivas-
tava and Chaudhary (2007) looked in to role of remittance in economic development of Nepal. 
Energy – GDP dependence in Nepal is focus of work under taken by Asghar (2008). Dahal (2010) 
studied role of GDP on educational enrolment and teaching strength in the school system of Nepal. 
GDP and oil consumption relations are analyzed by Bhusal (2010). Thagunna and Acharya (2013) 
assessed investment, saving, exports and imports as determinants of GDP. Chaudhary and Xiumin 
(2018) analysed determinants of inflation in Nepal. Interrelations between foreign trade and GDP 
of Nepal are investigated by Prajuli (2021). The present paper is the first study where a self-re-
gressed Bayesian investigation on GDP is made with identification of a unique TS statistical model 
to project future pattern of GDP in Nepal. One step ahead prediction for the year 2022 is validated 
by the recent World Bank report. Information about GDP can be quite advantageous for the 
business and economy, particularly for investors, business people and the governmental units 
aiming for cost effectiveness and maximizing profit in addition to guiding the government for 
framing future economic policies and in planning and control of various economic measures. 

The Study Region

 The Federal Democratic Republic of Nepal is a landlocked country in South Asia sharing 
its boundaries with India and Tibet. World Bank 2022 report the total GDP (hence froth, GDP) of 
Nepal to be 36.29 billion USD with 122 billion USD Purchasing Power Parity (PPP). GDP per 
capita is placed at 1,230 USD and PPP at 4,190 USD for the year 2021. GDP growth rate for Nepal 
is 2.7% while GDP of Nepal represents 0.02% of the world economy for the year 2021. The main 
economic sectors in Nepal are agricultural, hydro-power, natural resources, tourism and handi-
crafts. These sectors have a significant impact on Nepal economy in terms of their contribution to 
the GDP. Empirical research conducted by Nepal Rastra Bank (NRB) in the year 2020 concluded 
tourism to be a crucial economic sector for both the short-run and the long- run economic growth 
of Nepal. The NRB report indicated a significant relationship between tourism industry and the 
county’s economic growth which is one of the fasted growing industries in the country. More than 
a million indigenous people are engaged in the tourism industry for their livelihood. Tourism 
accounts for 7.9% of the total GDP while 65% of the population is engaged in agricultural activi-
ties contributing to 31.7% of GDP. About 20% of the area is cultivable, another 40.7 % is forested 
and the remaining land is mountainous. Thus, Nepal’s GDP is heavily dependent on remittance. 
According to the Central Bureau of Statistics Nepal (2022) report, Nepal has received remittance 
amounting to Nepalese Rupees (NRs.) 875 billion in the financial year 2019-20, which translates 
into a remittance to GDP ratio of 23.23%. Nepal is primarily a remittance-based country with 
remittance inflow amounting to more than a quarter of the country’s GDP. Nepal’s total labour 
force in the year 2020 was 16,016,900 with sectoral distribution by occupation as 43% in agricul-
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ture 21% in industry and share of services at 35%. The inflation rate in Nepal was recorded at 6% 
and the unemployment rate at 1.4%. Nepal’s total exports were reported to be worth 918 million 
USD in the year 2020, its main exports being carpets, textiles, pulses, tea, etc. Its main export 
partners are India, USA, Japan, Malaysia, Singapore, Germany, and Bangladesh. Total imports for 
the same period were recorded at 10 billion USD with prominent import goods being petroleum, 
electrical goods, machinery, gold, etc. Its principal import partners are India and China. 

 In this paper, we estimate and predict the GDP per capita of Nepal for next one and half 
decade by using ARIMA time series model. Section 2 describes model determination methodology 
used in the present work. Section 3 enumerates the models and the model adequacy measures. 
Section 4 focusses on data description and its analysis. Conclusion and recommendations are 
summarised in section 5. 

Methodology

 Time series models are characterized by the clustering effect or serial correlation in time. 
In the present paper, we employ ARIMA modelling to estimate and forecast Nepal's GDP. ARIMA 
modelling addresses such issues of dependent errors by introducing time lagged dependent variable 
and past error terms on the determinant side of the time series model. ARIMA model consists of 
AR, I, and MA segments where AR indicate the autoregressive part, I indicate integration i.e., the 
order of differencing in the observed series to achieve stationarity and MA indicate the moving 
average component in the model. The four stages of the iterative ARIMA model fitting process are 
Identification, estimation, diagnostic checking, and time series forecasting. (Figure 1). 

Figure 1
 Iterative ModellingProgression for a Stationary Variable in Box

 It employs a general technique for choosing a possible model from a large class of models. 
The chosen model is then evaluated to see if it can accurately explain the series using the historical 
data. Auto-correlation function (ACF) and partial auto-correlation function (PACF) are used to 
select one or more ARIMA models that seem appropriate during the identification stage. The next 
stage involves estimating the parameters of a specific Box-Jenkins model (1970) for a given time 
series. This step verifies the parsimony in terms of the number of model parameters or lack of 
over-specification by determining whether, in addition to the residuals being uncorrelated, the 
chosen least amount of squared residuals are found in the AR and/or MA parameters. A critical and 
sensitive aspect of an ARIMA model is parsimony. An over-parameterized model cannot predict as 
efficiently as a sparse model. Model diagnostics and testing is carried out in the third step. The 
underlying presumption is that the error terms, ε_t,  behave in a manner consistent with that of a 
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stationary, unchanging process. If the residuals are drawn from a fixed distribution with constant 
mean and variance, they should be white noise. The most adequate Box-Jenkins model fulfils these 
prerequisites for the residual distribution. The best model needs to be decided based on these four 
paradigms. Thus, testing of the residuals would lead to a better suitable model. A graphical 
technique called a quantile-quantile (Q-Q) plot compares the distributional similarities of two 
datasets. In the context of ARIMA models, a Q-Q plot is often used to check whether the model's 
residuals follow a normal distribution. 

The Model and Forecast

1.  Autoregressive Model 

 With the intent to estimate the coefficients β_(j,) j = 1,2, …,p, an AR process for the 
univariate model is the one that shows a changing variable regressed on its own lagged values. AR 
model of order p, or AR (p), is expressed as,

ACF gives a correlation coefficient between the dependent variable and the same variable with 
different lags, but the effect of shorter lags is not kept constant, meaning that the effect of shorter 
lag is remained in the autocorrelation function. The correlation between y_t and y_(t-2) includes 
the correlation effect between y_t and y_(t-1). On the other hand, PACF gives a correlation coeffi-
cient between the dependent variable and its lag values while keeping the effect of shorter lags 
constant. The correlation between y_t and y_(t-2) does not include the effect of correlation 
between y_t and y_(t-1).

2.  Moving Average Model

 Let ε_t (t = 1,2,…)  be a white noise process, with t standing for a series of independent 
and identically distributed (iid) random variables expecting ε_t is zero and variance of ε_t is σ^2. 
After that, the qth order MA model, which accounts for the relationship between an observation 
and a residual error, is expressed as

  represents the impact of past errors on the response variable. Estimated coefficients θ_(j,) j 
= 1,2, …   ,q,  accounting for short-term memory help in forecasting.

3.   Autoregressive Moving Average Model

 The model AR, coupled with the MA modelling strategy is called Autoregressive Moving 
Average (ARMA) models intended for stationary data series. ARMA (p, q) model is expressed as:

 An amalgam of the AR and MA models is represented by (3). In this instance, the greatest 

order of p or q cannot be provided merely by ACF or PACF.

4.  Autoregressive Integrated Moving Average Model

 The extension of ARMA model is ARIMA model which enable to transform data by 
differencing to make data stationary. ARIMA model can be written as ARIMA (p, d, q), where p is 
the order of AR term, d is the number of differencing required to make series stationery and q is 
the order of MA term. For example, if y_it  is a non-stationary series, we will take a first-difference 
of y_t to make ∆y_t= stationary, and then the ARIMA (p, 1, q) model is expressed as: 
 

 Where ∆ y_t= y_t- y_(t-1), then d = 1, which implies a one-time differencing step. The 
model transforms into a random walk model, categorized as ARIMA (0.1,0), if p = q = 0.

Table 1 
ARIMA (p, d, q) Model for d = 0, 1, 2

5.  Model Adequacy Measures

 Before employing a model for predicting, diagnostic testing must be done on it. The 
residuals that remain after the model has been fitted are deemed sufficient if they are just white 
noise, and the residuals' ACF and PACF patterns may provide insight into how the model might be 
improved. Akaike (1973) developed a numerical score that can be used to identify the best model 
from among several candidate models for a specific data set. Akaike information criterion (AIC) 
results are helpful compared to other AIC scores for the same data set. A smaller AIC score 
indicates a better empirical fit. Estimated log-likelihood (L) is used to compute AIC as,
 
AIC = - 2(L + s)                                                                                                                         (5)          
 Such that s is the number of variables in the model plus the intercept term. Schwarz (1978) 
developed an alternative model comparison score known as Bayesian (Schwarz) information 
criterion BIC (or SIC) as an asymptotic approximation to the transformation of the Bayesian 
posterior probability of a candidate model expressed as,

BIC or SIC = - 2L + s log(n)                                                                                                     (6)             
 L is the maximum likelihood of the model, s is the number of parameters in the model, and 
n is the sample size. Like AIC, BIC also balances the goodness of fit and model complexity. 
However, BIC places a higher penalty on model complexity compared to AIC because it includes a 
term that depends on the sample size (s log(n)). As with AIC, the goal is to minimize the BIC value 
to select the best model.

 6.   Forecasting 

 Box-Jenkin's time series model method applies only to stationary and invertible time 
series. Lidiema (2017), Dritsakis and Klazoglou (2019). Future value forecasting can begin once 
the requirements have been met through procedures like differencing. We can utilize the chosen 
ARIMA model to predict when it meets the requirements of a stationary univariate process. 
Further, diagnostic checking is done to verify the forecasting accuracy of the ARIMA model. 
   
7.  Forecasting Accuracy

 We now present different measures listed to determine the accuracy of a prediction model.
 
 (i) Mean Absolute Error 

 The mean absolute difference between a dataset's actual (observed) values and the model's 
predicted values is computed using the Mean Absolute Error (MAE) algorithm. The absolute rather 
than squared differences make MAE more robust to the outliers. The formula to calculate the MAE 
is,
                                                     
 
 Where n is the total number of observations, y_(i )is the actual value of time series in data 
point i, and y _i denotes forecasted value of time series data point i.       

 (ii)  Root Mean Square Error 

 Root Mean Square Error (RMSE) is a popular accuracy measure in regression analysis 
based on the difference between a dataset's actual (observed) values and the model's predicted 
values. Lower RMSE indicates the alignment of the model's predictions with the actual data. The 
formula to calculate the RMSE is,
                  (8)
                                    
  
 However, due to the squaring of deviations, RMSE gives underweight to the outliers and 
may not be suitable for all types of datasets. Depending on the specific problem and characteristics 
of the data, we can use metrics such as Mean Absolute Error (MAE) or R-squared (coefficient of 
determination) may also be used in conjunction with RMSE to gain a more comprehensive under-
standing of the model's performance.            
                                                                                                                                                                                                              
                                                                                                                                                                                                                                                                                                                                                                                                                   
 (iii) Mean Absolute Percentage Error 

 Mean Absolute Percentage Error (MAPE) is used to measure the percentage variation 
between a dataset's actual (observed) values and the model's predicted values, and it is useful to 
understand the relative size of the errors compared to the actual values. The formula to calculate 
the MAPE is,

 However, it needs to be more well-defined when the actual values are zero or near zero, 
which can result in non-sensical very large MAPE values.

 (iv)  Mean Percentage Error 

 Mean Percentage Error (MPE) is instead of taking the absolute percentage difference like 
in MADE consider the signed percentage difference. Therefore, accounting for both the (positive 
and negative) magnitude of the errors. The formula to calculate the MPE is,
                                                      
                                              (10)        

 Such that, lower values of MPE indicate better forecast accuracy. A value of zero MPE 
would imply that the forecasted values match the actual values perfectly. However, MPE can have 
some limitations, such as the potential for the errors to cancel each other out, leading to an artifi-
cially low MPE even if the model's performance is unsatisfactory.

 (v) Mean Absolute Scaled Error 

 Mean Absolute Scaled Error (MASE) measures the performance of a model relative to the 
performance of a naive or benchmark model. The MASE provides a more interpretable measure of 
forecast accuracy than metrics like Mean Absolute Error (MAE), especially when dealing with 
time series data and comparing different forecasting models. It provides insights into whether a 
model provides meaningful improvements over a basic, naive forecasting approach. The formula to 
calculate the MASE is,   
                   (11)  
                                         

  where n is the length of the series and m is its frequency, i.e., m=1 for yearly data, m=4 for 
quarterly, m=12 for monthly, etc.
 MASE measures how well the model performs relative to the naive model's forecast errors taken 
as a benchmark. A value of MASE less than 1 indicates that the model performs better than the 
naive model regarding absolute forecast errors, while a value greater than 1 shows worse perfor-
mance than the naive model.

Data and Analysis

 For modelling and forecasting non-seasonal time series data of the annual GDP of Nepal, 
we have obtained data from the website of World Bank for the period 1960 – 2022. This implies 
that we have 63 observations of GDP, based on this data, we have proposed the ARIMA (2, 2, 1) 
model to forecast the GDP of Nepal for the next fifteen years (2023 – 2037).    

1. Model Identification for GDP

 Progression of GDP per capita of Nepal is graphed in Figure 2. A steady long-term rise is 
observed during 1960 – 2022. Beyond 2010 the rate of upward trend increases sharply. The time 
series may be quickly and easily determined to be unstable because of the GDP of Nepal's clearly 

marked increasing trend. Autocorrelation Function (ACF) (Figure 3) and Partial Autocorrelation 
Function (PACF) (Figure 4) are studied further to understand genesis of data structure. It is evident 
from the PACF that a single prominence indicates the fictitious primary value of n=1 when it 
crosses the confidence intervals. Furthermore, at ACF 11 heights, the same issue occurs. Accord-
ing to the ACF plot, the autocorrelations in the observed series is very high, and positive. A slow 
decay in ACF suggests that there may be changes in both the mean and the variability over time for 
this series. The arithmetic mean may be moving upward, with rising variability. Variability can be 
managed by calculating the natural logarithm of the given data, and the mean trend can be elimi-
nated by differencing once or twice as needed to achieve stationarity in the original observed 
series. An instantaneous nonlinear transformation applied to the optimal forecast of a variable may 
not produce the transformed variable's ideal forecast (Granger and Newbold, 1976). In particular, 
using the exponential function to forecasts for the original variable when excellent forecasts of the 
logs are available may not always be the best course of action. Therefore, we further employ the 
differencing process on the untransformed actual data series.

Flgure 2
The GDP Data During 1960 to 2021

 GROSS DEMESTIC PRODUCT (GDP) is a strategic compo-
nent in measuring National Income and Product Accounts. GDP 
represents the total value of final goods and services. GDP assessment 
is based on the quantum of consumption and investment by house-
holds and businesses in addition to the governmental expenditure and 
net exports. GDP is, therefore, crucial in maintaining a healthy 
economy as it embodies all financial transactions, including banking 
aspects. Planning and decision-making for the entire economy is thus 
conditioned on accurate information with respect of all the three 
stakeholders in the economic transactions, namely, households, 



businesses and government, which GDP is capable of delivering. We thus have an estimated 
nominal GDP (NGDP) which is used for the purpose of future planning by the finance ministry of 
the country. The real GDP (RGDP) is obtained after adjusting the estimated NGDP for inflation. 
The latter is also known as observed GDP in actual real-time. However, all budget planning and 
projections utilize the former, i.e., NGDP, whereas RGDP directly impacts the common citizen. 
Therefore, fluctuations in the level of GDP covariates are important in determining the gap 
between NGDP and RGDP. The effective mathematical relationship is represented as NGDP – 
inflation rate = RGDP.

 GDP computation is based on the principle of averages, which has an upward bias. There-
fore, GDP does not capture income, expenditure, or production changes at the regional level. For 
instance, if a large group of people experience declining income at a time when its complement 
group in the same population is smaller but experiences upwardly rising incomes, then GDP 
registers rise. To overcome this upward bias to a sufficiently large extent, in this paper, we focus 
on the concept of GDP per capita, which gives a more realistic picture of a nation's economic 
health. GDP measures an economy's current market value for all products and services generated 
during the assessment period. This value encompasses spending and costs on personal consump-
tion, government purchases, inventories, and the foreign trade balance. Thus, the total capital at 
stake and covered under the GDP envelope of a specific period can be viewed through (i) produc-
tion undertaken, (ii) income generated and (iii) expenditure accrued for the same period.

 Several research studies have been designed on the temporal data template where study 
units are macroeconomic units like countries or sub-regions like states, districts, or countries. In 
the present paper, we employ Autoregressive Integrated Moving Average (ARIMA) model 
proposed by Box and Jenkins (1970) for understanding the GDP movement with time. Past studies 
have used predictive ARIMA modelling for GDP of different countries. For instance, Kiriakidis 
and Kargas (2013) used predictive ARIMA model for predicting GDP of Greece, while correctly 
predicting recession in the near future. The RGDP in Greece for the period 2015-2017 was forecast 
by Dritsaki (2015) using an ARIMA (1, 1, 1) model based on data for the period of 1980-2013 
which correctly indicated a gradual rise in GDP. Wabomba et al. (2016) projected Kenya's GDP 
from 2013-2017 using an ARIMA (2, 2, 2) model based on data for period of 1960-2012. Predicted 
estimates correctly indicated that Kenya's GDP will expand faster over the next five years, from 
2013-2017. Agrawal (2018) estimated RGDP in India using publicly available quarterly RGDP 
data from Quarter 2 of 1996 to Quarter 2 of 2017 using ARIMA model. Abonazel et al. (2019) 
used an ARIMA (1, 2, 1) model over the period 1965-2016 to correctly forecast the rise in GDP for 
Egypt during for the period 2017-2026 and Eissa (2020) forecasted the GDP per capita for Egypt 
and Saudi Arabia, from 2019-2030 using the ARIMA (1, 1, 2) and ARIMA (1, 1, 1) models 
respectively based on data from the period 1968-2018. Their study showed that both Egypt's and 
Saudi Arabia's GDP per capita would continue to rise. In order to forecast the GDP and consumer 
`price index (CPI) for the Jordanian economy between 2020 and 2022, Ghazo (2021) employed 
ARIMA (3, 1, 1) model for GDP and ARIMA (1, 1, 0) model for CPI respectively, based on 
sample data from the period 19762019. They rightly anticipated stagflation for the Jordanian 
economy as a result of the predicted shrinkage in GDP and first rise in CPI. In order to escape the 
stagflationary cycle and achieve more stable CPI, this study provided inputs to the economic policy 
makers to develop sensible measures for boosting GDP and fending off inflationary forces. 
Mohamed (2022) used an ARIMA (5, 1, 2) model for the period between 1960-2022 to forecast 

trajectory of GDP in Somalia for the next fourteen quarters. In order to forecast the quarterly GDP 
of Philippines, Polintan et al. (2023) used data from 2018-2022 through an ARIMA (1, 2, 1) model 
for forecasting GDP in the Philippines, for 2022-2029 and predicted a steady growth trajectory. 
Lngale and Senan (2023) used predictive ARIMA (0, 2, 1) model for predicting GDP of India, 
pertaining to the period 1960-2020 and predicted a steady growth trajectory. Tolulope et al. (2023) 
used an ARIMA (2, 1, 2) model for predicting the Nigerian GDP using both in sample and out of 
sample prediction method, based on data for the period of 19602020 which correctly indicated a 
gradual rise in GDP. Urruttia (2019) used an ARIMA (1, 1, 1) model over the period from the first 
quarter of 1990 to the fourth quarter of 2017 with a total of 112 observations for forecasting future 
GDP. Remittance income in Nepal vis- a vis GDP has between studied by Gaudel (2006). Srivas-
tava and Chaudhary (2007) looked in to role of remittance in economic development of Nepal. 
Energy – GDP dependence in Nepal is focus of work under taken by Asghar (2008). Dahal (2010) 
studied role of GDP on educational enrolment and teaching strength in the school system of Nepal. 
GDP and oil consumption relations are analyzed by Bhusal (2010). Thagunna and Acharya (2013) 
assessed investment, saving, exports and imports as determinants of GDP. Chaudhary and Xiumin 
(2018) analysed determinants of inflation in Nepal. Interrelations between foreign trade and GDP 
of Nepal are investigated by Prajuli (2021). The present paper is the first study where a self-re-
gressed Bayesian investigation on GDP is made with identification of a unique TS statistical model 
to project future pattern of GDP in Nepal. One step ahead prediction for the year 2022 is validated 
by the recent World Bank report. Information about GDP can be quite advantageous for the 
business and economy, particularly for investors, business people and the governmental units 
aiming for cost effectiveness and maximizing profit in addition to guiding the government for 
framing future economic policies and in planning and control of various economic measures. 

The Study Region

 The Federal Democratic Republic of Nepal is a landlocked country in South Asia sharing 
its boundaries with India and Tibet. World Bank 2022 report the total GDP (hence froth, GDP) of 
Nepal to be 36.29 billion USD with 122 billion USD Purchasing Power Parity (PPP). GDP per 
capita is placed at 1,230 USD and PPP at 4,190 USD for the year 2021. GDP growth rate for Nepal 
is 2.7% while GDP of Nepal represents 0.02% of the world economy for the year 2021. The main 
economic sectors in Nepal are agricultural, hydro-power, natural resources, tourism and handi-
crafts. These sectors have a significant impact on Nepal economy in terms of their contribution to 
the GDP. Empirical research conducted by Nepal Rastra Bank (NRB) in the year 2020 concluded 
tourism to be a crucial economic sector for both the short-run and the long- run economic growth 
of Nepal. The NRB report indicated a significant relationship between tourism industry and the 
county’s economic growth which is one of the fasted growing industries in the country. More than 
a million indigenous people are engaged in the tourism industry for their livelihood. Tourism 
accounts for 7.9% of the total GDP while 65% of the population is engaged in agricultural activi-
ties contributing to 31.7% of GDP. About 20% of the area is cultivable, another 40.7 % is forested 
and the remaining land is mountainous. Thus, Nepal’s GDP is heavily dependent on remittance. 
According to the Central Bureau of Statistics Nepal (2022) report, Nepal has received remittance 
amounting to Nepalese Rupees (NRs.) 875 billion in the financial year 2019-20, which translates 
into a remittance to GDP ratio of 23.23%. Nepal is primarily a remittance-based country with 
remittance inflow amounting to more than a quarter of the country’s GDP. Nepal’s total labour 
force in the year 2020 was 16,016,900 with sectoral distribution by occupation as 43% in agricul-
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ture 21% in industry and share of services at 35%. The inflation rate in Nepal was recorded at 6% 
and the unemployment rate at 1.4%. Nepal’s total exports were reported to be worth 918 million 
USD in the year 2020, its main exports being carpets, textiles, pulses, tea, etc. Its main export 
partners are India, USA, Japan, Malaysia, Singapore, Germany, and Bangladesh. Total imports for 
the same period were recorded at 10 billion USD with prominent import goods being petroleum, 
electrical goods, machinery, gold, etc. Its principal import partners are India and China. 

 In this paper, we estimate and predict the GDP per capita of Nepal for next one and half 
decade by using ARIMA time series model. Section 2 describes model determination methodology 
used in the present work. Section 3 enumerates the models and the model adequacy measures. 
Section 4 focusses on data description and its analysis. Conclusion and recommendations are 
summarised in section 5. 

Methodology

 Time series models are characterized by the clustering effect or serial correlation in time. 
In the present paper, we employ ARIMA modelling to estimate and forecast Nepal's GDP. ARIMA 
modelling addresses such issues of dependent errors by introducing time lagged dependent variable 
and past error terms on the determinant side of the time series model. ARIMA model consists of 
AR, I, and MA segments where AR indicate the autoregressive part, I indicate integration i.e., the 
order of differencing in the observed series to achieve stationarity and MA indicate the moving 
average component in the model. The four stages of the iterative ARIMA model fitting process are 
Identification, estimation, diagnostic checking, and time series forecasting. (Figure 1). 

Figure 1
 Iterative ModellingProgression for a Stationary Variable in Box

 It employs a general technique for choosing a possible model from a large class of models. 
The chosen model is then evaluated to see if it can accurately explain the series using the historical 
data. Auto-correlation function (ACF) and partial auto-correlation function (PACF) are used to 
select one or more ARIMA models that seem appropriate during the identification stage. The next 
stage involves estimating the parameters of a specific Box-Jenkins model (1970) for a given time 
series. This step verifies the parsimony in terms of the number of model parameters or lack of 
over-specification by determining whether, in addition to the residuals being uncorrelated, the 
chosen least amount of squared residuals are found in the AR and/or MA parameters. A critical and 
sensitive aspect of an ARIMA model is parsimony. An over-parameterized model cannot predict as 
efficiently as a sparse model. Model diagnostics and testing is carried out in the third step. The 
underlying presumption is that the error terms, ε_t,  behave in a manner consistent with that of a 

stationary, unchanging process. If the residuals are drawn from a fixed distribution with constant 
mean and variance, they should be white noise. The most adequate Box-Jenkins model fulfils these 
prerequisites for the residual distribution. The best model needs to be decided based on these four 
paradigms. Thus, testing of the residuals would lead to a better suitable model. A graphical 
technique called a quantile-quantile (Q-Q) plot compares the distributional similarities of two 
datasets. In the context of ARIMA models, a Q-Q plot is often used to check whether the model's 
residuals follow a normal distribution. 

The Model and Forecast

1.  Autoregressive Model 

 With the intent to estimate the coefficients β_(j,) j = 1,2, …,p, an AR process for the 
univariate model is the one that shows a changing variable regressed on its own lagged values. AR 
model of order p, or AR (p), is expressed as,

ACF gives a correlation coefficient between the dependent variable and the same variable with 
different lags, but the effect of shorter lags is not kept constant, meaning that the effect of shorter 
lag is remained in the autocorrelation function. The correlation between y_t and y_(t-2) includes 
the correlation effect between y_t and y_(t-1). On the other hand, PACF gives a correlation coeffi-
cient between the dependent variable and its lag values while keeping the effect of shorter lags 
constant. The correlation between y_t and y_(t-2) does not include the effect of correlation 
between y_t and y_(t-1).

2.  Moving Average Model

 Let ε_t (t = 1,2,…)  be a white noise process, with t standing for a series of independent 
and identically distributed (iid) random variables expecting ε_t is zero and variance of ε_t is σ^2. 
After that, the qth order MA model, which accounts for the relationship between an observation 
and a residual error, is expressed as

  represents the impact of past errors on the response variable. Estimated coefficients θ_(j,) j 
= 1,2, …   ,q,  accounting for short-term memory help in forecasting.

3.   Autoregressive Moving Average Model

 The model AR, coupled with the MA modelling strategy is called Autoregressive Moving 
Average (ARMA) models intended for stationary data series. ARMA (p, q) model is expressed as:

 An amalgam of the AR and MA models is represented by (3). In this instance, the greatest 

(1)

𝑦 =  𝛼 𝜃 𝜀 −1 + 𝜃 𝜀 −2 + ⋯+ 𝜃  𝜀 −𝑞 𝜀                                                            (2) 

order of p or q cannot be provided merely by ACF or PACF.

4.  Autoregressive Integrated Moving Average Model

 The extension of ARMA model is ARIMA model which enable to transform data by 
differencing to make data stationary. ARIMA model can be written as ARIMA (p, d, q), where p is 
the order of AR term, d is the number of differencing required to make series stationery and q is 
the order of MA term. For example, if y_it  is a non-stationary series, we will take a first-difference 
of y_t to make ∆y_t= stationary, and then the ARIMA (p, 1, q) model is expressed as: 
 

 Where ∆ y_t= y_t- y_(t-1), then d = 1, which implies a one-time differencing step. The 
model transforms into a random walk model, categorized as ARIMA (0.1,0), if p = q = 0.

Table 1 
ARIMA (p, d, q) Model for d = 0, 1, 2

5.  Model Adequacy Measures

 Before employing a model for predicting, diagnostic testing must be done on it. The 
residuals that remain after the model has been fitted are deemed sufficient if they are just white 
noise, and the residuals' ACF and PACF patterns may provide insight into how the model might be 
improved. Akaike (1973) developed a numerical score that can be used to identify the best model 
from among several candidate models for a specific data set. Akaike information criterion (AIC) 
results are helpful compared to other AIC scores for the same data set. A smaller AIC score 
indicates a better empirical fit. Estimated log-likelihood (L) is used to compute AIC as,
 
AIC = - 2(L + s)                                                                                                                         (5)          
 Such that s is the number of variables in the model plus the intercept term. Schwarz (1978) 
developed an alternative model comparison score known as Bayesian (Schwarz) information 
criterion BIC (or SIC) as an asymptotic approximation to the transformation of the Bayesian 
posterior probability of a candidate model expressed as,

BIC or SIC = - 2L + s log(n)                                                                                                     (6)             
 L is the maximum likelihood of the model, s is the number of parameters in the model, and 
n is the sample size. Like AIC, BIC also balances the goodness of fit and model complexity. 
However, BIC places a higher penalty on model complexity compared to AIC because it includes a 
term that depends on the sample size (s log(n)). As with AIC, the goal is to minimize the BIC value 
to select the best model.

 6.   Forecasting 

 Box-Jenkin's time series model method applies only to stationary and invertible time 
series. Lidiema (2017), Dritsakis and Klazoglou (2019). Future value forecasting can begin once 
the requirements have been met through procedures like differencing. We can utilize the chosen 
ARIMA model to predict when it meets the requirements of a stationary univariate process. 
Further, diagnostic checking is done to verify the forecasting accuracy of the ARIMA model. 
   
7.  Forecasting Accuracy

 We now present different measures listed to determine the accuracy of a prediction model.
 
 (i) Mean Absolute Error 

 The mean absolute difference between a dataset's actual (observed) values and the model's 
predicted values is computed using the Mean Absolute Error (MAE) algorithm. The absolute rather 
than squared differences make MAE more robust to the outliers. The formula to calculate the MAE 
is,
                                                     
 
 Where n is the total number of observations, y_(i )is the actual value of time series in data 
point i, and y _i denotes forecasted value of time series data point i.       

 (ii)  Root Mean Square Error 

 Root Mean Square Error (RMSE) is a popular accuracy measure in regression analysis 
based on the difference between a dataset's actual (observed) values and the model's predicted 
values. Lower RMSE indicates the alignment of the model's predictions with the actual data. The 
formula to calculate the RMSE is,
                  (8)
                                    
  
 However, due to the squaring of deviations, RMSE gives underweight to the outliers and 
may not be suitable for all types of datasets. Depending on the specific problem and characteristics 
of the data, we can use metrics such as Mean Absolute Error (MAE) or R-squared (coefficient of 
determination) may also be used in conjunction with RMSE to gain a more comprehensive under-
standing of the model's performance.            
                                                                                                                                                                                                              
                                                                                                                                                                                                                                                                                                                                                                                                                   
 (iii) Mean Absolute Percentage Error 

 Mean Absolute Percentage Error (MAPE) is used to measure the percentage variation 
between a dataset's actual (observed) values and the model's predicted values, and it is useful to 
understand the relative size of the errors compared to the actual values. The formula to calculate 
the MAPE is,

 However, it needs to be more well-defined when the actual values are zero or near zero, 
which can result in non-sensical very large MAPE values.

 (iv)  Mean Percentage Error 

 Mean Percentage Error (MPE) is instead of taking the absolute percentage difference like 
in MADE consider the signed percentage difference. Therefore, accounting for both the (positive 
and negative) magnitude of the errors. The formula to calculate the MPE is,
                                                      
                                              (10)        

 Such that, lower values of MPE indicate better forecast accuracy. A value of zero MPE 
would imply that the forecasted values match the actual values perfectly. However, MPE can have 
some limitations, such as the potential for the errors to cancel each other out, leading to an artifi-
cially low MPE even if the model's performance is unsatisfactory.

 (v) Mean Absolute Scaled Error 

 Mean Absolute Scaled Error (MASE) measures the performance of a model relative to the 
performance of a naive or benchmark model. The MASE provides a more interpretable measure of 
forecast accuracy than metrics like Mean Absolute Error (MAE), especially when dealing with 
time series data and comparing different forecasting models. It provides insights into whether a 
model provides meaningful improvements over a basic, naive forecasting approach. The formula to 
calculate the MASE is,   
                   (11)  
                                         

  where n is the length of the series and m is its frequency, i.e., m=1 for yearly data, m=4 for 
quarterly, m=12 for monthly, etc.
 MASE measures how well the model performs relative to the naive model's forecast errors taken 
as a benchmark. A value of MASE less than 1 indicates that the model performs better than the 
naive model regarding absolute forecast errors, while a value greater than 1 shows worse perfor-
mance than the naive model.

Data and Analysis

 For modelling and forecasting non-seasonal time series data of the annual GDP of Nepal, 
we have obtained data from the website of World Bank for the period 1960 – 2022. This implies 
that we have 63 observations of GDP, based on this data, we have proposed the ARIMA (2, 2, 1) 
model to forecast the GDP of Nepal for the next fifteen years (2023 – 2037).    

1. Model Identification for GDP

 Progression of GDP per capita of Nepal is graphed in Figure 2. A steady long-term rise is 
observed during 1960 – 2022. Beyond 2010 the rate of upward trend increases sharply. The time 
series may be quickly and easily determined to be unstable because of the GDP of Nepal's clearly 

marked increasing trend. Autocorrelation Function (ACF) (Figure 3) and Partial Autocorrelation 
Function (PACF) (Figure 4) are studied further to understand genesis of data structure. It is evident 
from the PACF that a single prominence indicates the fictitious primary value of n=1 when it 
crosses the confidence intervals. Furthermore, at ACF 11 heights, the same issue occurs. Accord-
ing to the ACF plot, the autocorrelations in the observed series is very high, and positive. A slow 
decay in ACF suggests that there may be changes in both the mean and the variability over time for 
this series. The arithmetic mean may be moving upward, with rising variability. Variability can be 
managed by calculating the natural logarithm of the given data, and the mean trend can be elimi-
nated by differencing once or twice as needed to achieve stationarity in the original observed 
series. An instantaneous nonlinear transformation applied to the optimal forecast of a variable may 
not produce the transformed variable's ideal forecast (Granger and Newbold, 1976). In particular, 
using the exponential function to forecasts for the original variable when excellent forecasts of the 
logs are available may not always be the best course of action. Therefore, we further employ the 
differencing process on the untransformed actual data series.

Flgure 2
The GDP Data During 1960 to 2021

 GROSS DEMESTIC PRODUCT (GDP) is a strategic compo-
nent in measuring National Income and Product Accounts. GDP 
represents the total value of final goods and services. GDP assessment 
is based on the quantum of consumption and investment by house-
holds and businesses in addition to the governmental expenditure and 
net exports. GDP is, therefore, crucial in maintaining a healthy 
economy as it embodies all financial transactions, including banking 
aspects. Planning and decision-making for the entire economy is thus 
conditioned on accurate information with respect of all the three 
stakeholders in the economic transactions, namely, households, 



businesses and government, which GDP is capable of delivering. We thus have an estimated 
nominal GDP (NGDP) which is used for the purpose of future planning by the finance ministry of 
the country. The real GDP (RGDP) is obtained after adjusting the estimated NGDP for inflation. 
The latter is also known as observed GDP in actual real-time. However, all budget planning and 
projections utilize the former, i.e., NGDP, whereas RGDP directly impacts the common citizen. 
Therefore, fluctuations in the level of GDP covariates are important in determining the gap 
between NGDP and RGDP. The effective mathematical relationship is represented as NGDP – 
inflation rate = RGDP.

 GDP computation is based on the principle of averages, which has an upward bias. There-
fore, GDP does not capture income, expenditure, or production changes at the regional level. For 
instance, if a large group of people experience declining income at a time when its complement 
group in the same population is smaller but experiences upwardly rising incomes, then GDP 
registers rise. To overcome this upward bias to a sufficiently large extent, in this paper, we focus 
on the concept of GDP per capita, which gives a more realistic picture of a nation's economic 
health. GDP measures an economy's current market value for all products and services generated 
during the assessment period. This value encompasses spending and costs on personal consump-
tion, government purchases, inventories, and the foreign trade balance. Thus, the total capital at 
stake and covered under the GDP envelope of a specific period can be viewed through (i) produc-
tion undertaken, (ii) income generated and (iii) expenditure accrued for the same period.

 Several research studies have been designed on the temporal data template where study 
units are macroeconomic units like countries or sub-regions like states, districts, or countries. In 
the present paper, we employ Autoregressive Integrated Moving Average (ARIMA) model 
proposed by Box and Jenkins (1970) for understanding the GDP movement with time. Past studies 
have used predictive ARIMA modelling for GDP of different countries. For instance, Kiriakidis 
and Kargas (2013) used predictive ARIMA model for predicting GDP of Greece, while correctly 
predicting recession in the near future. The RGDP in Greece for the period 2015-2017 was forecast 
by Dritsaki (2015) using an ARIMA (1, 1, 1) model based on data for the period of 1980-2013 
which correctly indicated a gradual rise in GDP. Wabomba et al. (2016) projected Kenya's GDP 
from 2013-2017 using an ARIMA (2, 2, 2) model based on data for period of 1960-2012. Predicted 
estimates correctly indicated that Kenya's GDP will expand faster over the next five years, from 
2013-2017. Agrawal (2018) estimated RGDP in India using publicly available quarterly RGDP 
data from Quarter 2 of 1996 to Quarter 2 of 2017 using ARIMA model. Abonazel et al. (2019) 
used an ARIMA (1, 2, 1) model over the period 1965-2016 to correctly forecast the rise in GDP for 
Egypt during for the period 2017-2026 and Eissa (2020) forecasted the GDP per capita for Egypt 
and Saudi Arabia, from 2019-2030 using the ARIMA (1, 1, 2) and ARIMA (1, 1, 1) models 
respectively based on data from the period 1968-2018. Their study showed that both Egypt's and 
Saudi Arabia's GDP per capita would continue to rise. In order to forecast the GDP and consumer 
`price index (CPI) for the Jordanian economy between 2020 and 2022, Ghazo (2021) employed 
ARIMA (3, 1, 1) model for GDP and ARIMA (1, 1, 0) model for CPI respectively, based on 
sample data from the period 19762019. They rightly anticipated stagflation for the Jordanian 
economy as a result of the predicted shrinkage in GDP and first rise in CPI. In order to escape the 
stagflationary cycle and achieve more stable CPI, this study provided inputs to the economic policy 
makers to develop sensible measures for boosting GDP and fending off inflationary forces. 
Mohamed (2022) used an ARIMA (5, 1, 2) model for the period between 1960-2022 to forecast 

trajectory of GDP in Somalia for the next fourteen quarters. In order to forecast the quarterly GDP 
of Philippines, Polintan et al. (2023) used data from 2018-2022 through an ARIMA (1, 2, 1) model 
for forecasting GDP in the Philippines, for 2022-2029 and predicted a steady growth trajectory. 
Lngale and Senan (2023) used predictive ARIMA (0, 2, 1) model for predicting GDP of India, 
pertaining to the period 1960-2020 and predicted a steady growth trajectory. Tolulope et al. (2023) 
used an ARIMA (2, 1, 2) model for predicting the Nigerian GDP using both in sample and out of 
sample prediction method, based on data for the period of 19602020 which correctly indicated a 
gradual rise in GDP. Urruttia (2019) used an ARIMA (1, 1, 1) model over the period from the first 
quarter of 1990 to the fourth quarter of 2017 with a total of 112 observations for forecasting future 
GDP. Remittance income in Nepal vis- a vis GDP has between studied by Gaudel (2006). Srivas-
tava and Chaudhary (2007) looked in to role of remittance in economic development of Nepal. 
Energy – GDP dependence in Nepal is focus of work under taken by Asghar (2008). Dahal (2010) 
studied role of GDP on educational enrolment and teaching strength in the school system of Nepal. 
GDP and oil consumption relations are analyzed by Bhusal (2010). Thagunna and Acharya (2013) 
assessed investment, saving, exports and imports as determinants of GDP. Chaudhary and Xiumin 
(2018) analysed determinants of inflation in Nepal. Interrelations between foreign trade and GDP 
of Nepal are investigated by Prajuli (2021). The present paper is the first study where a self-re-
gressed Bayesian investigation on GDP is made with identification of a unique TS statistical model 
to project future pattern of GDP in Nepal. One step ahead prediction for the year 2022 is validated 
by the recent World Bank report. Information about GDP can be quite advantageous for the 
business and economy, particularly for investors, business people and the governmental units 
aiming for cost effectiveness and maximizing profit in addition to guiding the government for 
framing future economic policies and in planning and control of various economic measures. 

The Study Region

 The Federal Democratic Republic of Nepal is a landlocked country in South Asia sharing 
its boundaries with India and Tibet. World Bank 2022 report the total GDP (hence froth, GDP) of 
Nepal to be 36.29 billion USD with 122 billion USD Purchasing Power Parity (PPP). GDP per 
capita is placed at 1,230 USD and PPP at 4,190 USD for the year 2021. GDP growth rate for Nepal 
is 2.7% while GDP of Nepal represents 0.02% of the world economy for the year 2021. The main 
economic sectors in Nepal are agricultural, hydro-power, natural resources, tourism and handi-
crafts. These sectors have a significant impact on Nepal economy in terms of their contribution to 
the GDP. Empirical research conducted by Nepal Rastra Bank (NRB) in the year 2020 concluded 
tourism to be a crucial economic sector for both the short-run and the long- run economic growth 
of Nepal. The NRB report indicated a significant relationship between tourism industry and the 
county’s economic growth which is one of the fasted growing industries in the country. More than 
a million indigenous people are engaged in the tourism industry for their livelihood. Tourism 
accounts for 7.9% of the total GDP while 65% of the population is engaged in agricultural activi-
ties contributing to 31.7% of GDP. About 20% of the area is cultivable, another 40.7 % is forested 
and the remaining land is mountainous. Thus, Nepal’s GDP is heavily dependent on remittance. 
According to the Central Bureau of Statistics Nepal (2022) report, Nepal has received remittance 
amounting to Nepalese Rupees (NRs.) 875 billion in the financial year 2019-20, which translates 
into a remittance to GDP ratio of 23.23%. Nepal is primarily a remittance-based country with 
remittance inflow amounting to more than a quarter of the country’s GDP. Nepal’s total labour 
force in the year 2020 was 16,016,900 with sectoral distribution by occupation as 43% in agricul-
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ture 21% in industry and share of services at 35%. The inflation rate in Nepal was recorded at 6% 
and the unemployment rate at 1.4%. Nepal’s total exports were reported to be worth 918 million 
USD in the year 2020, its main exports being carpets, textiles, pulses, tea, etc. Its main export 
partners are India, USA, Japan, Malaysia, Singapore, Germany, and Bangladesh. Total imports for 
the same period were recorded at 10 billion USD with prominent import goods being petroleum, 
electrical goods, machinery, gold, etc. Its principal import partners are India and China. 

 In this paper, we estimate and predict the GDP per capita of Nepal for next one and half 
decade by using ARIMA time series model. Section 2 describes model determination methodology 
used in the present work. Section 3 enumerates the models and the model adequacy measures. 
Section 4 focusses on data description and its analysis. Conclusion and recommendations are 
summarised in section 5. 

Methodology

 Time series models are characterized by the clustering effect or serial correlation in time. 
In the present paper, we employ ARIMA modelling to estimate and forecast Nepal's GDP. ARIMA 
modelling addresses such issues of dependent errors by introducing time lagged dependent variable 
and past error terms on the determinant side of the time series model. ARIMA model consists of 
AR, I, and MA segments where AR indicate the autoregressive part, I indicate integration i.e., the 
order of differencing in the observed series to achieve stationarity and MA indicate the moving 
average component in the model. The four stages of the iterative ARIMA model fitting process are 
Identification, estimation, diagnostic checking, and time series forecasting. (Figure 1). 

Figure 1
 Iterative ModellingProgression for a Stationary Variable in Box

 It employs a general technique for choosing a possible model from a large class of models. 
The chosen model is then evaluated to see if it can accurately explain the series using the historical 
data. Auto-correlation function (ACF) and partial auto-correlation function (PACF) are used to 
select one or more ARIMA models that seem appropriate during the identification stage. The next 
stage involves estimating the parameters of a specific Box-Jenkins model (1970) for a given time 
series. This step verifies the parsimony in terms of the number of model parameters or lack of 
over-specification by determining whether, in addition to the residuals being uncorrelated, the 
chosen least amount of squared residuals are found in the AR and/or MA parameters. A critical and 
sensitive aspect of an ARIMA model is parsimony. An over-parameterized model cannot predict as 
efficiently as a sparse model. Model diagnostics and testing is carried out in the third step. The 
underlying presumption is that the error terms, ε_t,  behave in a manner consistent with that of a 

stationary, unchanging process. If the residuals are drawn from a fixed distribution with constant 
mean and variance, they should be white noise. The most adequate Box-Jenkins model fulfils these 
prerequisites for the residual distribution. The best model needs to be decided based on these four 
paradigms. Thus, testing of the residuals would lead to a better suitable model. A graphical 
technique called a quantile-quantile (Q-Q) plot compares the distributional similarities of two 
datasets. In the context of ARIMA models, a Q-Q plot is often used to check whether the model's 
residuals follow a normal distribution. 

The Model and Forecast

1.  Autoregressive Model 

 With the intent to estimate the coefficients β_(j,) j = 1,2, …,p, an AR process for the 
univariate model is the one that shows a changing variable regressed on its own lagged values. AR 
model of order p, or AR (p), is expressed as,

ACF gives a correlation coefficient between the dependent variable and the same variable with 
different lags, but the effect of shorter lags is not kept constant, meaning that the effect of shorter 
lag is remained in the autocorrelation function. The correlation between y_t and y_(t-2) includes 
the correlation effect between y_t and y_(t-1). On the other hand, PACF gives a correlation coeffi-
cient between the dependent variable and its lag values while keeping the effect of shorter lags 
constant. The correlation between y_t and y_(t-2) does not include the effect of correlation 
between y_t and y_(t-1).

2.  Moving Average Model

 Let ε_t (t = 1,2,…)  be a white noise process, with t standing for a series of independent 
and identically distributed (iid) random variables expecting ε_t is zero and variance of ε_t is σ^2. 
After that, the qth order MA model, which accounts for the relationship between an observation 
and a residual error, is expressed as

  represents the impact of past errors on the response variable. Estimated coefficients θ_(j,) j 
= 1,2, …   ,q,  accounting for short-term memory help in forecasting.

3.   Autoregressive Moving Average Model

 The model AR, coupled with the MA modelling strategy is called Autoregressive Moving 
Average (ARMA) models intended for stationary data series. ARMA (p, q) model is expressed as:

 An amalgam of the AR and MA models is represented by (3). In this instance, the greatest 

order of p or q cannot be provided merely by ACF or PACF.

4.  Autoregressive Integrated Moving Average Model

 The extension of ARMA model is ARIMA model which enable to transform data by 
differencing to make data stationary. ARIMA model can be written as ARIMA (p, d, q), where p is 
the order of AR term, d is the number of differencing required to make series stationery and q is 
the order of MA term. For example, if y_it  is a non-stationary series, we will take a first-difference 
of y_t to make ∆y_t= stationary, and then the ARIMA (p, 1, q) model is expressed as: 
 

 Where ∆ y_t= y_t- y_(t-1), then d = 1, which implies a one-time differencing step. The 
model transforms into a random walk model, categorized as ARIMA (0.1,0), if p = q = 0.

Table 1 
ARIMA (p, d, q) Model for d = 0, 1, 2

5.  Model Adequacy Measures

 Before employing a model for predicting, diagnostic testing must be done on it. The 
residuals that remain after the model has been fitted are deemed sufficient if they are just white 
noise, and the residuals' ACF and PACF patterns may provide insight into how the model might be 
improved. Akaike (1973) developed a numerical score that can be used to identify the best model 
from among several candidate models for a specific data set. Akaike information criterion (AIC) 
results are helpful compared to other AIC scores for the same data set. A smaller AIC score 
indicates a better empirical fit. Estimated log-likelihood (L) is used to compute AIC as,
 
AIC = - 2(L + s)                                                                                                                         (5)          
 Such that s is the number of variables in the model plus the intercept term. Schwarz (1978) 
developed an alternative model comparison score known as Bayesian (Schwarz) information 
criterion BIC (or SIC) as an asymptotic approximation to the transformation of the Bayesian 
posterior probability of a candidate model expressed as,

BIC or SIC = - 2L + s log(n)                                                                                                     (6)             
 L is the maximum likelihood of the model, s is the number of parameters in the model, and 
n is the sample size. Like AIC, BIC also balances the goodness of fit and model complexity. 
However, BIC places a higher penalty on model complexity compared to AIC because it includes a 
term that depends on the sample size (s log(n)). As with AIC, the goal is to minimize the BIC value 
to select the best model.

 6.   Forecasting 

 Box-Jenkin's time series model method applies only to stationary and invertible time 
series. Lidiema (2017), Dritsakis and Klazoglou (2019). Future value forecasting can begin once 
the requirements have been met through procedures like differencing. We can utilize the chosen 
ARIMA model to predict when it meets the requirements of a stationary univariate process. 
Further, diagnostic checking is done to verify the forecasting accuracy of the ARIMA model. 
   
7.  Forecasting Accuracy

 We now present different measures listed to determine the accuracy of a prediction model.
 
 (i) Mean Absolute Error 

 The mean absolute difference between a dataset's actual (observed) values and the model's 
predicted values is computed using the Mean Absolute Error (MAE) algorithm. The absolute rather 
than squared differences make MAE more robust to the outliers. The formula to calculate the MAE 
is,
                                                     
 
 Where n is the total number of observations, y_(i )is the actual value of time series in data 
point i, and y _i denotes forecasted value of time series data point i.       

 (ii)  Root Mean Square Error 

 Root Mean Square Error (RMSE) is a popular accuracy measure in regression analysis 
based on the difference between a dataset's actual (observed) values and the model's predicted 
values. Lower RMSE indicates the alignment of the model's predictions with the actual data. The 
formula to calculate the RMSE is,
                  (8)
                                    
  
 However, due to the squaring of deviations, RMSE gives underweight to the outliers and 
may not be suitable for all types of datasets. Depending on the specific problem and characteristics 
of the data, we can use metrics such as Mean Absolute Error (MAE) or R-squared (coefficient of 
determination) may also be used in conjunction with RMSE to gain a more comprehensive under-
standing of the model's performance.            
                                                                                                                                                                                                              
                                                                                                                                                                                                                                                                                                                                                                                                                   
 (iii) Mean Absolute Percentage Error 

 Mean Absolute Percentage Error (MAPE) is used to measure the percentage variation 
between a dataset's actual (observed) values and the model's predicted values, and it is useful to 
understand the relative size of the errors compared to the actual values. The formula to calculate 
the MAPE is,

 However, it needs to be more well-defined when the actual values are zero or near zero, 
which can result in non-sensical very large MAPE values.

 (iv)  Mean Percentage Error 

 Mean Percentage Error (MPE) is instead of taking the absolute percentage difference like 
in MADE consider the signed percentage difference. Therefore, accounting for both the (positive 
and negative) magnitude of the errors. The formula to calculate the MPE is,
                                                      
                                              (10)        

 Such that, lower values of MPE indicate better forecast accuracy. A value of zero MPE 
would imply that the forecasted values match the actual values perfectly. However, MPE can have 
some limitations, such as the potential for the errors to cancel each other out, leading to an artifi-
cially low MPE even if the model's performance is unsatisfactory.

 (v) Mean Absolute Scaled Error 

 Mean Absolute Scaled Error (MASE) measures the performance of a model relative to the 
performance of a naive or benchmark model. The MASE provides a more interpretable measure of 
forecast accuracy than metrics like Mean Absolute Error (MAE), especially when dealing with 
time series data and comparing different forecasting models. It provides insights into whether a 
model provides meaningful improvements over a basic, naive forecasting approach. The formula to 
calculate the MASE is,   
                   (11)  
                                         

  where n is the length of the series and m is its frequency, i.e., m=1 for yearly data, m=4 for 
quarterly, m=12 for monthly, etc.
 MASE measures how well the model performs relative to the naive model's forecast errors taken 
as a benchmark. A value of MASE less than 1 indicates that the model performs better than the 
naive model regarding absolute forecast errors, while a value greater than 1 shows worse perfor-
mance than the naive model.

Data and Analysis

 For modelling and forecasting non-seasonal time series data of the annual GDP of Nepal, 
we have obtained data from the website of World Bank for the period 1960 – 2022. This implies 
that we have 63 observations of GDP, based on this data, we have proposed the ARIMA (2, 2, 1) 
model to forecast the GDP of Nepal for the next fifteen years (2023 – 2037).    

1. Model Identification for GDP

 Progression of GDP per capita of Nepal is graphed in Figure 2. A steady long-term rise is 
observed during 1960 – 2022. Beyond 2010 the rate of upward trend increases sharply. The time 
series may be quickly and easily determined to be unstable because of the GDP of Nepal's clearly 

marked increasing trend. Autocorrelation Function (ACF) (Figure 3) and Partial Autocorrelation 
Function (PACF) (Figure 4) are studied further to understand genesis of data structure. It is evident 
from the PACF that a single prominence indicates the fictitious primary value of n=1 when it 
crosses the confidence intervals. Furthermore, at ACF 11 heights, the same issue occurs. Accord-
ing to the ACF plot, the autocorrelations in the observed series is very high, and positive. A slow 
decay in ACF suggests that there may be changes in both the mean and the variability over time for 
this series. The arithmetic mean may be moving upward, with rising variability. Variability can be 
managed by calculating the natural logarithm of the given data, and the mean trend can be elimi-
nated by differencing once or twice as needed to achieve stationarity in the original observed 
series. An instantaneous nonlinear transformation applied to the optimal forecast of a variable may 
not produce the transformed variable's ideal forecast (Granger and Newbold, 1976). In particular, 
using the exponential function to forecasts for the original variable when excellent forecasts of the 
logs are available may not always be the best course of action. Therefore, we further employ the 
differencing process on the untransformed actual data series.

Flgure 2
The GDP Data During 1960 to 2021

 GROSS DEMESTIC PRODUCT (GDP) is a strategic compo-
nent in measuring National Income and Product Accounts. GDP 
represents the total value of final goods and services. GDP assessment 
is based on the quantum of consumption and investment by house-
holds and businesses in addition to the governmental expenditure and 
net exports. GDP is, therefore, crucial in maintaining a healthy 
economy as it embodies all financial transactions, including banking 
aspects. Planning and decision-making for the entire economy is thus 
conditioned on accurate information with respect of all the three 
stakeholders in the economic transactions, namely, households, 



businesses and government, which GDP is capable of delivering. We thus have an estimated 
nominal GDP (NGDP) which is used for the purpose of future planning by the finance ministry of 
the country. The real GDP (RGDP) is obtained after adjusting the estimated NGDP for inflation. 
The latter is also known as observed GDP in actual real-time. However, all budget planning and 
projections utilize the former, i.e., NGDP, whereas RGDP directly impacts the common citizen. 
Therefore, fluctuations in the level of GDP covariates are important in determining the gap 
between NGDP and RGDP. The effective mathematical relationship is represented as NGDP – 
inflation rate = RGDP.

 GDP computation is based on the principle of averages, which has an upward bias. There-
fore, GDP does not capture income, expenditure, or production changes at the regional level. For 
instance, if a large group of people experience declining income at a time when its complement 
group in the same population is smaller but experiences upwardly rising incomes, then GDP 
registers rise. To overcome this upward bias to a sufficiently large extent, in this paper, we focus 
on the concept of GDP per capita, which gives a more realistic picture of a nation's economic 
health. GDP measures an economy's current market value for all products and services generated 
during the assessment period. This value encompasses spending and costs on personal consump-
tion, government purchases, inventories, and the foreign trade balance. Thus, the total capital at 
stake and covered under the GDP envelope of a specific period can be viewed through (i) produc-
tion undertaken, (ii) income generated and (iii) expenditure accrued for the same period.

 Several research studies have been designed on the temporal data template where study 
units are macroeconomic units like countries or sub-regions like states, districts, or countries. In 
the present paper, we employ Autoregressive Integrated Moving Average (ARIMA) model 
proposed by Box and Jenkins (1970) for understanding the GDP movement with time. Past studies 
have used predictive ARIMA modelling for GDP of different countries. For instance, Kiriakidis 
and Kargas (2013) used predictive ARIMA model for predicting GDP of Greece, while correctly 
predicting recession in the near future. The RGDP in Greece for the period 2015-2017 was forecast 
by Dritsaki (2015) using an ARIMA (1, 1, 1) model based on data for the period of 1980-2013 
which correctly indicated a gradual rise in GDP. Wabomba et al. (2016) projected Kenya's GDP 
from 2013-2017 using an ARIMA (2, 2, 2) model based on data for period of 1960-2012. Predicted 
estimates correctly indicated that Kenya's GDP will expand faster over the next five years, from 
2013-2017. Agrawal (2018) estimated RGDP in India using publicly available quarterly RGDP 
data from Quarter 2 of 1996 to Quarter 2 of 2017 using ARIMA model. Abonazel et al. (2019) 
used an ARIMA (1, 2, 1) model over the period 1965-2016 to correctly forecast the rise in GDP for 
Egypt during for the period 2017-2026 and Eissa (2020) forecasted the GDP per capita for Egypt 
and Saudi Arabia, from 2019-2030 using the ARIMA (1, 1, 2) and ARIMA (1, 1, 1) models 
respectively based on data from the period 1968-2018. Their study showed that both Egypt's and 
Saudi Arabia's GDP per capita would continue to rise. In order to forecast the GDP and consumer 
`price index (CPI) for the Jordanian economy between 2020 and 2022, Ghazo (2021) employed 
ARIMA (3, 1, 1) model for GDP and ARIMA (1, 1, 0) model for CPI respectively, based on 
sample data from the period 19762019. They rightly anticipated stagflation for the Jordanian 
economy as a result of the predicted shrinkage in GDP and first rise in CPI. In order to escape the 
stagflationary cycle and achieve more stable CPI, this study provided inputs to the economic policy 
makers to develop sensible measures for boosting GDP and fending off inflationary forces. 
Mohamed (2022) used an ARIMA (5, 1, 2) model for the period between 1960-2022 to forecast 

trajectory of GDP in Somalia for the next fourteen quarters. In order to forecast the quarterly GDP 
of Philippines, Polintan et al. (2023) used data from 2018-2022 through an ARIMA (1, 2, 1) model 
for forecasting GDP in the Philippines, for 2022-2029 and predicted a steady growth trajectory. 
Lngale and Senan (2023) used predictive ARIMA (0, 2, 1) model for predicting GDP of India, 
pertaining to the period 1960-2020 and predicted a steady growth trajectory. Tolulope et al. (2023) 
used an ARIMA (2, 1, 2) model for predicting the Nigerian GDP using both in sample and out of 
sample prediction method, based on data for the period of 19602020 which correctly indicated a 
gradual rise in GDP. Urruttia (2019) used an ARIMA (1, 1, 1) model over the period from the first 
quarter of 1990 to the fourth quarter of 2017 with a total of 112 observations for forecasting future 
GDP. Remittance income in Nepal vis- a vis GDP has between studied by Gaudel (2006). Srivas-
tava and Chaudhary (2007) looked in to role of remittance in economic development of Nepal. 
Energy – GDP dependence in Nepal is focus of work under taken by Asghar (2008). Dahal (2010) 
studied role of GDP on educational enrolment and teaching strength in the school system of Nepal. 
GDP and oil consumption relations are analyzed by Bhusal (2010). Thagunna and Acharya (2013) 
assessed investment, saving, exports and imports as determinants of GDP. Chaudhary and Xiumin 
(2018) analysed determinants of inflation in Nepal. Interrelations between foreign trade and GDP 
of Nepal are investigated by Prajuli (2021). The present paper is the first study where a self-re-
gressed Bayesian investigation on GDP is made with identification of a unique TS statistical model 
to project future pattern of GDP in Nepal. One step ahead prediction for the year 2022 is validated 
by the recent World Bank report. Information about GDP can be quite advantageous for the 
business and economy, particularly for investors, business people and the governmental units 
aiming for cost effectiveness and maximizing profit in addition to guiding the government for 
framing future economic policies and in planning and control of various economic measures. 

The Study Region

 The Federal Democratic Republic of Nepal is a landlocked country in South Asia sharing 
its boundaries with India and Tibet. World Bank 2022 report the total GDP (hence froth, GDP) of 
Nepal to be 36.29 billion USD with 122 billion USD Purchasing Power Parity (PPP). GDP per 
capita is placed at 1,230 USD and PPP at 4,190 USD for the year 2021. GDP growth rate for Nepal 
is 2.7% while GDP of Nepal represents 0.02% of the world economy for the year 2021. The main 
economic sectors in Nepal are agricultural, hydro-power, natural resources, tourism and handi-
crafts. These sectors have a significant impact on Nepal economy in terms of their contribution to 
the GDP. Empirical research conducted by Nepal Rastra Bank (NRB) in the year 2020 concluded 
tourism to be a crucial economic sector for both the short-run and the long- run economic growth 
of Nepal. The NRB report indicated a significant relationship between tourism industry and the 
county’s economic growth which is one of the fasted growing industries in the country. More than 
a million indigenous people are engaged in the tourism industry for their livelihood. Tourism 
accounts for 7.9% of the total GDP while 65% of the population is engaged in agricultural activi-
ties contributing to 31.7% of GDP. About 20% of the area is cultivable, another 40.7 % is forested 
and the remaining land is mountainous. Thus, Nepal’s GDP is heavily dependent on remittance. 
According to the Central Bureau of Statistics Nepal (2022) report, Nepal has received remittance 
amounting to Nepalese Rupees (NRs.) 875 billion in the financial year 2019-20, which translates 
into a remittance to GDP ratio of 23.23%. Nepal is primarily a remittance-based country with 
remittance inflow amounting to more than a quarter of the country’s GDP. Nepal’s total labour 
force in the year 2020 was 16,016,900 with sectoral distribution by occupation as 43% in agricul-
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ture 21% in industry and share of services at 35%. The inflation rate in Nepal was recorded at 6% 
and the unemployment rate at 1.4%. Nepal’s total exports were reported to be worth 918 million 
USD in the year 2020, its main exports being carpets, textiles, pulses, tea, etc. Its main export 
partners are India, USA, Japan, Malaysia, Singapore, Germany, and Bangladesh. Total imports for 
the same period were recorded at 10 billion USD with prominent import goods being petroleum, 
electrical goods, machinery, gold, etc. Its principal import partners are India and China. 

 In this paper, we estimate and predict the GDP per capita of Nepal for next one and half 
decade by using ARIMA time series model. Section 2 describes model determination methodology 
used in the present work. Section 3 enumerates the models and the model adequacy measures. 
Section 4 focusses on data description and its analysis. Conclusion and recommendations are 
summarised in section 5. 

Methodology

 Time series models are characterized by the clustering effect or serial correlation in time. 
In the present paper, we employ ARIMA modelling to estimate and forecast Nepal's GDP. ARIMA 
modelling addresses such issues of dependent errors by introducing time lagged dependent variable 
and past error terms on the determinant side of the time series model. ARIMA model consists of 
AR, I, and MA segments where AR indicate the autoregressive part, I indicate integration i.e., the 
order of differencing in the observed series to achieve stationarity and MA indicate the moving 
average component in the model. The four stages of the iterative ARIMA model fitting process are 
Identification, estimation, diagnostic checking, and time series forecasting. (Figure 1). 

Figure 1
 Iterative ModellingProgression for a Stationary Variable in Box

 It employs a general technique for choosing a possible model from a large class of models. 
The chosen model is then evaluated to see if it can accurately explain the series using the historical 
data. Auto-correlation function (ACF) and partial auto-correlation function (PACF) are used to 
select one or more ARIMA models that seem appropriate during the identification stage. The next 
stage involves estimating the parameters of a specific Box-Jenkins model (1970) for a given time 
series. This step verifies the parsimony in terms of the number of model parameters or lack of 
over-specification by determining whether, in addition to the residuals being uncorrelated, the 
chosen least amount of squared residuals are found in the AR and/or MA parameters. A critical and 
sensitive aspect of an ARIMA model is parsimony. An over-parameterized model cannot predict as 
efficiently as a sparse model. Model diagnostics and testing is carried out in the third step. The 
underlying presumption is that the error terms, ε_t,  behave in a manner consistent with that of a 

stationary, unchanging process. If the residuals are drawn from a fixed distribution with constant 
mean and variance, they should be white noise. The most adequate Box-Jenkins model fulfils these 
prerequisites for the residual distribution. The best model needs to be decided based on these four 
paradigms. Thus, testing of the residuals would lead to a better suitable model. A graphical 
technique called a quantile-quantile (Q-Q) plot compares the distributional similarities of two 
datasets. In the context of ARIMA models, a Q-Q plot is often used to check whether the model's 
residuals follow a normal distribution. 

The Model and Forecast

1.  Autoregressive Model 

 With the intent to estimate the coefficients β_(j,) j = 1,2, …,p, an AR process for the 
univariate model is the one that shows a changing variable regressed on its own lagged values. AR 
model of order p, or AR (p), is expressed as,

ACF gives a correlation coefficient between the dependent variable and the same variable with 
different lags, but the effect of shorter lags is not kept constant, meaning that the effect of shorter 
lag is remained in the autocorrelation function. The correlation between y_t and y_(t-2) includes 
the correlation effect between y_t and y_(t-1). On the other hand, PACF gives a correlation coeffi-
cient between the dependent variable and its lag values while keeping the effect of shorter lags 
constant. The correlation between y_t and y_(t-2) does not include the effect of correlation 
between y_t and y_(t-1).

2.  Moving Average Model

 Let ε_t (t = 1,2,…)  be a white noise process, with t standing for a series of independent 
and identically distributed (iid) random variables expecting ε_t is zero and variance of ε_t is σ^2. 
After that, the qth order MA model, which accounts for the relationship between an observation 
and a residual error, is expressed as

  represents the impact of past errors on the response variable. Estimated coefficients θ_(j,) j 
= 1,2, …   ,q,  accounting for short-term memory help in forecasting.

3.   Autoregressive Moving Average Model

 The model AR, coupled with the MA modelling strategy is called Autoregressive Moving 
Average (ARMA) models intended for stationary data series. ARMA (p, q) model is expressed as:

 An amalgam of the AR and MA models is represented by (3). In this instance, the greatest 

order of p or q cannot be provided merely by ACF or PACF.

4.  Autoregressive Integrated Moving Average Model

 The extension of ARMA model is ARIMA model which enable to transform data by 
differencing to make data stationary. ARIMA model can be written as ARIMA (p, d, q), where p is 
the order of AR term, d is the number of differencing required to make series stationery and q is 
the order of MA term. For example, if y_it  is a non-stationary series, we will take a first-difference 
of y_t to make ∆y_t= stationary, and then the ARIMA (p, 1, q) model is expressed as: 
 

 Where ∆ y_t= y_t- y_(t-1), then d = 1, which implies a one-time differencing step. The 
model transforms into a random walk model, categorized as ARIMA (0.1,0), if p = q = 0.

Table 1 
ARIMA (p, d, q) Model for d = 0, 1, 2

5.  Model Adequacy Measures

 Before employing a model for predicting, diagnostic testing must be done on it. The 
residuals that remain after the model has been fitted are deemed sufficient if they are just white 
noise, and the residuals' ACF and PACF patterns may provide insight into how the model might be 
improved. Akaike (1973) developed a numerical score that can be used to identify the best model 
from among several candidate models for a specific data set. Akaike information criterion (AIC) 
results are helpful compared to other AIC scores for the same data set. A smaller AIC score 
indicates a better empirical fit. Estimated log-likelihood (L) is used to compute AIC as,
 
AIC = - 2(L + s)                                                                                                                         (5)          
 Such that s is the number of variables in the model plus the intercept term. Schwarz (1978) 
developed an alternative model comparison score known as Bayesian (Schwarz) information 
criterion BIC (or SIC) as an asymptotic approximation to the transformation of the Bayesian 
posterior probability of a candidate model expressed as,

BIC or SIC = - 2L + s log(n)                                                                                                     (6)             
 L is the maximum likelihood of the model, s is the number of parameters in the model, and 
n is the sample size. Like AIC, BIC also balances the goodness of fit and model complexity. 
However, BIC places a higher penalty on model complexity compared to AIC because it includes a 
term that depends on the sample size (s log(n)). As with AIC, the goal is to minimize the BIC value 
to select the best model.

 6.   Forecasting 

 Box-Jenkin's time series model method applies only to stationary and invertible time 
series. Lidiema (2017), Dritsakis and Klazoglou (2019). Future value forecasting can begin once 
the requirements have been met through procedures like differencing. We can utilize the chosen 
ARIMA model to predict when it meets the requirements of a stationary univariate process. 
Further, diagnostic checking is done to verify the forecasting accuracy of the ARIMA model. 
   
7.  Forecasting Accuracy

 We now present different measures listed to determine the accuracy of a prediction model.
 
 (i) Mean Absolute Error 

 The mean absolute difference between a dataset's actual (observed) values and the model's 
predicted values is computed using the Mean Absolute Error (MAE) algorithm. The absolute rather 
than squared differences make MAE more robust to the outliers. The formula to calculate the MAE 
is,
                                                     
 
 Where n is the total number of observations, y_(i )is the actual value of time series in data 
point i, and y _i denotes forecasted value of time series data point i.       

 (ii)  Root Mean Square Error 

 Root Mean Square Error (RMSE) is a popular accuracy measure in regression analysis 
based on the difference between a dataset's actual (observed) values and the model's predicted 
values. Lower RMSE indicates the alignment of the model's predictions with the actual data. The 
formula to calculate the RMSE is,
                  (8)
                                    
  
 However, due to the squaring of deviations, RMSE gives underweight to the outliers and 
may not be suitable for all types of datasets. Depending on the specific problem and characteristics 
of the data, we can use metrics such as Mean Absolute Error (MAE) or R-squared (coefficient of 
determination) may also be used in conjunction with RMSE to gain a more comprehensive under-
standing of the model's performance.            
                                                                                                                                                                                                              
                                                                                                                                                                                                                                                                                                                                                                                                                   
 (iii) Mean Absolute Percentage Error 

 Mean Absolute Percentage Error (MAPE) is used to measure the percentage variation 
between a dataset's actual (observed) values and the model's predicted values, and it is useful to 
understand the relative size of the errors compared to the actual values. The formula to calculate 
the MAPE is,

             𝑀 𝐴 𝐸  1
𝑛
σ ȁ𝑦 −  𝑦𝑖 ȁ𝑛

=1                                             (7) 

 However, it needs to be more well-defined when the actual values are zero or near zero, 
which can result in non-sensical very large MAPE values.

 (iv)  Mean Percentage Error 

 Mean Percentage Error (MPE) is instead of taking the absolute percentage difference like 
in MADE consider the signed percentage difference. Therefore, accounting for both the (positive 
and negative) magnitude of the errors. The formula to calculate the MPE is,
                                                      
                                              (10)        

 Such that, lower values of MPE indicate better forecast accuracy. A value of zero MPE 
would imply that the forecasted values match the actual values perfectly. However, MPE can have 
some limitations, such as the potential for the errors to cancel each other out, leading to an artifi-
cially low MPE even if the model's performance is unsatisfactory.

 (v) Mean Absolute Scaled Error 

 Mean Absolute Scaled Error (MASE) measures the performance of a model relative to the 
performance of a naive or benchmark model. The MASE provides a more interpretable measure of 
forecast accuracy than metrics like Mean Absolute Error (MAE), especially when dealing with 
time series data and comparing different forecasting models. It provides insights into whether a 
model provides meaningful improvements over a basic, naive forecasting approach. The formula to 
calculate the MASE is,   
                   (11)  
                                         

  where n is the length of the series and m is its frequency, i.e., m=1 for yearly data, m=4 for 
quarterly, m=12 for monthly, etc.
 MASE measures how well the model performs relative to the naive model's forecast errors taken 
as a benchmark. A value of MASE less than 1 indicates that the model performs better than the 
naive model regarding absolute forecast errors, while a value greater than 1 shows worse perfor-
mance than the naive model.

Data and Analysis

 For modelling and forecasting non-seasonal time series data of the annual GDP of Nepal, 
we have obtained data from the website of World Bank for the period 1960 – 2022. This implies 
that we have 63 observations of GDP, based on this data, we have proposed the ARIMA (2, 2, 1) 
model to forecast the GDP of Nepal for the next fifteen years (2023 – 2037).    

1. Model Identification for GDP

 Progression of GDP per capita of Nepal is graphed in Figure 2. A steady long-term rise is 
observed during 1960 – 2022. Beyond 2010 the rate of upward trend increases sharply. The time 
series may be quickly and easily determined to be unstable because of the GDP of Nepal's clearly 

marked increasing trend. Autocorrelation Function (ACF) (Figure 3) and Partial Autocorrelation 
Function (PACF) (Figure 4) are studied further to understand genesis of data structure. It is evident 
from the PACF that a single prominence indicates the fictitious primary value of n=1 when it 
crosses the confidence intervals. Furthermore, at ACF 11 heights, the same issue occurs. Accord-
ing to the ACF plot, the autocorrelations in the observed series is very high, and positive. A slow 
decay in ACF suggests that there may be changes in both the mean and the variability over time for 
this series. The arithmetic mean may be moving upward, with rising variability. Variability can be 
managed by calculating the natural logarithm of the given data, and the mean trend can be elimi-
nated by differencing once or twice as needed to achieve stationarity in the original observed 
series. An instantaneous nonlinear transformation applied to the optimal forecast of a variable may 
not produce the transformed variable's ideal forecast (Granger and Newbold, 1976). In particular, 
using the exponential function to forecasts for the original variable when excellent forecasts of the 
logs are available may not always be the best course of action. Therefore, we further employ the 
differencing process on the untransformed actual data series.

Flgure 2
The GDP Data During 1960 to 2021

 GROSS DEMESTIC PRODUCT (GDP) is a strategic compo-
nent in measuring National Income and Product Accounts. GDP 
represents the total value of final goods and services. GDP assessment 
is based on the quantum of consumption and investment by house-
holds and businesses in addition to the governmental expenditure and 
net exports. GDP is, therefore, crucial in maintaining a healthy 
economy as it embodies all financial transactions, including banking 
aspects. Planning and decision-making for the entire economy is thus 
conditioned on accurate information with respect of all the three 
stakeholders in the economic transactions, namely, households, 

    (9)  



businesses and government, which GDP is capable of delivering. We thus have an estimated 
nominal GDP (NGDP) which is used for the purpose of future planning by the finance ministry of 
the country. The real GDP (RGDP) is obtained after adjusting the estimated NGDP for inflation. 
The latter is also known as observed GDP in actual real-time. However, all budget planning and 
projections utilize the former, i.e., NGDP, whereas RGDP directly impacts the common citizen. 
Therefore, fluctuations in the level of GDP covariates are important in determining the gap 
between NGDP and RGDP. The effective mathematical relationship is represented as NGDP – 
inflation rate = RGDP.

 GDP computation is based on the principle of averages, which has an upward bias. There-
fore, GDP does not capture income, expenditure, or production changes at the regional level. For 
instance, if a large group of people experience declining income at a time when its complement 
group in the same population is smaller but experiences upwardly rising incomes, then GDP 
registers rise. To overcome this upward bias to a sufficiently large extent, in this paper, we focus 
on the concept of GDP per capita, which gives a more realistic picture of a nation's economic 
health. GDP measures an economy's current market value for all products and services generated 
during the assessment period. This value encompasses spending and costs on personal consump-
tion, government purchases, inventories, and the foreign trade balance. Thus, the total capital at 
stake and covered under the GDP envelope of a specific period can be viewed through (i) produc-
tion undertaken, (ii) income generated and (iii) expenditure accrued for the same period.

 Several research studies have been designed on the temporal data template where study 
units are macroeconomic units like countries or sub-regions like states, districts, or countries. In 
the present paper, we employ Autoregressive Integrated Moving Average (ARIMA) model 
proposed by Box and Jenkins (1970) for understanding the GDP movement with time. Past studies 
have used predictive ARIMA modelling for GDP of different countries. For instance, Kiriakidis 
and Kargas (2013) used predictive ARIMA model for predicting GDP of Greece, while correctly 
predicting recession in the near future. The RGDP in Greece for the period 2015-2017 was forecast 
by Dritsaki (2015) using an ARIMA (1, 1, 1) model based on data for the period of 1980-2013 
which correctly indicated a gradual rise in GDP. Wabomba et al. (2016) projected Kenya's GDP 
from 2013-2017 using an ARIMA (2, 2, 2) model based on data for period of 1960-2012. Predicted 
estimates correctly indicated that Kenya's GDP will expand faster over the next five years, from 
2013-2017. Agrawal (2018) estimated RGDP in India using publicly available quarterly RGDP 
data from Quarter 2 of 1996 to Quarter 2 of 2017 using ARIMA model. Abonazel et al. (2019) 
used an ARIMA (1, 2, 1) model over the period 1965-2016 to correctly forecast the rise in GDP for 
Egypt during for the period 2017-2026 and Eissa (2020) forecasted the GDP per capita for Egypt 
and Saudi Arabia, from 2019-2030 using the ARIMA (1, 1, 2) and ARIMA (1, 1, 1) models 
respectively based on data from the period 1968-2018. Their study showed that both Egypt's and 
Saudi Arabia's GDP per capita would continue to rise. In order to forecast the GDP and consumer 
`price index (CPI) for the Jordanian economy between 2020 and 2022, Ghazo (2021) employed 
ARIMA (3, 1, 1) model for GDP and ARIMA (1, 1, 0) model for CPI respectively, based on 
sample data from the period 19762019. They rightly anticipated stagflation for the Jordanian 
economy as a result of the predicted shrinkage in GDP and first rise in CPI. In order to escape the 
stagflationary cycle and achieve more stable CPI, this study provided inputs to the economic policy 
makers to develop sensible measures for boosting GDP and fending off inflationary forces. 
Mohamed (2022) used an ARIMA (5, 1, 2) model for the period between 1960-2022 to forecast 

trajectory of GDP in Somalia for the next fourteen quarters. In order to forecast the quarterly GDP 
of Philippines, Polintan et al. (2023) used data from 2018-2022 through an ARIMA (1, 2, 1) model 
for forecasting GDP in the Philippines, for 2022-2029 and predicted a steady growth trajectory. 
Lngale and Senan (2023) used predictive ARIMA (0, 2, 1) model for predicting GDP of India, 
pertaining to the period 1960-2020 and predicted a steady growth trajectory. Tolulope et al. (2023) 
used an ARIMA (2, 1, 2) model for predicting the Nigerian GDP using both in sample and out of 
sample prediction method, based on data for the period of 19602020 which correctly indicated a 
gradual rise in GDP. Urruttia (2019) used an ARIMA (1, 1, 1) model over the period from the first 
quarter of 1990 to the fourth quarter of 2017 with a total of 112 observations for forecasting future 
GDP. Remittance income in Nepal vis- a vis GDP has between studied by Gaudel (2006). Srivas-
tava and Chaudhary (2007) looked in to role of remittance in economic development of Nepal. 
Energy – GDP dependence in Nepal is focus of work under taken by Asghar (2008). Dahal (2010) 
studied role of GDP on educational enrolment and teaching strength in the school system of Nepal. 
GDP and oil consumption relations are analyzed by Bhusal (2010). Thagunna and Acharya (2013) 
assessed investment, saving, exports and imports as determinants of GDP. Chaudhary and Xiumin 
(2018) analysed determinants of inflation in Nepal. Interrelations between foreign trade and GDP 
of Nepal are investigated by Prajuli (2021). The present paper is the first study where a self-re-
gressed Bayesian investigation on GDP is made with identification of a unique TS statistical model 
to project future pattern of GDP in Nepal. One step ahead prediction for the year 2022 is validated 
by the recent World Bank report. Information about GDP can be quite advantageous for the 
business and economy, particularly for investors, business people and the governmental units 
aiming for cost effectiveness and maximizing profit in addition to guiding the government for 
framing future economic policies and in planning and control of various economic measures. 

The Study Region

 The Federal Democratic Republic of Nepal is a landlocked country in South Asia sharing 
its boundaries with India and Tibet. World Bank 2022 report the total GDP (hence froth, GDP) of 
Nepal to be 36.29 billion USD with 122 billion USD Purchasing Power Parity (PPP). GDP per 
capita is placed at 1,230 USD and PPP at 4,190 USD for the year 2021. GDP growth rate for Nepal 
is 2.7% while GDP of Nepal represents 0.02% of the world economy for the year 2021. The main 
economic sectors in Nepal are agricultural, hydro-power, natural resources, tourism and handi-
crafts. These sectors have a significant impact on Nepal economy in terms of their contribution to 
the GDP. Empirical research conducted by Nepal Rastra Bank (NRB) in the year 2020 concluded 
tourism to be a crucial economic sector for both the short-run and the long- run economic growth 
of Nepal. The NRB report indicated a significant relationship between tourism industry and the 
county’s economic growth which is one of the fasted growing industries in the country. More than 
a million indigenous people are engaged in the tourism industry for their livelihood. Tourism 
accounts for 7.9% of the total GDP while 65% of the population is engaged in agricultural activi-
ties contributing to 31.7% of GDP. About 20% of the area is cultivable, another 40.7 % is forested 
and the remaining land is mountainous. Thus, Nepal’s GDP is heavily dependent on remittance. 
According to the Central Bureau of Statistics Nepal (2022) report, Nepal has received remittance 
amounting to Nepalese Rupees (NRs.) 875 billion in the financial year 2019-20, which translates 
into a remittance to GDP ratio of 23.23%. Nepal is primarily a remittance-based country with 
remittance inflow amounting to more than a quarter of the country’s GDP. Nepal’s total labour 
force in the year 2020 was 16,016,900 with sectoral distribution by occupation as 43% in agricul-
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ture 21% in industry and share of services at 35%. The inflation rate in Nepal was recorded at 6% 
and the unemployment rate at 1.4%. Nepal’s total exports were reported to be worth 918 million 
USD in the year 2020, its main exports being carpets, textiles, pulses, tea, etc. Its main export 
partners are India, USA, Japan, Malaysia, Singapore, Germany, and Bangladesh. Total imports for 
the same period were recorded at 10 billion USD with prominent import goods being petroleum, 
electrical goods, machinery, gold, etc. Its principal import partners are India and China. 

 In this paper, we estimate and predict the GDP per capita of Nepal for next one and half 
decade by using ARIMA time series model. Section 2 describes model determination methodology 
used in the present work. Section 3 enumerates the models and the model adequacy measures. 
Section 4 focusses on data description and its analysis. Conclusion and recommendations are 
summarised in section 5. 

Methodology

 Time series models are characterized by the clustering effect or serial correlation in time. 
In the present paper, we employ ARIMA modelling to estimate and forecast Nepal's GDP. ARIMA 
modelling addresses such issues of dependent errors by introducing time lagged dependent variable 
and past error terms on the determinant side of the time series model. ARIMA model consists of 
AR, I, and MA segments where AR indicate the autoregressive part, I indicate integration i.e., the 
order of differencing in the observed series to achieve stationarity and MA indicate the moving 
average component in the model. The four stages of the iterative ARIMA model fitting process are 
Identification, estimation, diagnostic checking, and time series forecasting. (Figure 1). 

Figure 1
 Iterative ModellingProgression for a Stationary Variable in Box

 It employs a general technique for choosing a possible model from a large class of models. 
The chosen model is then evaluated to see if it can accurately explain the series using the historical 
data. Auto-correlation function (ACF) and partial auto-correlation function (PACF) are used to 
select one or more ARIMA models that seem appropriate during the identification stage. The next 
stage involves estimating the parameters of a specific Box-Jenkins model (1970) for a given time 
series. This step verifies the parsimony in terms of the number of model parameters or lack of 
over-specification by determining whether, in addition to the residuals being uncorrelated, the 
chosen least amount of squared residuals are found in the AR and/or MA parameters. A critical and 
sensitive aspect of an ARIMA model is parsimony. An over-parameterized model cannot predict as 
efficiently as a sparse model. Model diagnostics and testing is carried out in the third step. The 
underlying presumption is that the error terms, ε_t,  behave in a manner consistent with that of a 

stationary, unchanging process. If the residuals are drawn from a fixed distribution with constant 
mean and variance, they should be white noise. The most adequate Box-Jenkins model fulfils these 
prerequisites for the residual distribution. The best model needs to be decided based on these four 
paradigms. Thus, testing of the residuals would lead to a better suitable model. A graphical 
technique called a quantile-quantile (Q-Q) plot compares the distributional similarities of two 
datasets. In the context of ARIMA models, a Q-Q plot is often used to check whether the model's 
residuals follow a normal distribution. 

The Model and Forecast

1.  Autoregressive Model 

 With the intent to estimate the coefficients β_(j,) j = 1,2, …,p, an AR process for the 
univariate model is the one that shows a changing variable regressed on its own lagged values. AR 
model of order p, or AR (p), is expressed as,

ACF gives a correlation coefficient between the dependent variable and the same variable with 
different lags, but the effect of shorter lags is not kept constant, meaning that the effect of shorter 
lag is remained in the autocorrelation function. The correlation between y_t and y_(t-2) includes 
the correlation effect between y_t and y_(t-1). On the other hand, PACF gives a correlation coeffi-
cient between the dependent variable and its lag values while keeping the effect of shorter lags 
constant. The correlation between y_t and y_(t-2) does not include the effect of correlation 
between y_t and y_(t-1).

2.  Moving Average Model

 Let ε_t (t = 1,2,…)  be a white noise process, with t standing for a series of independent 
and identically distributed (iid) random variables expecting ε_t is zero and variance of ε_t is σ^2. 
After that, the qth order MA model, which accounts for the relationship between an observation 
and a residual error, is expressed as

  represents the impact of past errors on the response variable. Estimated coefficients θ_(j,) j 
= 1,2, …   ,q,  accounting for short-term memory help in forecasting.

3.   Autoregressive Moving Average Model

 The model AR, coupled with the MA modelling strategy is called Autoregressive Moving 
Average (ARMA) models intended for stationary data series. ARMA (p, q) model is expressed as:

 An amalgam of the AR and MA models is represented by (3). In this instance, the greatest 

order of p or q cannot be provided merely by ACF or PACF.

4.  Autoregressive Integrated Moving Average Model

 The extension of ARMA model is ARIMA model which enable to transform data by 
differencing to make data stationary. ARIMA model can be written as ARIMA (p, d, q), where p is 
the order of AR term, d is the number of differencing required to make series stationery and q is 
the order of MA term. For example, if y_it  is a non-stationary series, we will take a first-difference 
of y_t to make ∆y_t= stationary, and then the ARIMA (p, 1, q) model is expressed as: 
 

 Where ∆ y_t= y_t- y_(t-1), then d = 1, which implies a one-time differencing step. The 
model transforms into a random walk model, categorized as ARIMA (0.1,0), if p = q = 0.

Table 1 
ARIMA (p, d, q) Model for d = 0, 1, 2

5.  Model Adequacy Measures

 Before employing a model for predicting, diagnostic testing must be done on it. The 
residuals that remain after the model has been fitted are deemed sufficient if they are just white 
noise, and the residuals' ACF and PACF patterns may provide insight into how the model might be 
improved. Akaike (1973) developed a numerical score that can be used to identify the best model 
from among several candidate models for a specific data set. Akaike information criterion (AIC) 
results are helpful compared to other AIC scores for the same data set. A smaller AIC score 
indicates a better empirical fit. Estimated log-likelihood (L) is used to compute AIC as,
 
AIC = - 2(L + s)                                                                                                                         (5)          
 Such that s is the number of variables in the model plus the intercept term. Schwarz (1978) 
developed an alternative model comparison score known as Bayesian (Schwarz) information 
criterion BIC (or SIC) as an asymptotic approximation to the transformation of the Bayesian 
posterior probability of a candidate model expressed as,

BIC or SIC = - 2L + s log(n)                                                                                                     (6)             
 L is the maximum likelihood of the model, s is the number of parameters in the model, and 
n is the sample size. Like AIC, BIC also balances the goodness of fit and model complexity. 
However, BIC places a higher penalty on model complexity compared to AIC because it includes a 
term that depends on the sample size (s log(n)). As with AIC, the goal is to minimize the BIC value 
to select the best model.

 6.   Forecasting 

 Box-Jenkin's time series model method applies only to stationary and invertible time 
series. Lidiema (2017), Dritsakis and Klazoglou (2019). Future value forecasting can begin once 
the requirements have been met through procedures like differencing. We can utilize the chosen 
ARIMA model to predict when it meets the requirements of a stationary univariate process. 
Further, diagnostic checking is done to verify the forecasting accuracy of the ARIMA model. 
   
7.  Forecasting Accuracy

 We now present different measures listed to determine the accuracy of a prediction model.
 
 (i) Mean Absolute Error 

 The mean absolute difference between a dataset's actual (observed) values and the model's 
predicted values is computed using the Mean Absolute Error (MAE) algorithm. The absolute rather 
than squared differences make MAE more robust to the outliers. The formula to calculate the MAE 
is,
                                                     
 
 Where n is the total number of observations, y_(i )is the actual value of time series in data 
point i, and y _i denotes forecasted value of time series data point i.       

 (ii)  Root Mean Square Error 

 Root Mean Square Error (RMSE) is a popular accuracy measure in regression analysis 
based on the difference between a dataset's actual (observed) values and the model's predicted 
values. Lower RMSE indicates the alignment of the model's predictions with the actual data. The 
formula to calculate the RMSE is,
                  (8)
                                    
  
 However, due to the squaring of deviations, RMSE gives underweight to the outliers and 
may not be suitable for all types of datasets. Depending on the specific problem and characteristics 
of the data, we can use metrics such as Mean Absolute Error (MAE) or R-squared (coefficient of 
determination) may also be used in conjunction with RMSE to gain a more comprehensive under-
standing of the model's performance.            
                                                                                                                                                                                                              
                                                                                                                                                                                                                                                                                                                                                                                                                   
 (iii) Mean Absolute Percentage Error 

 Mean Absolute Percentage Error (MAPE) is used to measure the percentage variation 
between a dataset's actual (observed) values and the model's predicted values, and it is useful to 
understand the relative size of the errors compared to the actual values. The formula to calculate 
the MAPE is,

 However, it needs to be more well-defined when the actual values are zero or near zero, 
which can result in non-sensical very large MAPE values.

 (iv)  Mean Percentage Error 

 Mean Percentage Error (MPE) is instead of taking the absolute percentage difference like 
in MADE consider the signed percentage difference. Therefore, accounting for both the (positive 
and negative) magnitude of the errors. The formula to calculate the MPE is,
                                                      
                                              (10)        

 Such that, lower values of MPE indicate better forecast accuracy. A value of zero MPE 
would imply that the forecasted values match the actual values perfectly. However, MPE can have 
some limitations, such as the potential for the errors to cancel each other out, leading to an artifi-
cially low MPE even if the model's performance is unsatisfactory.

 (v) Mean Absolute Scaled Error 

 Mean Absolute Scaled Error (MASE) measures the performance of a model relative to the 
performance of a naive or benchmark model. The MASE provides a more interpretable measure of 
forecast accuracy than metrics like Mean Absolute Error (MAE), especially when dealing with 
time series data and comparing different forecasting models. It provides insights into whether a 
model provides meaningful improvements over a basic, naive forecasting approach. The formula to 
calculate the MASE is,   
                   (11)  
                                         

  where n is the length of the series and m is its frequency, i.e., m=1 for yearly data, m=4 for 
quarterly, m=12 for monthly, etc.
 MASE measures how well the model performs relative to the naive model's forecast errors taken 
as a benchmark. A value of MASE less than 1 indicates that the model performs better than the 
naive model regarding absolute forecast errors, while a value greater than 1 shows worse perfor-
mance than the naive model.

Data and Analysis

 For modelling and forecasting non-seasonal time series data of the annual GDP of Nepal, 
we have obtained data from the website of World Bank for the period 1960 – 2022. This implies 
that we have 63 observations of GDP, based on this data, we have proposed the ARIMA (2, 2, 1) 
model to forecast the GDP of Nepal for the next fifteen years (2023 – 2037).    

1. Model Identification for GDP

 Progression of GDP per capita of Nepal is graphed in Figure 2. A steady long-term rise is 
observed during 1960 – 2022. Beyond 2010 the rate of upward trend increases sharply. The time 
series may be quickly and easily determined to be unstable because of the GDP of Nepal's clearly 

marked increasing trend. Autocorrelation Function (ACF) (Figure 3) and Partial Autocorrelation 
Function (PACF) (Figure 4) are studied further to understand genesis of data structure. It is evident 
from the PACF that a single prominence indicates the fictitious primary value of n=1 when it 
crosses the confidence intervals. Furthermore, at ACF 11 heights, the same issue occurs. Accord-
ing to the ACF plot, the autocorrelations in the observed series is very high, and positive. A slow 
decay in ACF suggests that there may be changes in both the mean and the variability over time for 
this series. The arithmetic mean may be moving upward, with rising variability. Variability can be 
managed by calculating the natural logarithm of the given data, and the mean trend can be elimi-
nated by differencing once or twice as needed to achieve stationarity in the original observed 
series. An instantaneous nonlinear transformation applied to the optimal forecast of a variable may 
not produce the transformed variable's ideal forecast (Granger and Newbold, 1976). In particular, 
using the exponential function to forecasts for the original variable when excellent forecasts of the 
logs are available may not always be the best course of action. Therefore, we further employ the 
differencing process on the untransformed actual data series.

Flgure 2
The GDP Data During 1960 to 2021

 GROSS DEMESTIC PRODUCT (GDP) is a strategic compo-
nent in measuring National Income and Product Accounts. GDP 
represents the total value of final goods and services. GDP assessment 
is based on the quantum of consumption and investment by house-
holds and businesses in addition to the governmental expenditure and 
net exports. GDP is, therefore, crucial in maintaining a healthy 
economy as it embodies all financial transactions, including banking 
aspects. Planning and decision-making for the entire economy is thus 
conditioned on accurate information with respect of all the three 
stakeholders in the economic transactions, namely, households, 



businesses and government, which GDP is capable of delivering. We thus have an estimated 
nominal GDP (NGDP) which is used for the purpose of future planning by the finance ministry of 
the country. The real GDP (RGDP) is obtained after adjusting the estimated NGDP for inflation. 
The latter is also known as observed GDP in actual real-time. However, all budget planning and 
projections utilize the former, i.e., NGDP, whereas RGDP directly impacts the common citizen. 
Therefore, fluctuations in the level of GDP covariates are important in determining the gap 
between NGDP and RGDP. The effective mathematical relationship is represented as NGDP – 
inflation rate = RGDP.

 GDP computation is based on the principle of averages, which has an upward bias. There-
fore, GDP does not capture income, expenditure, or production changes at the regional level. For 
instance, if a large group of people experience declining income at a time when its complement 
group in the same population is smaller but experiences upwardly rising incomes, then GDP 
registers rise. To overcome this upward bias to a sufficiently large extent, in this paper, we focus 
on the concept of GDP per capita, which gives a more realistic picture of a nation's economic 
health. GDP measures an economy's current market value for all products and services generated 
during the assessment period. This value encompasses spending and costs on personal consump-
tion, government purchases, inventories, and the foreign trade balance. Thus, the total capital at 
stake and covered under the GDP envelope of a specific period can be viewed through (i) produc-
tion undertaken, (ii) income generated and (iii) expenditure accrued for the same period.

 Several research studies have been designed on the temporal data template where study 
units are macroeconomic units like countries or sub-regions like states, districts, or countries. In 
the present paper, we employ Autoregressive Integrated Moving Average (ARIMA) model 
proposed by Box and Jenkins (1970) for understanding the GDP movement with time. Past studies 
have used predictive ARIMA modelling for GDP of different countries. For instance, Kiriakidis 
and Kargas (2013) used predictive ARIMA model for predicting GDP of Greece, while correctly 
predicting recession in the near future. The RGDP in Greece for the period 2015-2017 was forecast 
by Dritsaki (2015) using an ARIMA (1, 1, 1) model based on data for the period of 1980-2013 
which correctly indicated a gradual rise in GDP. Wabomba et al. (2016) projected Kenya's GDP 
from 2013-2017 using an ARIMA (2, 2, 2) model based on data for period of 1960-2012. Predicted 
estimates correctly indicated that Kenya's GDP will expand faster over the next five years, from 
2013-2017. Agrawal (2018) estimated RGDP in India using publicly available quarterly RGDP 
data from Quarter 2 of 1996 to Quarter 2 of 2017 using ARIMA model. Abonazel et al. (2019) 
used an ARIMA (1, 2, 1) model over the period 1965-2016 to correctly forecast the rise in GDP for 
Egypt during for the period 2017-2026 and Eissa (2020) forecasted the GDP per capita for Egypt 
and Saudi Arabia, from 2019-2030 using the ARIMA (1, 1, 2) and ARIMA (1, 1, 1) models 
respectively based on data from the period 1968-2018. Their study showed that both Egypt's and 
Saudi Arabia's GDP per capita would continue to rise. In order to forecast the GDP and consumer 
`price index (CPI) for the Jordanian economy between 2020 and 2022, Ghazo (2021) employed 
ARIMA (3, 1, 1) model for GDP and ARIMA (1, 1, 0) model for CPI respectively, based on 
sample data from the period 19762019. They rightly anticipated stagflation for the Jordanian 
economy as a result of the predicted shrinkage in GDP and first rise in CPI. In order to escape the 
stagflationary cycle and achieve more stable CPI, this study provided inputs to the economic policy 
makers to develop sensible measures for boosting GDP and fending off inflationary forces. 
Mohamed (2022) used an ARIMA (5, 1, 2) model for the period between 1960-2022 to forecast 

trajectory of GDP in Somalia for the next fourteen quarters. In order to forecast the quarterly GDP 
of Philippines, Polintan et al. (2023) used data from 2018-2022 through an ARIMA (1, 2, 1) model 
for forecasting GDP in the Philippines, for 2022-2029 and predicted a steady growth trajectory. 
Lngale and Senan (2023) used predictive ARIMA (0, 2, 1) model for predicting GDP of India, 
pertaining to the period 1960-2020 and predicted a steady growth trajectory. Tolulope et al. (2023) 
used an ARIMA (2, 1, 2) model for predicting the Nigerian GDP using both in sample and out of 
sample prediction method, based on data for the period of 19602020 which correctly indicated a 
gradual rise in GDP. Urruttia (2019) used an ARIMA (1, 1, 1) model over the period from the first 
quarter of 1990 to the fourth quarter of 2017 with a total of 112 observations for forecasting future 
GDP. Remittance income in Nepal vis- a vis GDP has between studied by Gaudel (2006). Srivas-
tava and Chaudhary (2007) looked in to role of remittance in economic development of Nepal. 
Energy – GDP dependence in Nepal is focus of work under taken by Asghar (2008). Dahal (2010) 
studied role of GDP on educational enrolment and teaching strength in the school system of Nepal. 
GDP and oil consumption relations are analyzed by Bhusal (2010). Thagunna and Acharya (2013) 
assessed investment, saving, exports and imports as determinants of GDP. Chaudhary and Xiumin 
(2018) analysed determinants of inflation in Nepal. Interrelations between foreign trade and GDP 
of Nepal are investigated by Prajuli (2021). The present paper is the first study where a self-re-
gressed Bayesian investigation on GDP is made with identification of a unique TS statistical model 
to project future pattern of GDP in Nepal. One step ahead prediction for the year 2022 is validated 
by the recent World Bank report. Information about GDP can be quite advantageous for the 
business and economy, particularly for investors, business people and the governmental units 
aiming for cost effectiveness and maximizing profit in addition to guiding the government for 
framing future economic policies and in planning and control of various economic measures. 

The Study Region

 The Federal Democratic Republic of Nepal is a landlocked country in South Asia sharing 
its boundaries with India and Tibet. World Bank 2022 report the total GDP (hence froth, GDP) of 
Nepal to be 36.29 billion USD with 122 billion USD Purchasing Power Parity (PPP). GDP per 
capita is placed at 1,230 USD and PPP at 4,190 USD for the year 2021. GDP growth rate for Nepal 
is 2.7% while GDP of Nepal represents 0.02% of the world economy for the year 2021. The main 
economic sectors in Nepal are agricultural, hydro-power, natural resources, tourism and handi-
crafts. These sectors have a significant impact on Nepal economy in terms of their contribution to 
the GDP. Empirical research conducted by Nepal Rastra Bank (NRB) in the year 2020 concluded 
tourism to be a crucial economic sector for both the short-run and the long- run economic growth 
of Nepal. The NRB report indicated a significant relationship between tourism industry and the 
county’s economic growth which is one of the fasted growing industries in the country. More than 
a million indigenous people are engaged in the tourism industry for their livelihood. Tourism 
accounts for 7.9% of the total GDP while 65% of the population is engaged in agricultural activi-
ties contributing to 31.7% of GDP. About 20% of the area is cultivable, another 40.7 % is forested 
and the remaining land is mountainous. Thus, Nepal’s GDP is heavily dependent on remittance. 
According to the Central Bureau of Statistics Nepal (2022) report, Nepal has received remittance 
amounting to Nepalese Rupees (NRs.) 875 billion in the financial year 2019-20, which translates 
into a remittance to GDP ratio of 23.23%. Nepal is primarily a remittance-based country with 
remittance inflow amounting to more than a quarter of the country’s GDP. Nepal’s total labour 
force in the year 2020 was 16,016,900 with sectoral distribution by occupation as 43% in agricul-
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ture 21% in industry and share of services at 35%. The inflation rate in Nepal was recorded at 6% 
and the unemployment rate at 1.4%. Nepal’s total exports were reported to be worth 918 million 
USD in the year 2020, its main exports being carpets, textiles, pulses, tea, etc. Its main export 
partners are India, USA, Japan, Malaysia, Singapore, Germany, and Bangladesh. Total imports for 
the same period were recorded at 10 billion USD with prominent import goods being petroleum, 
electrical goods, machinery, gold, etc. Its principal import partners are India and China. 

 In this paper, we estimate and predict the GDP per capita of Nepal for next one and half 
decade by using ARIMA time series model. Section 2 describes model determination methodology 
used in the present work. Section 3 enumerates the models and the model adequacy measures. 
Section 4 focusses on data description and its analysis. Conclusion and recommendations are 
summarised in section 5. 

Methodology

 Time series models are characterized by the clustering effect or serial correlation in time. 
In the present paper, we employ ARIMA modelling to estimate and forecast Nepal's GDP. ARIMA 
modelling addresses such issues of dependent errors by introducing time lagged dependent variable 
and past error terms on the determinant side of the time series model. ARIMA model consists of 
AR, I, and MA segments where AR indicate the autoregressive part, I indicate integration i.e., the 
order of differencing in the observed series to achieve stationarity and MA indicate the moving 
average component in the model. The four stages of the iterative ARIMA model fitting process are 
Identification, estimation, diagnostic checking, and time series forecasting. (Figure 1). 

Figure 1
 Iterative ModellingProgression for a Stationary Variable in Box

 It employs a general technique for choosing a possible model from a large class of models. 
The chosen model is then evaluated to see if it can accurately explain the series using the historical 
data. Auto-correlation function (ACF) and partial auto-correlation function (PACF) are used to 
select one or more ARIMA models that seem appropriate during the identification stage. The next 
stage involves estimating the parameters of a specific Box-Jenkins model (1970) for a given time 
series. This step verifies the parsimony in terms of the number of model parameters or lack of 
over-specification by determining whether, in addition to the residuals being uncorrelated, the 
chosen least amount of squared residuals are found in the AR and/or MA parameters. A critical and 
sensitive aspect of an ARIMA model is parsimony. An over-parameterized model cannot predict as 
efficiently as a sparse model. Model diagnostics and testing is carried out in the third step. The 
underlying presumption is that the error terms, ε_t,  behave in a manner consistent with that of a 

stationary, unchanging process. If the residuals are drawn from a fixed distribution with constant 
mean and variance, they should be white noise. The most adequate Box-Jenkins model fulfils these 
prerequisites for the residual distribution. The best model needs to be decided based on these four 
paradigms. Thus, testing of the residuals would lead to a better suitable model. A graphical 
technique called a quantile-quantile (Q-Q) plot compares the distributional similarities of two 
datasets. In the context of ARIMA models, a Q-Q plot is often used to check whether the model's 
residuals follow a normal distribution. 

The Model and Forecast

1.  Autoregressive Model 

 With the intent to estimate the coefficients β_(j,) j = 1,2, …,p, an AR process for the 
univariate model is the one that shows a changing variable regressed on its own lagged values. AR 
model of order p, or AR (p), is expressed as,

ACF gives a correlation coefficient between the dependent variable and the same variable with 
different lags, but the effect of shorter lags is not kept constant, meaning that the effect of shorter 
lag is remained in the autocorrelation function. The correlation between y_t and y_(t-2) includes 
the correlation effect between y_t and y_(t-1). On the other hand, PACF gives a correlation coeffi-
cient between the dependent variable and its lag values while keeping the effect of shorter lags 
constant. The correlation between y_t and y_(t-2) does not include the effect of correlation 
between y_t and y_(t-1).

2.  Moving Average Model

 Let ε_t (t = 1,2,…)  be a white noise process, with t standing for a series of independent 
and identically distributed (iid) random variables expecting ε_t is zero and variance of ε_t is σ^2. 
After that, the qth order MA model, which accounts for the relationship between an observation 
and a residual error, is expressed as

  represents the impact of past errors on the response variable. Estimated coefficients θ_(j,) j 
= 1,2, …   ,q,  accounting for short-term memory help in forecasting.

3.   Autoregressive Moving Average Model

 The model AR, coupled with the MA modelling strategy is called Autoregressive Moving 
Average (ARMA) models intended for stationary data series. ARMA (p, q) model is expressed as:

 An amalgam of the AR and MA models is represented by (3). In this instance, the greatest 

order of p or q cannot be provided merely by ACF or PACF.

4.  Autoregressive Integrated Moving Average Model

 The extension of ARMA model is ARIMA model which enable to transform data by 
differencing to make data stationary. ARIMA model can be written as ARIMA (p, d, q), where p is 
the order of AR term, d is the number of differencing required to make series stationery and q is 
the order of MA term. For example, if y_it  is a non-stationary series, we will take a first-difference 
of y_t to make ∆y_t= stationary, and then the ARIMA (p, 1, q) model is expressed as: 
 

 Where ∆ y_t= y_t- y_(t-1), then d = 1, which implies a one-time differencing step. The 
model transforms into a random walk model, categorized as ARIMA (0.1,0), if p = q = 0.

Table 1 
ARIMA (p, d, q) Model for d = 0, 1, 2

5.  Model Adequacy Measures

 Before employing a model for predicting, diagnostic testing must be done on it. The 
residuals that remain after the model has been fitted are deemed sufficient if they are just white 
noise, and the residuals' ACF and PACF patterns may provide insight into how the model might be 
improved. Akaike (1973) developed a numerical score that can be used to identify the best model 
from among several candidate models for a specific data set. Akaike information criterion (AIC) 
results are helpful compared to other AIC scores for the same data set. A smaller AIC score 
indicates a better empirical fit. Estimated log-likelihood (L) is used to compute AIC as,
 
AIC = - 2(L + s)                                                                                                                         (5)          
 Such that s is the number of variables in the model plus the intercept term. Schwarz (1978) 
developed an alternative model comparison score known as Bayesian (Schwarz) information 
criterion BIC (or SIC) as an asymptotic approximation to the transformation of the Bayesian 
posterior probability of a candidate model expressed as,

BIC or SIC = - 2L + s log(n)                                                                                                     (6)             
 L is the maximum likelihood of the model, s is the number of parameters in the model, and 
n is the sample size. Like AIC, BIC also balances the goodness of fit and model complexity. 
However, BIC places a higher penalty on model complexity compared to AIC because it includes a 
term that depends on the sample size (s log(n)). As with AIC, the goal is to minimize the BIC value 
to select the best model.

 6.   Forecasting 

 Box-Jenkin's time series model method applies only to stationary and invertible time 
series. Lidiema (2017), Dritsakis and Klazoglou (2019). Future value forecasting can begin once 
the requirements have been met through procedures like differencing. We can utilize the chosen 
ARIMA model to predict when it meets the requirements of a stationary univariate process. 
Further, diagnostic checking is done to verify the forecasting accuracy of the ARIMA model. 
   
7.  Forecasting Accuracy

 We now present different measures listed to determine the accuracy of a prediction model.
 
 (i) Mean Absolute Error 

 The mean absolute difference between a dataset's actual (observed) values and the model's 
predicted values is computed using the Mean Absolute Error (MAE) algorithm. The absolute rather 
than squared differences make MAE more robust to the outliers. The formula to calculate the MAE 
is,
                                                     
 
 Where n is the total number of observations, y_(i )is the actual value of time series in data 
point i, and y _i denotes forecasted value of time series data point i.       

 (ii)  Root Mean Square Error 

 Root Mean Square Error (RMSE) is a popular accuracy measure in regression analysis 
based on the difference between a dataset's actual (observed) values and the model's predicted 
values. Lower RMSE indicates the alignment of the model's predictions with the actual data. The 
formula to calculate the RMSE is,
                  (8)
                                    
  
 However, due to the squaring of deviations, RMSE gives underweight to the outliers and 
may not be suitable for all types of datasets. Depending on the specific problem and characteristics 
of the data, we can use metrics such as Mean Absolute Error (MAE) or R-squared (coefficient of 
determination) may also be used in conjunction with RMSE to gain a more comprehensive under-
standing of the model's performance.            
                                                                                                                                                                                                              
                                                                                                                                                                                                                                                                                                                                                                                                                   
 (iii) Mean Absolute Percentage Error 

 Mean Absolute Percentage Error (MAPE) is used to measure the percentage variation 
between a dataset's actual (observed) values and the model's predicted values, and it is useful to 
understand the relative size of the errors compared to the actual values. The formula to calculate 
the MAPE is,

 However, it needs to be more well-defined when the actual values are zero or near zero, 
which can result in non-sensical very large MAPE values.

 (iv)  Mean Percentage Error 

 Mean Percentage Error (MPE) is instead of taking the absolute percentage difference like 
in MADE consider the signed percentage difference. Therefore, accounting for both the (positive 
and negative) magnitude of the errors. The formula to calculate the MPE is,
                                                      
                                              (10)        

 Such that, lower values of MPE indicate better forecast accuracy. A value of zero MPE 
would imply that the forecasted values match the actual values perfectly. However, MPE can have 
some limitations, such as the potential for the errors to cancel each other out, leading to an artifi-
cially low MPE even if the model's performance is unsatisfactory.

 (v) Mean Absolute Scaled Error 

 Mean Absolute Scaled Error (MASE) measures the performance of a model relative to the 
performance of a naive or benchmark model. The MASE provides a more interpretable measure of 
forecast accuracy than metrics like Mean Absolute Error (MAE), especially when dealing with 
time series data and comparing different forecasting models. It provides insights into whether a 
model provides meaningful improvements over a basic, naive forecasting approach. The formula to 
calculate the MASE is,   
                   (11)  
                                         

  where n is the length of the series and m is its frequency, i.e., m=1 for yearly data, m=4 for 
quarterly, m=12 for monthly, etc.
 MASE measures how well the model performs relative to the naive model's forecast errors taken 
as a benchmark. A value of MASE less than 1 indicates that the model performs better than the 
naive model regarding absolute forecast errors, while a value greater than 1 shows worse perfor-
mance than the naive model.

Data and Analysis

 For modelling and forecasting non-seasonal time series data of the annual GDP of Nepal, 
we have obtained data from the website of World Bank for the period 1960 – 2022. This implies 
that we have 63 observations of GDP, based on this data, we have proposed the ARIMA (2, 2, 1) 
model to forecast the GDP of Nepal for the next fifteen years (2023 – 2037).    

1. Model Identification for GDP

 Progression of GDP per capita of Nepal is graphed in Figure 2. A steady long-term rise is 
observed during 1960 – 2022. Beyond 2010 the rate of upward trend increases sharply. The time 
series may be quickly and easily determined to be unstable because of the GDP of Nepal's clearly 

marked increasing trend. Autocorrelation Function (ACF) (Figure 3) and Partial Autocorrelation 
Function (PACF) (Figure 4) are studied further to understand genesis of data structure. It is evident 
from the PACF that a single prominence indicates the fictitious primary value of n=1 when it 
crosses the confidence intervals. Furthermore, at ACF 11 heights, the same issue occurs. Accord-
ing to the ACF plot, the autocorrelations in the observed series is very high, and positive. A slow 
decay in ACF suggests that there may be changes in both the mean and the variability over time for 
this series. The arithmetic mean may be moving upward, with rising variability. Variability can be 
managed by calculating the natural logarithm of the given data, and the mean trend can be elimi-
nated by differencing once or twice as needed to achieve stationarity in the original observed 
series. An instantaneous nonlinear transformation applied to the optimal forecast of a variable may 
not produce the transformed variable's ideal forecast (Granger and Newbold, 1976). In particular, 
using the exponential function to forecasts for the original variable when excellent forecasts of the 
logs are available may not always be the best course of action. Therefore, we further employ the 
differencing process on the untransformed actual data series.

Flgure 2
The GDP Data During 1960 to 2021

 

                 

 

               

Figure 3  
Autocorrelation Function Graphs of the GDP Series

 

beauty perspective, and construction design is somewhat lacking. This paper covers the 
state-of-the-art golden ratio based on its mathematical structures and their constructional properties 
instead of its mathematical properties.  The rest of the paper is as follows. Section 2 is about the 
geometry of the golden ratio in plane geometry and Section 3 is in solid geometry. Finally, Section 4 
concludes the paper.

The golden ratio in Plane Geometry 

 Here, we are presenting the golden ratio corresponding to plane geometry. For details, we 
refer to (Akhtaruzzaman & Shafie, 2011; Livio, 2002; and Markowsky, G. (1992).

1  The golden ratio corresponds to a line segment

 A straight line is said to have been cut in extreme and mean ratio when, as the whole line is 
to the greater segment, so is the greater to the less, as illustrated in Figure 1. 

 Figure 1 
The golden ratio in a line segment

Algorithm 1. Construction in a line segment
 

 Being an irrational number, it has non-repeating, non-terminating, and non-recurring decimal 
representation, like  ϕ =1.6180339887498948482... This ratio is also known as the divine ratio or 
divine proportion.  Here, we are using the term golden ratio
 1.1 The golden ratio corresponds to internal division 
 
 The golden ratio can be constructed corresponding to the internal division of a line segment. 

Algorithm 2 Construction corresponds to the internal division in a line segment

Figure 2 
The golden ratio from the internal division of a line segment

2   The golden ratio corresponds to exterior division

 It can also be constructed in the form of the external division of a line segment.  

Algorithm 3 Construction with exterior division of a line segment.

 

Figure 3  
The Golden Ratio corresponds to the external division of a line segment

 

 2  The golden ratio corresponds to different triangles

It can also be defined as corresponding to an isosceles triangle and an equilateral triangle: 

 2.1 The golden ratio corresponds to isosceles triangles 

Algorithm 4. Construction corresponding to an isosceles triangle 

Figure 4
Construction of a golden cut, golden gnomon, and golden triangle 

 Note that, such a cut BP in ∆ABC is the golden cut where triangles  ∆ABP and  ∆BCP are 
the golden gnomon and the golden triangle, respectively, Akhtaruzzaman & Shafie, 2011.

 2.2 The golden ratio corresponds to an equilateral triangle 

Algorithm 5 Construction corresponding to an equilateral triangle

Figure 5 
Construction corresponding to an equilateral triangle.

 

3.  The golden ratio corresponds to different quadrilaterals 
 
 Here, we are presenting its geometry corresponding to different variants of the quadrilaterals, 
Akhtaruzzaman & Shafie, 2011. 

 GROSS DEMESTIC PRODUCT (GDP) is a strategic compo-
nent in measuring National Income and Product Accounts. GDP 
represents the total value of final goods and services. GDP assessment 
is based on the quantum of consumption and investment by house-
holds and businesses in addition to the governmental expenditure and 
net exports. GDP is, therefore, crucial in maintaining a healthy 
economy as it embodies all financial transactions, including banking 
aspects. Planning and decision-making for the entire economy is thus 
conditioned on accurate information with respect of all the three 
stakeholders in the economic transactions, namely, households, 

 
 THE GOLDEN RATIO  has been used for centuries in design, 
architecture, structure, and construction. It has been used not only in 
ancient and classical structures but also in modern architecture, 
artwork, and photography. It is found in nature, the universe, and 
various aspects of mathematical sciences. The golden ratio is one of the 
fascinating topics. Mathematicians since Euclid have studied it. Mathe-
matics theorem and the golden ratio have been given great importance 
in the history of Mathematics, as Johannes Kepler also said, Geometry 
has two great treasures: one is the theorem of Pythagoras, and the other 
is the division of a line into mean and extreme ratios. The first we may 
compare to a mass of gold, the second, we may call a precious jewel. 
For details, we refer to (Bell, 1940; Boyer, 1968; Herz-Fischler, 2000; 
and Pacioli, 1509).

 There has been a lot of work about its historical background 
and existence. However, its systematic overview from the geometrical 
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businesses and government, which GDP is capable of delivering. We thus have an estimated 
nominal GDP (NGDP) which is used for the purpose of future planning by the finance ministry of 
the country. The real GDP (RGDP) is obtained after adjusting the estimated NGDP for inflation. 
The latter is also known as observed GDP in actual real-time. However, all budget planning and 
projections utilize the former, i.e., NGDP, whereas RGDP directly impacts the common citizen. 
Therefore, fluctuations in the level of GDP covariates are important in determining the gap 
between NGDP and RGDP. The effective mathematical relationship is represented as NGDP – 
inflation rate = RGDP.

 GDP computation is based on the principle of averages, which has an upward bias. There-
fore, GDP does not capture income, expenditure, or production changes at the regional level. For 
instance, if a large group of people experience declining income at a time when its complement 
group in the same population is smaller but experiences upwardly rising incomes, then GDP 
registers rise. To overcome this upward bias to a sufficiently large extent, in this paper, we focus 
on the concept of GDP per capita, which gives a more realistic picture of a nation's economic 
health. GDP measures an economy's current market value for all products and services generated 
during the assessment period. This value encompasses spending and costs on personal consump-
tion, government purchases, inventories, and the foreign trade balance. Thus, the total capital at 
stake and covered under the GDP envelope of a specific period can be viewed through (i) produc-
tion undertaken, (ii) income generated and (iii) expenditure accrued for the same period.

 Several research studies have been designed on the temporal data template where study 
units are macroeconomic units like countries or sub-regions like states, districts, or countries. In 
the present paper, we employ Autoregressive Integrated Moving Average (ARIMA) model 
proposed by Box and Jenkins (1970) for understanding the GDP movement with time. Past studies 
have used predictive ARIMA modelling for GDP of different countries. For instance, Kiriakidis 
and Kargas (2013) used predictive ARIMA model for predicting GDP of Greece, while correctly 
predicting recession in the near future. The RGDP in Greece for the period 2015-2017 was forecast 
by Dritsaki (2015) using an ARIMA (1, 1, 1) model based on data for the period of 1980-2013 
which correctly indicated a gradual rise in GDP. Wabomba et al. (2016) projected Kenya's GDP 
from 2013-2017 using an ARIMA (2, 2, 2) model based on data for period of 1960-2012. Predicted 
estimates correctly indicated that Kenya's GDP will expand faster over the next five years, from 
2013-2017. Agrawal (2018) estimated RGDP in India using publicly available quarterly RGDP 
data from Quarter 2 of 1996 to Quarter 2 of 2017 using ARIMA model. Abonazel et al. (2019) 
used an ARIMA (1, 2, 1) model over the period 1965-2016 to correctly forecast the rise in GDP for 
Egypt during for the period 2017-2026 and Eissa (2020) forecasted the GDP per capita for Egypt 
and Saudi Arabia, from 2019-2030 using the ARIMA (1, 1, 2) and ARIMA (1, 1, 1) models 
respectively based on data from the period 1968-2018. Their study showed that both Egypt's and 
Saudi Arabia's GDP per capita would continue to rise. In order to forecast the GDP and consumer 
`price index (CPI) for the Jordanian economy between 2020 and 2022, Ghazo (2021) employed 
ARIMA (3, 1, 1) model for GDP and ARIMA (1, 1, 0) model for CPI respectively, based on 
sample data from the period 19762019. They rightly anticipated stagflation for the Jordanian 
economy as a result of the predicted shrinkage in GDP and first rise in CPI. In order to escape the 
stagflationary cycle and achieve more stable CPI, this study provided inputs to the economic policy 
makers to develop sensible measures for boosting GDP and fending off inflationary forces. 
Mohamed (2022) used an ARIMA (5, 1, 2) model for the period between 1960-2022 to forecast 

trajectory of GDP in Somalia for the next fourteen quarters. In order to forecast the quarterly GDP 
of Philippines, Polintan et al. (2023) used data from 2018-2022 through an ARIMA (1, 2, 1) model 
for forecasting GDP in the Philippines, for 2022-2029 and predicted a steady growth trajectory. 
Lngale and Senan (2023) used predictive ARIMA (0, 2, 1) model for predicting GDP of India, 
pertaining to the period 1960-2020 and predicted a steady growth trajectory. Tolulope et al. (2023) 
used an ARIMA (2, 1, 2) model for predicting the Nigerian GDP using both in sample and out of 
sample prediction method, based on data for the period of 19602020 which correctly indicated a 
gradual rise in GDP. Urruttia (2019) used an ARIMA (1, 1, 1) model over the period from the first 
quarter of 1990 to the fourth quarter of 2017 with a total of 112 observations for forecasting future 
GDP. Remittance income in Nepal vis- a vis GDP has between studied by Gaudel (2006). Srivas-
tava and Chaudhary (2007) looked in to role of remittance in economic development of Nepal. 
Energy – GDP dependence in Nepal is focus of work under taken by Asghar (2008). Dahal (2010) 
studied role of GDP on educational enrolment and teaching strength in the school system of Nepal. 
GDP and oil consumption relations are analyzed by Bhusal (2010). Thagunna and Acharya (2013) 
assessed investment, saving, exports and imports as determinants of GDP. Chaudhary and Xiumin 
(2018) analysed determinants of inflation in Nepal. Interrelations between foreign trade and GDP 
of Nepal are investigated by Prajuli (2021). The present paper is the first study where a self-re-
gressed Bayesian investigation on GDP is made with identification of a unique TS statistical model 
to project future pattern of GDP in Nepal. One step ahead prediction for the year 2022 is validated 
by the recent World Bank report. Information about GDP can be quite advantageous for the 
business and economy, particularly for investors, business people and the governmental units 
aiming for cost effectiveness and maximizing profit in addition to guiding the government for 
framing future economic policies and in planning and control of various economic measures. 

The Study Region

 The Federal Democratic Republic of Nepal is a landlocked country in South Asia sharing 
its boundaries with India and Tibet. World Bank 2022 report the total GDP (hence froth, GDP) of 
Nepal to be 36.29 billion USD with 122 billion USD Purchasing Power Parity (PPP). GDP per 
capita is placed at 1,230 USD and PPP at 4,190 USD for the year 2021. GDP growth rate for Nepal 
is 2.7% while GDP of Nepal represents 0.02% of the world economy for the year 2021. The main 
economic sectors in Nepal are agricultural, hydro-power, natural resources, tourism and handi-
crafts. These sectors have a significant impact on Nepal economy in terms of their contribution to 
the GDP. Empirical research conducted by Nepal Rastra Bank (NRB) in the year 2020 concluded 
tourism to be a crucial economic sector for both the short-run and the long- run economic growth 
of Nepal. The NRB report indicated a significant relationship between tourism industry and the 
county’s economic growth which is one of the fasted growing industries in the country. More than 
a million indigenous people are engaged in the tourism industry for their livelihood. Tourism 
accounts for 7.9% of the total GDP while 65% of the population is engaged in agricultural activi-
ties contributing to 31.7% of GDP. About 20% of the area is cultivable, another 40.7 % is forested 
and the remaining land is mountainous. Thus, Nepal’s GDP is heavily dependent on remittance. 
According to the Central Bureau of Statistics Nepal (2022) report, Nepal has received remittance 
amounting to Nepalese Rupees (NRs.) 875 billion in the financial year 2019-20, which translates 
into a remittance to GDP ratio of 23.23%. Nepal is primarily a remittance-based country with 
remittance inflow amounting to more than a quarter of the country’s GDP. Nepal’s total labour 
force in the year 2020 was 16,016,900 with sectoral distribution by occupation as 43% in agricul-
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ture 21% in industry and share of services at 35%. The inflation rate in Nepal was recorded at 6% 
and the unemployment rate at 1.4%. Nepal’s total exports were reported to be worth 918 million 
USD in the year 2020, its main exports being carpets, textiles, pulses, tea, etc. Its main export 
partners are India, USA, Japan, Malaysia, Singapore, Germany, and Bangladesh. Total imports for 
the same period were recorded at 10 billion USD with prominent import goods being petroleum, 
electrical goods, machinery, gold, etc. Its principal import partners are India and China. 

 In this paper, we estimate and predict the GDP per capita of Nepal for next one and half 
decade by using ARIMA time series model. Section 2 describes model determination methodology 
used in the present work. Section 3 enumerates the models and the model adequacy measures. 
Section 4 focusses on data description and its analysis. Conclusion and recommendations are 
summarised in section 5. 

Methodology

 Time series models are characterized by the clustering effect or serial correlation in time. 
In the present paper, we employ ARIMA modelling to estimate and forecast Nepal's GDP. ARIMA 
modelling addresses such issues of dependent errors by introducing time lagged dependent variable 
and past error terms on the determinant side of the time series model. ARIMA model consists of 
AR, I, and MA segments where AR indicate the autoregressive part, I indicate integration i.e., the 
order of differencing in the observed series to achieve stationarity and MA indicate the moving 
average component in the model. The four stages of the iterative ARIMA model fitting process are 
Identification, estimation, diagnostic checking, and time series forecasting. (Figure 1). 

Figure 1
 Iterative ModellingProgression for a Stationary Variable in Box

 It employs a general technique for choosing a possible model from a large class of models. 
The chosen model is then evaluated to see if it can accurately explain the series using the historical 
data. Auto-correlation function (ACF) and partial auto-correlation function (PACF) are used to 
select one or more ARIMA models that seem appropriate during the identification stage. The next 
stage involves estimating the parameters of a specific Box-Jenkins model (1970) for a given time 
series. This step verifies the parsimony in terms of the number of model parameters or lack of 
over-specification by determining whether, in addition to the residuals being uncorrelated, the 
chosen least amount of squared residuals are found in the AR and/or MA parameters. A critical and 
sensitive aspect of an ARIMA model is parsimony. An over-parameterized model cannot predict as 
efficiently as a sparse model. Model diagnostics and testing is carried out in the third step. The 
underlying presumption is that the error terms, ε_t,  behave in a manner consistent with that of a 

stationary, unchanging process. If the residuals are drawn from a fixed distribution with constant 
mean and variance, they should be white noise. The most adequate Box-Jenkins model fulfils these 
prerequisites for the residual distribution. The best model needs to be decided based on these four 
paradigms. Thus, testing of the residuals would lead to a better suitable model. A graphical 
technique called a quantile-quantile (Q-Q) plot compares the distributional similarities of two 
datasets. In the context of ARIMA models, a Q-Q plot is often used to check whether the model's 
residuals follow a normal distribution. 

The Model and Forecast

1.  Autoregressive Model 

 With the intent to estimate the coefficients β_(j,) j = 1,2, …,p, an AR process for the 
univariate model is the one that shows a changing variable regressed on its own lagged values. AR 
model of order p, or AR (p), is expressed as,

ACF gives a correlation coefficient between the dependent variable and the same variable with 
different lags, but the effect of shorter lags is not kept constant, meaning that the effect of shorter 
lag is remained in the autocorrelation function. The correlation between y_t and y_(t-2) includes 
the correlation effect between y_t and y_(t-1). On the other hand, PACF gives a correlation coeffi-
cient between the dependent variable and its lag values while keeping the effect of shorter lags 
constant. The correlation between y_t and y_(t-2) does not include the effect of correlation 
between y_t and y_(t-1).

2.  Moving Average Model

 Let ε_t (t = 1,2,…)  be a white noise process, with t standing for a series of independent 
and identically distributed (iid) random variables expecting ε_t is zero and variance of ε_t is σ^2. 
After that, the qth order MA model, which accounts for the relationship between an observation 
and a residual error, is expressed as

  represents the impact of past errors on the response variable. Estimated coefficients θ_(j,) j 
= 1,2, …   ,q,  accounting for short-term memory help in forecasting.

3.   Autoregressive Moving Average Model

 The model AR, coupled with the MA modelling strategy is called Autoregressive Moving 
Average (ARMA) models intended for stationary data series. ARMA (p, q) model is expressed as:

 An amalgam of the AR and MA models is represented by (3). In this instance, the greatest 

order of p or q cannot be provided merely by ACF or PACF.

4.  Autoregressive Integrated Moving Average Model

 The extension of ARMA model is ARIMA model which enable to transform data by 
differencing to make data stationary. ARIMA model can be written as ARIMA (p, d, q), where p is 
the order of AR term, d is the number of differencing required to make series stationery and q is 
the order of MA term. For example, if y_it  is a non-stationary series, we will take a first-difference 
of y_t to make ∆y_t= stationary, and then the ARIMA (p, 1, q) model is expressed as: 
 

 Where ∆ y_t= y_t- y_(t-1), then d = 1, which implies a one-time differencing step. The 
model transforms into a random walk model, categorized as ARIMA (0.1,0), if p = q = 0.

Table 1 
ARIMA (p, d, q) Model for d = 0, 1, 2

5.  Model Adequacy Measures

 Before employing a model for predicting, diagnostic testing must be done on it. The 
residuals that remain after the model has been fitted are deemed sufficient if they are just white 
noise, and the residuals' ACF and PACF patterns may provide insight into how the model might be 
improved. Akaike (1973) developed a numerical score that can be used to identify the best model 
from among several candidate models for a specific data set. Akaike information criterion (AIC) 
results are helpful compared to other AIC scores for the same data set. A smaller AIC score 
indicates a better empirical fit. Estimated log-likelihood (L) is used to compute AIC as,
 
AIC = - 2(L + s)                                                                                                                         (5)          
 Such that s is the number of variables in the model plus the intercept term. Schwarz (1978) 
developed an alternative model comparison score known as Bayesian (Schwarz) information 
criterion BIC (or SIC) as an asymptotic approximation to the transformation of the Bayesian 
posterior probability of a candidate model expressed as,

BIC or SIC = - 2L + s log(n)                                                                                                     (6)             
 L is the maximum likelihood of the model, s is the number of parameters in the model, and 
n is the sample size. Like AIC, BIC also balances the goodness of fit and model complexity. 
However, BIC places a higher penalty on model complexity compared to AIC because it includes a 
term that depends on the sample size (s log(n)). As with AIC, the goal is to minimize the BIC value 
to select the best model.

 6.   Forecasting 

 Box-Jenkin's time series model method applies only to stationary and invertible time 
series. Lidiema (2017), Dritsakis and Klazoglou (2019). Future value forecasting can begin once 
the requirements have been met through procedures like differencing. We can utilize the chosen 
ARIMA model to predict when it meets the requirements of a stationary univariate process. 
Further, diagnostic checking is done to verify the forecasting accuracy of the ARIMA model. 
   
7.  Forecasting Accuracy

 We now present different measures listed to determine the accuracy of a prediction model.
 
 (i) Mean Absolute Error 

 The mean absolute difference between a dataset's actual (observed) values and the model's 
predicted values is computed using the Mean Absolute Error (MAE) algorithm. The absolute rather 
than squared differences make MAE more robust to the outliers. The formula to calculate the MAE 
is,
                                                     
 
 Where n is the total number of observations, y_(i )is the actual value of time series in data 
point i, and y _i denotes forecasted value of time series data point i.       

 (ii)  Root Mean Square Error 

 Root Mean Square Error (RMSE) is a popular accuracy measure in regression analysis 
based on the difference between a dataset's actual (observed) values and the model's predicted 
values. Lower RMSE indicates the alignment of the model's predictions with the actual data. The 
formula to calculate the RMSE is,
                  (8)
                                    
  
 However, due to the squaring of deviations, RMSE gives underweight to the outliers and 
may not be suitable for all types of datasets. Depending on the specific problem and characteristics 
of the data, we can use metrics such as Mean Absolute Error (MAE) or R-squared (coefficient of 
determination) may also be used in conjunction with RMSE to gain a more comprehensive under-
standing of the model's performance.            
                                                                                                                                                                                                              
                                                                                                                                                                                                                                                                                                                                                                                                                   
 (iii) Mean Absolute Percentage Error 

 Mean Absolute Percentage Error (MAPE) is used to measure the percentage variation 
between a dataset's actual (observed) values and the model's predicted values, and it is useful to 
understand the relative size of the errors compared to the actual values. The formula to calculate 
the MAPE is,

 However, it needs to be more well-defined when the actual values are zero or near zero, 
which can result in non-sensical very large MAPE values.

 (iv)  Mean Percentage Error 

 Mean Percentage Error (MPE) is instead of taking the absolute percentage difference like 
in MADE consider the signed percentage difference. Therefore, accounting for both the (positive 
and negative) magnitude of the errors. The formula to calculate the MPE is,
                                                      
                                              (10)        

 Such that, lower values of MPE indicate better forecast accuracy. A value of zero MPE 
would imply that the forecasted values match the actual values perfectly. However, MPE can have 
some limitations, such as the potential for the errors to cancel each other out, leading to an artifi-
cially low MPE even if the model's performance is unsatisfactory.

 (v) Mean Absolute Scaled Error 

 Mean Absolute Scaled Error (MASE) measures the performance of a model relative to the 
performance of a naive or benchmark model. The MASE provides a more interpretable measure of 
forecast accuracy than metrics like Mean Absolute Error (MAE), especially when dealing with 
time series data and comparing different forecasting models. It provides insights into whether a 
model provides meaningful improvements over a basic, naive forecasting approach. The formula to 
calculate the MASE is,   
                   (11)  
                                         

  where n is the length of the series and m is its frequency, i.e., m=1 for yearly data, m=4 for 
quarterly, m=12 for monthly, etc.
 MASE measures how well the model performs relative to the naive model's forecast errors taken 
as a benchmark. A value of MASE less than 1 indicates that the model performs better than the 
naive model regarding absolute forecast errors, while a value greater than 1 shows worse perfor-
mance than the naive model.

Data and Analysis

 For modelling and forecasting non-seasonal time series data of the annual GDP of Nepal, 
we have obtained data from the website of World Bank for the period 1960 – 2022. This implies 
that we have 63 observations of GDP, based on this data, we have proposed the ARIMA (2, 2, 1) 
model to forecast the GDP of Nepal for the next fifteen years (2023 – 2037).    

1. Model Identification for GDP

 Progression of GDP per capita of Nepal is graphed in Figure 2. A steady long-term rise is 
observed during 1960 – 2022. Beyond 2010 the rate of upward trend increases sharply. The time 
series may be quickly and easily determined to be unstable because of the GDP of Nepal's clearly 

marked increasing trend. Autocorrelation Function (ACF) (Figure 3) and Partial Autocorrelation 
Function (PACF) (Figure 4) are studied further to understand genesis of data structure. It is evident 
from the PACF that a single prominence indicates the fictitious primary value of n=1 when it 
crosses the confidence intervals. Furthermore, at ACF 11 heights, the same issue occurs. Accord-
ing to the ACF plot, the autocorrelations in the observed series is very high, and positive. A slow 
decay in ACF suggests that there may be changes in both the mean and the variability over time for 
this series. The arithmetic mean may be moving upward, with rising variability. Variability can be 
managed by calculating the natural logarithm of the given data, and the mean trend can be elimi-
nated by differencing once or twice as needed to achieve stationarity in the original observed 
series. An instantaneous nonlinear transformation applied to the optimal forecast of a variable may 
not produce the transformed variable's ideal forecast (Granger and Newbold, 1976). In particular, 
using the exponential function to forecasts for the original variable when excellent forecasts of the 
logs are available may not always be the best course of action. Therefore, we further employ the 
differencing process on the untransformed actual data series.

Flgure 2
The GDP Data During 1960 to 2021

 

                   . 2. Diagnostics and Estimation for GDP

 Based on GDP time chronological data for the period 1960 – 2022, we have considered ten 
tentative ARIMA (p, d, q) models (Table 2) and estimate the parameters using R interface.   The 
model with minimum AIC is deemed to fit best and will be referred to as Model I, henceforth. 

Table 2 
Tentative ARIMA (p, d, q) Models of GDP for Nepal

 The applicability test assesses the error or residual sequence of the fitted data for consisten-
cy. If a white noise sequence for residuals is obtained, then the model I is considered suitable for 
forecast.  If not, then the model needs improving. In this research, the ACF graph (Figure 5) and 
PACF graph (Figure 6) of residual sequence are exhibit white noise process. Hence, ARIMA 
(2,2,1) well fits (Table 2) the considered time series GDP data from Nepal.                                                

  

(p, d, q) Model-I Model-II 

(2,2,2) 620.3456 691.683 

(0,2,0) 646.7677 724.934 

(1,2,0) 644.8669 722.6668 

(0,2,1) 624.1036 697.3245 

(1,2,1) 625.2472 698.4418 

(2,2,1) 618.3642 689.7005 

(1,2,2) 624.3858 697.0097 

(2,2,0) 629.1622 703.1548 

(3,2,1) 620.3479 691.6844 

(3,2,0) 624.4103 697.2054 

(3,2,2) 621.3597 692.8173 

 

Figure 5
Autocorrelation Function Graphs of the Residual Series 

             
Figure 6 
Partial Autocorrelation Function Graphs of the Residual Series

 
 
Figure 7
 Q-Q Plot of the Residual Series

Figure 7, illustrates the normal Q-Q plot, the maximum points seem to falls on or near the line. So, 

it can be said that the model residuals are normally distributed which is one of the assumptions of 
linear regression.

 Table 3 represents the estimated coefficients and model adequacy criterion for both Model I 
and Model II. Model II estimates have smaller standard errors (Table 3) with smaller RMSE, MAE, 
MPE, MAPE and MASE. Table 4 which indicate smaller associated residuals for model fit. However, 
from the viewpoint of sample-based information, of AIC and BIC, Model I is a better representative 
for the considered time series.                         

3.  Forecasting  of GDP for Nepal

 One use of a model is to anticipate the future values of a time series after the model has been 
discovered, its parameters determined, and its diagnostics examined. Table 5 provides the GDP 
projections for the time window 2023 – 2037.  Figure 8 (a) and Figure 8 (b) shows the trend of the 
actual and forecasted GDP values with their 95% confidence limits for the years 1960 – 2022, as well 
as the GDP that would be predicted, based on these 63 years for the next 15 years forecasted values 
of GDP for the Model I and Model II respectively by using the proposed ARIMA (2, 2, 1) model. 
The Model I predicted values indicate that the Nepal GDP specific growth run continues. Since the 
national economy is a complex and dynamic system, and that the outcome is simply a predicted 
number, therefore in order to prevent the economy from suffering from strong fluctuations, the 
administrators we should maintain the stability and continuity of microeconomic regulation and 
control with special attention to the risk of adjustment in economic operation, (Wabomba et al. 2016). 
We should also adjust the corresponding target value in light of the current situation. Thus, to assess 

robustness of the model-based prediction we next include the first eight predicted values for the 
years 2023 – 2030 in the original time series data base. The same R program is now re-run for the 
composite period 1960 – 2030. Again ARIMA (2, 2, 1) emerges as the best fit model on the basis 
of AIC from among the eleven considered models. With the new compounded data model (Model 
II, henceforth). We predict the next seven annual GDP values for the period 2031 – 2037. 95% 
confidence interval for Model II are found to be shorter (Table 5) thus retrieving that Model II is 
more efficient for predictive purpose

Table 5
Forecasted of GDP for Nepal

 

Figure 8 (b) 
Time Series Plot for Actual and Forecasted GDP Values for Model II

         Figure 8 (b): Time Series Plot for Actual and Forecasted GDP Values for Model II.

Conclusion and Recommendations
  
 Our study discovers that the proposed ARIMA models are useful for future GDP per capita 
of Nepal. For the development and assessment of different ARIMA models, we have used annual 
data from 1960 – 2022 and found that the ARIMA (2, 2, 1) model as the most appropriate one. Our 
findings are in line with earlier research, which discovered that ARIMA models as effective tools 
of forecasting economic indicators like GDP. Our present study makes a practical contribution by 
providing in-depth explanations of how ARIMA models might be used to predict Nepal's per-capita 
GDP. The best fitted ARIMA model has been used to obtain forecast values for next one and half 
decade. The finding shows that the forecast values of Nepal’s GDP will be $1384.426 per capita in 
2023 and $2180.822per capita in 2037. The results show that Nepal a growing GDP substantially, 
however, this growth is not sufficient. So, it is suggested to the policy maker to invest more on 
areas of infrastructure development, research and development, and facilitate to establishing more 
startups with focus on green investment and sustainability.

 Model II reinforces that short- term prediction of GDP is more precise (Table 5). Model 
based prediction enable planners to address specific economic challenges such as resource alloca-
tion. A robust GDP prediction could guide the government about the expected revenue generation, 
and expenditure optimization. Business and governments could plan investment, inventory manage-
ment and volume of production. Statistical prediction thus empowers a decision maker with scope 
for evidence informed decision- making. However, one must be always aware that any model is 
sustainable as long as the background conditions such as other influencing market forces remain at 
the same level.
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beauty perspective, and construction design is somewhat lacking. This paper covers the 
state-of-the-art golden ratio based on its mathematical structures and their constructional properties 
instead of its mathematical properties.  The rest of the paper is as follows. Section 2 is about the 
geometry of the golden ratio in plane geometry and Section 3 is in solid geometry. Finally, Section 4 
concludes the paper.

The golden ratio in Plane Geometry 

 Here, we are presenting the golden ratio corresponding to plane geometry. For details, we 
refer to (Akhtaruzzaman & Shafie, 2011; Livio, 2002; and Markowsky, G. (1992).

1  The golden ratio corresponds to a line segment

 A straight line is said to have been cut in extreme and mean ratio when, as the whole line is 
to the greater segment, so is the greater to the less, as illustrated in Figure 1. 

 Figure 1 
The golden ratio in a line segment

Algorithm 1. Construction in a line segment
 

 Being an irrational number, it has non-repeating, non-terminating, and non-recurring decimal 
representation, like  ϕ =1.6180339887498948482... This ratio is also known as the divine ratio or 
divine proportion.  Here, we are using the term golden ratio
 1.1 The golden ratio corresponds to internal division 
 
 The golden ratio can be constructed corresponding to the internal division of a line segment. 

Algorithm 2 Construction corresponds to the internal division in a line segment

Figure 2 
The golden ratio from the internal division of a line segment

2   The golden ratio corresponds to exterior division

 It can also be constructed in the form of the external division of a line segment.  

Algorithm 3 Construction with exterior division of a line segment.

 

Figure 3  
The Golden Ratio corresponds to the external division of a line segment

 

 2  The golden ratio corresponds to different triangles

It can also be defined as corresponding to an isosceles triangle and an equilateral triangle: 

 2.1 The golden ratio corresponds to isosceles triangles 

Algorithm 4. Construction corresponding to an isosceles triangle 

Figure 4
Construction of a golden cut, golden gnomon, and golden triangle 

 Note that, such a cut BP in ∆ABC is the golden cut where triangles  ∆ABP and  ∆BCP are 
the golden gnomon and the golden triangle, respectively, Akhtaruzzaman & Shafie, 2011.

 2.2 The golden ratio corresponds to an equilateral triangle 

Algorithm 5 Construction corresponding to an equilateral triangle

Figure 5 
Construction corresponding to an equilateral triangle.

 

3.  The golden ratio corresponds to different quadrilaterals 
 
 Here, we are presenting its geometry corresponding to different variants of the quadrilaterals, 
Akhtaruzzaman & Shafie, 2011. 

 GROSS DEMESTIC PRODUCT (GDP) is a strategic compo-
nent in measuring National Income and Product Accounts. GDP 
represents the total value of final goods and services. GDP assessment 
is based on the quantum of consumption and investment by house-
holds and businesses in addition to the governmental expenditure and 
net exports. GDP is, therefore, crucial in maintaining a healthy 
economy as it embodies all financial transactions, including banking 
aspects. Planning and decision-making for the entire economy is thus 
conditioned on accurate information with respect of all the three 
stakeholders in the economic transactions, namely, households, 

 
 THE GOLDEN RATIO  has been used for centuries in design, 
architecture, structure, and construction. It has been used not only in 
ancient and classical structures but also in modern architecture, 
artwork, and photography. It is found in nature, the universe, and 
various aspects of mathematical sciences. The golden ratio is one of the 
fascinating topics. Mathematicians since Euclid have studied it. Mathe-
matics theorem and the golden ratio have been given great importance 
in the history of Mathematics, as Johannes Kepler also said, Geometry 
has two great treasures: one is the theorem of Pythagoras, and the other 
is the division of a line into mean and extreme ratios. The first we may 
compare to a mass of gold, the second, we may call a precious jewel. 
For details, we refer to (Bell, 1940; Boyer, 1968; Herz-Fischler, 2000; 
and Pacioli, 1509).

 There has been a lot of work about its historical background 
and existence. However, its systematic overview from the geometrical 

Figure 4

Partial Autocorrelation Function Graphs of the GDP Series 



businesses and government, which GDP is capable of delivering. We thus have an estimated 
nominal GDP (NGDP) which is used for the purpose of future planning by the finance ministry of 
the country. The real GDP (RGDP) is obtained after adjusting the estimated NGDP for inflation. 
The latter is also known as observed GDP in actual real-time. However, all budget planning and 
projections utilize the former, i.e., NGDP, whereas RGDP directly impacts the common citizen. 
Therefore, fluctuations in the level of GDP covariates are important in determining the gap 
between NGDP and RGDP. The effective mathematical relationship is represented as NGDP – 
inflation rate = RGDP.

 GDP computation is based on the principle of averages, which has an upward bias. There-
fore, GDP does not capture income, expenditure, or production changes at the regional level. For 
instance, if a large group of people experience declining income at a time when its complement 
group in the same population is smaller but experiences upwardly rising incomes, then GDP 
registers rise. To overcome this upward bias to a sufficiently large extent, in this paper, we focus 
on the concept of GDP per capita, which gives a more realistic picture of a nation's economic 
health. GDP measures an economy's current market value for all products and services generated 
during the assessment period. This value encompasses spending and costs on personal consump-
tion, government purchases, inventories, and the foreign trade balance. Thus, the total capital at 
stake and covered under the GDP envelope of a specific period can be viewed through (i) produc-
tion undertaken, (ii) income generated and (iii) expenditure accrued for the same period.

 Several research studies have been designed on the temporal data template where study 
units are macroeconomic units like countries or sub-regions like states, districts, or countries. In 
the present paper, we employ Autoregressive Integrated Moving Average (ARIMA) model 
proposed by Box and Jenkins (1970) for understanding the GDP movement with time. Past studies 
have used predictive ARIMA modelling for GDP of different countries. For instance, Kiriakidis 
and Kargas (2013) used predictive ARIMA model for predicting GDP of Greece, while correctly 
predicting recession in the near future. The RGDP in Greece for the period 2015-2017 was forecast 
by Dritsaki (2015) using an ARIMA (1, 1, 1) model based on data for the period of 1980-2013 
which correctly indicated a gradual rise in GDP. Wabomba et al. (2016) projected Kenya's GDP 
from 2013-2017 using an ARIMA (2, 2, 2) model based on data for period of 1960-2012. Predicted 
estimates correctly indicated that Kenya's GDP will expand faster over the next five years, from 
2013-2017. Agrawal (2018) estimated RGDP in India using publicly available quarterly RGDP 
data from Quarter 2 of 1996 to Quarter 2 of 2017 using ARIMA model. Abonazel et al. (2019) 
used an ARIMA (1, 2, 1) model over the period 1965-2016 to correctly forecast the rise in GDP for 
Egypt during for the period 2017-2026 and Eissa (2020) forecasted the GDP per capita for Egypt 
and Saudi Arabia, from 2019-2030 using the ARIMA (1, 1, 2) and ARIMA (1, 1, 1) models 
respectively based on data from the period 1968-2018. Their study showed that both Egypt's and 
Saudi Arabia's GDP per capita would continue to rise. In order to forecast the GDP and consumer 
`price index (CPI) for the Jordanian economy between 2020 and 2022, Ghazo (2021) employed 
ARIMA (3, 1, 1) model for GDP and ARIMA (1, 1, 0) model for CPI respectively, based on 
sample data from the period 19762019. They rightly anticipated stagflation for the Jordanian 
economy as a result of the predicted shrinkage in GDP and first rise in CPI. In order to escape the 
stagflationary cycle and achieve more stable CPI, this study provided inputs to the economic policy 
makers to develop sensible measures for boosting GDP and fending off inflationary forces. 
Mohamed (2022) used an ARIMA (5, 1, 2) model for the period between 1960-2022 to forecast 

trajectory of GDP in Somalia for the next fourteen quarters. In order to forecast the quarterly GDP 
of Philippines, Polintan et al. (2023) used data from 2018-2022 through an ARIMA (1, 2, 1) model 
for forecasting GDP in the Philippines, for 2022-2029 and predicted a steady growth trajectory. 
Lngale and Senan (2023) used predictive ARIMA (0, 2, 1) model for predicting GDP of India, 
pertaining to the period 1960-2020 and predicted a steady growth trajectory. Tolulope et al. (2023) 
used an ARIMA (2, 1, 2) model for predicting the Nigerian GDP using both in sample and out of 
sample prediction method, based on data for the period of 19602020 which correctly indicated a 
gradual rise in GDP. Urruttia (2019) used an ARIMA (1, 1, 1) model over the period from the first 
quarter of 1990 to the fourth quarter of 2017 with a total of 112 observations for forecasting future 
GDP. Remittance income in Nepal vis- a vis GDP has between studied by Gaudel (2006). Srivas-
tava and Chaudhary (2007) looked in to role of remittance in economic development of Nepal. 
Energy – GDP dependence in Nepal is focus of work under taken by Asghar (2008). Dahal (2010) 
studied role of GDP on educational enrolment and teaching strength in the school system of Nepal. 
GDP and oil consumption relations are analyzed by Bhusal (2010). Thagunna and Acharya (2013) 
assessed investment, saving, exports and imports as determinants of GDP. Chaudhary and Xiumin 
(2018) analysed determinants of inflation in Nepal. Interrelations between foreign trade and GDP 
of Nepal are investigated by Prajuli (2021). The present paper is the first study where a self-re-
gressed Bayesian investigation on GDP is made with identification of a unique TS statistical model 
to project future pattern of GDP in Nepal. One step ahead prediction for the year 2022 is validated 
by the recent World Bank report. Information about GDP can be quite advantageous for the 
business and economy, particularly for investors, business people and the governmental units 
aiming for cost effectiveness and maximizing profit in addition to guiding the government for 
framing future economic policies and in planning and control of various economic measures. 

The Study Region

 The Federal Democratic Republic of Nepal is a landlocked country in South Asia sharing 
its boundaries with India and Tibet. World Bank 2022 report the total GDP (hence froth, GDP) of 
Nepal to be 36.29 billion USD with 122 billion USD Purchasing Power Parity (PPP). GDP per 
capita is placed at 1,230 USD and PPP at 4,190 USD for the year 2021. GDP growth rate for Nepal 
is 2.7% while GDP of Nepal represents 0.02% of the world economy for the year 2021. The main 
economic sectors in Nepal are agricultural, hydro-power, natural resources, tourism and handi-
crafts. These sectors have a significant impact on Nepal economy in terms of their contribution to 
the GDP. Empirical research conducted by Nepal Rastra Bank (NRB) in the year 2020 concluded 
tourism to be a crucial economic sector for both the short-run and the long- run economic growth 
of Nepal. The NRB report indicated a significant relationship between tourism industry and the 
county’s economic growth which is one of the fasted growing industries in the country. More than 
a million indigenous people are engaged in the tourism industry for their livelihood. Tourism 
accounts for 7.9% of the total GDP while 65% of the population is engaged in agricultural activi-
ties contributing to 31.7% of GDP. About 20% of the area is cultivable, another 40.7 % is forested 
and the remaining land is mountainous. Thus, Nepal’s GDP is heavily dependent on remittance. 
According to the Central Bureau of Statistics Nepal (2022) report, Nepal has received remittance 
amounting to Nepalese Rupees (NRs.) 875 billion in the financial year 2019-20, which translates 
into a remittance to GDP ratio of 23.23%. Nepal is primarily a remittance-based country with 
remittance inflow amounting to more than a quarter of the country’s GDP. Nepal’s total labour 
force in the year 2020 was 16,016,900 with sectoral distribution by occupation as 43% in agricul-
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ture 21% in industry and share of services at 35%. The inflation rate in Nepal was recorded at 6% 
and the unemployment rate at 1.4%. Nepal’s total exports were reported to be worth 918 million 
USD in the year 2020, its main exports being carpets, textiles, pulses, tea, etc. Its main export 
partners are India, USA, Japan, Malaysia, Singapore, Germany, and Bangladesh. Total imports for 
the same period were recorded at 10 billion USD with prominent import goods being petroleum, 
electrical goods, machinery, gold, etc. Its principal import partners are India and China. 

 In this paper, we estimate and predict the GDP per capita of Nepal for next one and half 
decade by using ARIMA time series model. Section 2 describes model determination methodology 
used in the present work. Section 3 enumerates the models and the model adequacy measures. 
Section 4 focusses on data description and its analysis. Conclusion and recommendations are 
summarised in section 5. 

Methodology

 Time series models are characterized by the clustering effect or serial correlation in time. 
In the present paper, we employ ARIMA modelling to estimate and forecast Nepal's GDP. ARIMA 
modelling addresses such issues of dependent errors by introducing time lagged dependent variable 
and past error terms on the determinant side of the time series model. ARIMA model consists of 
AR, I, and MA segments where AR indicate the autoregressive part, I indicate integration i.e., the 
order of differencing in the observed series to achieve stationarity and MA indicate the moving 
average component in the model. The four stages of the iterative ARIMA model fitting process are 
Identification, estimation, diagnostic checking, and time series forecasting. (Figure 1). 

Figure 1
 Iterative ModellingProgression for a Stationary Variable in Box

 It employs a general technique for choosing a possible model from a large class of models. 
The chosen model is then evaluated to see if it can accurately explain the series using the historical 
data. Auto-correlation function (ACF) and partial auto-correlation function (PACF) are used to 
select one or more ARIMA models that seem appropriate during the identification stage. The next 
stage involves estimating the parameters of a specific Box-Jenkins model (1970) for a given time 
series. This step verifies the parsimony in terms of the number of model parameters or lack of 
over-specification by determining whether, in addition to the residuals being uncorrelated, the 
chosen least amount of squared residuals are found in the AR and/or MA parameters. A critical and 
sensitive aspect of an ARIMA model is parsimony. An over-parameterized model cannot predict as 
efficiently as a sparse model. Model diagnostics and testing is carried out in the third step. The 
underlying presumption is that the error terms, ε_t,  behave in a manner consistent with that of a 

stationary, unchanging process. If the residuals are drawn from a fixed distribution with constant 
mean and variance, they should be white noise. The most adequate Box-Jenkins model fulfils these 
prerequisites for the residual distribution. The best model needs to be decided based on these four 
paradigms. Thus, testing of the residuals would lead to a better suitable model. A graphical 
technique called a quantile-quantile (Q-Q) plot compares the distributional similarities of two 
datasets. In the context of ARIMA models, a Q-Q plot is often used to check whether the model's 
residuals follow a normal distribution. 

The Model and Forecast

1.  Autoregressive Model 

 With the intent to estimate the coefficients β_(j,) j = 1,2, …,p, an AR process for the 
univariate model is the one that shows a changing variable regressed on its own lagged values. AR 
model of order p, or AR (p), is expressed as,

ACF gives a correlation coefficient between the dependent variable and the same variable with 
different lags, but the effect of shorter lags is not kept constant, meaning that the effect of shorter 
lag is remained in the autocorrelation function. The correlation between y_t and y_(t-2) includes 
the correlation effect between y_t and y_(t-1). On the other hand, PACF gives a correlation coeffi-
cient between the dependent variable and its lag values while keeping the effect of shorter lags 
constant. The correlation between y_t and y_(t-2) does not include the effect of correlation 
between y_t and y_(t-1).

2.  Moving Average Model

 Let ε_t (t = 1,2,…)  be a white noise process, with t standing for a series of independent 
and identically distributed (iid) random variables expecting ε_t is zero and variance of ε_t is σ^2. 
After that, the qth order MA model, which accounts for the relationship between an observation 
and a residual error, is expressed as

  represents the impact of past errors on the response variable. Estimated coefficients θ_(j,) j 
= 1,2, …   ,q,  accounting for short-term memory help in forecasting.

3.   Autoregressive Moving Average Model

 The model AR, coupled with the MA modelling strategy is called Autoregressive Moving 
Average (ARMA) models intended for stationary data series. ARMA (p, q) model is expressed as:

 An amalgam of the AR and MA models is represented by (3). In this instance, the greatest 

order of p or q cannot be provided merely by ACF or PACF.

4.  Autoregressive Integrated Moving Average Model

 The extension of ARMA model is ARIMA model which enable to transform data by 
differencing to make data stationary. ARIMA model can be written as ARIMA (p, d, q), where p is 
the order of AR term, d is the number of differencing required to make series stationery and q is 
the order of MA term. For example, if y_it  is a non-stationary series, we will take a first-difference 
of y_t to make ∆y_t= stationary, and then the ARIMA (p, 1, q) model is expressed as: 
 

 Where ∆ y_t= y_t- y_(t-1), then d = 1, which implies a one-time differencing step. The 
model transforms into a random walk model, categorized as ARIMA (0.1,0), if p = q = 0.

Table 1 
ARIMA (p, d, q) Model for d = 0, 1, 2

5.  Model Adequacy Measures

 Before employing a model for predicting, diagnostic testing must be done on it. The 
residuals that remain after the model has been fitted are deemed sufficient if they are just white 
noise, and the residuals' ACF and PACF patterns may provide insight into how the model might be 
improved. Akaike (1973) developed a numerical score that can be used to identify the best model 
from among several candidate models for a specific data set. Akaike information criterion (AIC) 
results are helpful compared to other AIC scores for the same data set. A smaller AIC score 
indicates a better empirical fit. Estimated log-likelihood (L) is used to compute AIC as,
 
AIC = - 2(L + s)                                                                                                                         (5)          
 Such that s is the number of variables in the model plus the intercept term. Schwarz (1978) 
developed an alternative model comparison score known as Bayesian (Schwarz) information 
criterion BIC (or SIC) as an asymptotic approximation to the transformation of the Bayesian 
posterior probability of a candidate model expressed as,

BIC or SIC = - 2L + s log(n)                                                                                                     (6)             
 L is the maximum likelihood of the model, s is the number of parameters in the model, and 
n is the sample size. Like AIC, BIC also balances the goodness of fit and model complexity. 
However, BIC places a higher penalty on model complexity compared to AIC because it includes a 
term that depends on the sample size (s log(n)). As with AIC, the goal is to minimize the BIC value 
to select the best model.

 6.   Forecasting 

 Box-Jenkin's time series model method applies only to stationary and invertible time 
series. Lidiema (2017), Dritsakis and Klazoglou (2019). Future value forecasting can begin once 
the requirements have been met through procedures like differencing. We can utilize the chosen 
ARIMA model to predict when it meets the requirements of a stationary univariate process. 
Further, diagnostic checking is done to verify the forecasting accuracy of the ARIMA model. 
   
7.  Forecasting Accuracy

 We now present different measures listed to determine the accuracy of a prediction model.
 
 (i) Mean Absolute Error 

 The mean absolute difference between a dataset's actual (observed) values and the model's 
predicted values is computed using the Mean Absolute Error (MAE) algorithm. The absolute rather 
than squared differences make MAE more robust to the outliers. The formula to calculate the MAE 
is,
                                                     
 
 Where n is the total number of observations, y_(i )is the actual value of time series in data 
point i, and y _i denotes forecasted value of time series data point i.       

 (ii)  Root Mean Square Error 

 Root Mean Square Error (RMSE) is a popular accuracy measure in regression analysis 
based on the difference between a dataset's actual (observed) values and the model's predicted 
values. Lower RMSE indicates the alignment of the model's predictions with the actual data. The 
formula to calculate the RMSE is,
                  (8)
                                    
  
 However, due to the squaring of deviations, RMSE gives underweight to the outliers and 
may not be suitable for all types of datasets. Depending on the specific problem and characteristics 
of the data, we can use metrics such as Mean Absolute Error (MAE) or R-squared (coefficient of 
determination) may also be used in conjunction with RMSE to gain a more comprehensive under-
standing of the model's performance.            
                                                                                                                                                                                                              
                                                                                                                                                                                                                                                                                                                                                                                                                   
 (iii) Mean Absolute Percentage Error 

 Mean Absolute Percentage Error (MAPE) is used to measure the percentage variation 
between a dataset's actual (observed) values and the model's predicted values, and it is useful to 
understand the relative size of the errors compared to the actual values. The formula to calculate 
the MAPE is,

 However, it needs to be more well-defined when the actual values are zero or near zero, 
which can result in non-sensical very large MAPE values.

 (iv)  Mean Percentage Error 

 Mean Percentage Error (MPE) is instead of taking the absolute percentage difference like 
in MADE consider the signed percentage difference. Therefore, accounting for both the (positive 
and negative) magnitude of the errors. The formula to calculate the MPE is,
                                                      
                                              (10)        

 Such that, lower values of MPE indicate better forecast accuracy. A value of zero MPE 
would imply that the forecasted values match the actual values perfectly. However, MPE can have 
some limitations, such as the potential for the errors to cancel each other out, leading to an artifi-
cially low MPE even if the model's performance is unsatisfactory.

 (v) Mean Absolute Scaled Error 

 Mean Absolute Scaled Error (MASE) measures the performance of a model relative to the 
performance of a naive or benchmark model. The MASE provides a more interpretable measure of 
forecast accuracy than metrics like Mean Absolute Error (MAE), especially when dealing with 
time series data and comparing different forecasting models. It provides insights into whether a 
model provides meaningful improvements over a basic, naive forecasting approach. The formula to 
calculate the MASE is,   
                   (11)  
                                         

  where n is the length of the series and m is its frequency, i.e., m=1 for yearly data, m=4 for 
quarterly, m=12 for monthly, etc.
 MASE measures how well the model performs relative to the naive model's forecast errors taken 
as a benchmark. A value of MASE less than 1 indicates that the model performs better than the 
naive model regarding absolute forecast errors, while a value greater than 1 shows worse perfor-
mance than the naive model.

Data and Analysis

 For modelling and forecasting non-seasonal time series data of the annual GDP of Nepal, 
we have obtained data from the website of World Bank for the period 1960 – 2022. This implies 
that we have 63 observations of GDP, based on this data, we have proposed the ARIMA (2, 2, 1) 
model to forecast the GDP of Nepal for the next fifteen years (2023 – 2037).    

1. Model Identification for GDP

 Progression of GDP per capita of Nepal is graphed in Figure 2. A steady long-term rise is 
observed during 1960 – 2022. Beyond 2010 the rate of upward trend increases sharply. The time 
series may be quickly and easily determined to be unstable because of the GDP of Nepal's clearly 

marked increasing trend. Autocorrelation Function (ACF) (Figure 3) and Partial Autocorrelation 
Function (PACF) (Figure 4) are studied further to understand genesis of data structure. It is evident 
from the PACF that a single prominence indicates the fictitious primary value of n=1 when it 
crosses the confidence intervals. Furthermore, at ACF 11 heights, the same issue occurs. Accord-
ing to the ACF plot, the autocorrelations in the observed series is very high, and positive. A slow 
decay in ACF suggests that there may be changes in both the mean and the variability over time for 
this series. The arithmetic mean may be moving upward, with rising variability. Variability can be 
managed by calculating the natural logarithm of the given data, and the mean trend can be elimi-
nated by differencing once or twice as needed to achieve stationarity in the original observed 
series. An instantaneous nonlinear transformation applied to the optimal forecast of a variable may 
not produce the transformed variable's ideal forecast (Granger and Newbold, 1976). In particular, 
using the exponential function to forecasts for the original variable when excellent forecasts of the 
logs are available may not always be the best course of action. Therefore, we further employ the 
differencing process on the untransformed actual data series.

Flgure 2
The GDP Data During 1960 to 2021

2. Diagnostics and Estimation for GDP

 Based on GDP time chronological data for the period 1960 – 2022, we have considered ten 
tentative ARIMA (p, d, q) models (Table 2) and estimate the parameters using R interface.   The 
model with minimum AIC is deemed to fit best and will be referred to as Model I, henceforth. 

Table 2 
Tentative ARIMA (p, d, q) Models of GDP for Nepal

 The applicability test assesses the error or residual sequence of the fitted data for consisten-
cy. If a white noise sequence for residuals is obtained, then the model I is considered suitable for 
forecast.  If not, then the model needs improving. In this research, the ACF graph (Figure 5) and 
PACF graph (Figure 6) of residual sequence are exhibit white noise process. Hence, ARIMA 
(2,2,1) well fits (Table 2) the considered time series GDP data from Nepal.                                                

Figure 5
Autocorrelation Function Graphs of the Residual Series 

             
Figure 6 
Partial Autocorrelation Function Graphs of the Residual Series

 
 
Figure 7
 Q-Q Plot of the Residual Series

Figure 7, illustrates the normal Q-Q plot, the maximum points seem to falls on or near the line. So, 

it can be said that the model residuals are normally distributed which is one of the assumptions of 
linear regression.

 Table 3 represents the estimated coefficients and model adequacy criterion for both Model I 
and Model II. Model II estimates have smaller standard errors (Table 3) with smaller RMSE, MAE, 
MPE, MAPE and MASE. Table 4 which indicate smaller associated residuals for model fit. However, 
from the viewpoint of sample-based information, of AIC and BIC, Model I is a better representative 
for the considered time series.                         

3.  Forecasting  of GDP for Nepal

 One use of a model is to anticipate the future values of a time series after the model has been 
discovered, its parameters determined, and its diagnostics examined. Table 5 provides the GDP 
projections for the time window 2023 – 2037.  Figure 8 (a) and Figure 8 (b) shows the trend of the 
actual and forecasted GDP values with their 95% confidence limits for the years 1960 – 2022, as well 
as the GDP that would be predicted, based on these 63 years for the next 15 years forecasted values 
of GDP for the Model I and Model II respectively by using the proposed ARIMA (2, 2, 1) model. 
The Model I predicted values indicate that the Nepal GDP specific growth run continues. Since the 
national economy is a complex and dynamic system, and that the outcome is simply a predicted 
number, therefore in order to prevent the economy from suffering from strong fluctuations, the 
administrators we should maintain the stability and continuity of microeconomic regulation and 
control with special attention to the risk of adjustment in economic operation, (Wabomba et al. 2016). 
We should also adjust the corresponding target value in light of the current situation. Thus, to assess 

robustness of the model-based prediction we next include the first eight predicted values for the 
years 2023 – 2030 in the original time series data base. The same R program is now re-run for the 
composite period 1960 – 2030. Again ARIMA (2, 2, 1) emerges as the best fit model on the basis 
of AIC from among the eleven considered models. With the new compounded data model (Model 
II, henceforth). We predict the next seven annual GDP values for the period 2031 – 2037. 95% 
confidence interval for Model II are found to be shorter (Table 5) thus retrieving that Model II is 
more efficient for predictive purpose

Table 5
Forecasted of GDP for Nepal

 

Figure 8 (b) 
Time Series Plot for Actual and Forecasted GDP Values for Model II

         Figure 8 (b): Time Series Plot for Actual and Forecasted GDP Values for Model II.

Conclusion and Recommendations
  
 Our study discovers that the proposed ARIMA models are useful for future GDP per capita 
of Nepal. For the development and assessment of different ARIMA models, we have used annual 
data from 1960 – 2022 and found that the ARIMA (2, 2, 1) model as the most appropriate one. Our 
findings are in line with earlier research, which discovered that ARIMA models as effective tools 
of forecasting economic indicators like GDP. Our present study makes a practical contribution by 
providing in-depth explanations of how ARIMA models might be used to predict Nepal's per-capita 
GDP. The best fitted ARIMA model has been used to obtain forecast values for next one and half 
decade. The finding shows that the forecast values of Nepal’s GDP will be $1384.426 per capita in 
2023 and $2180.822per capita in 2037. The results show that Nepal a growing GDP substantially, 
however, this growth is not sufficient. So, it is suggested to the policy maker to invest more on 
areas of infrastructure development, research and development, and facilitate to establishing more 
startups with focus on green investment and sustainability.

 Model II reinforces that short- term prediction of GDP is more precise (Table 5). Model 
based prediction enable planners to address specific economic challenges such as resource alloca-
tion. A robust GDP prediction could guide the government about the expected revenue generation, 
and expenditure optimization. Business and governments could plan investment, inventory manage-
ment and volume of production. Statistical prediction thus empowers a decision maker with scope 
for evidence informed decision- making. However, one must be always aware that any model is 
sustainable as long as the background conditions such as other influencing market forces remain at 
the same level.
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beauty perspective, and construction design is somewhat lacking. This paper covers the 
state-of-the-art golden ratio based on its mathematical structures and their constructional properties 
instead of its mathematical properties.  The rest of the paper is as follows. Section 2 is about the 
geometry of the golden ratio in plane geometry and Section 3 is in solid geometry. Finally, Section 4 
concludes the paper.

The golden ratio in Plane Geometry 

 Here, we are presenting the golden ratio corresponding to plane geometry. For details, we 
refer to (Akhtaruzzaman & Shafie, 2011; Livio, 2002; and Markowsky, G. (1992).

1  The golden ratio corresponds to a line segment

 A straight line is said to have been cut in extreme and mean ratio when, as the whole line is 
to the greater segment, so is the greater to the less, as illustrated in Figure 1. 

 Figure 1 
The golden ratio in a line segment

Algorithm 1. Construction in a line segment
 

 Being an irrational number, it has non-repeating, non-terminating, and non-recurring decimal 
representation, like  ϕ =1.6180339887498948482... This ratio is also known as the divine ratio or 
divine proportion.  Here, we are using the term golden ratio
 1.1 The golden ratio corresponds to internal division 
 
 The golden ratio can be constructed corresponding to the internal division of a line segment. 

Algorithm 2 Construction corresponds to the internal division in a line segment

Figure 2 
The golden ratio from the internal division of a line segment

2   The golden ratio corresponds to exterior division

 It can also be constructed in the form of the external division of a line segment.  

Algorithm 3 Construction with exterior division of a line segment.

 

Figure 3  
The Golden Ratio corresponds to the external division of a line segment

 

 2  The golden ratio corresponds to different triangles

It can also be defined as corresponding to an isosceles triangle and an equilateral triangle: 

 2.1 The golden ratio corresponds to isosceles triangles 

Algorithm 4. Construction corresponding to an isosceles triangle 

Figure 4
Construction of a golden cut, golden gnomon, and golden triangle 

 Note that, such a cut BP in ∆ABC is the golden cut where triangles  ∆ABP and  ∆BCP are 
the golden gnomon and the golden triangle, respectively, Akhtaruzzaman & Shafie, 2011.

 2.2 The golden ratio corresponds to an equilateral triangle 

Algorithm 5 Construction corresponding to an equilateral triangle

Figure 5 
Construction corresponding to an equilateral triangle.

 

3.  The golden ratio corresponds to different quadrilaterals 
 
 Here, we are presenting its geometry corresponding to different variants of the quadrilaterals, 
Akhtaruzzaman & Shafie, 2011. 

 GROSS DEMESTIC PRODUCT (GDP) is a strategic compo-
nent in measuring National Income and Product Accounts. GDP 
represents the total value of final goods and services. GDP assessment 
is based on the quantum of consumption and investment by house-
holds and businesses in addition to the governmental expenditure and 
net exports. GDP is, therefore, crucial in maintaining a healthy 
economy as it embodies all financial transactions, including banking 
aspects. Planning and decision-making for the entire economy is thus 
conditioned on accurate information with respect of all the three 
stakeholders in the economic transactions, namely, households, 

 
 THE GOLDEN RATIO  has been used for centuries in design, 
architecture, structure, and construction. It has been used not only in 
ancient and classical structures but also in modern architecture, 
artwork, and photography. It is found in nature, the universe, and 
various aspects of mathematical sciences. The golden ratio is one of the 
fascinating topics. Mathematicians since Euclid have studied it. Mathe-
matics theorem and the golden ratio have been given great importance 
in the history of Mathematics, as Johannes Kepler also said, Geometry 
has two great treasures: one is the theorem of Pythagoras, and the other 
is the division of a line into mean and extreme ratios. The first we may 
compare to a mass of gold, the second, we may call a precious jewel. 
For details, we refer to (Bell, 1940; Boyer, 1968; Herz-Fischler, 2000; 
and Pacioli, 1509).

 There has been a lot of work about its historical background 
and existence. However, its systematic overview from the geometrical 



businesses and government, which GDP is capable of delivering. We thus have an estimated 
nominal GDP (NGDP) which is used for the purpose of future planning by the finance ministry of 
the country. The real GDP (RGDP) is obtained after adjusting the estimated NGDP for inflation. 
The latter is also known as observed GDP in actual real-time. However, all budget planning and 
projections utilize the former, i.e., NGDP, whereas RGDP directly impacts the common citizen. 
Therefore, fluctuations in the level of GDP covariates are important in determining the gap 
between NGDP and RGDP. The effective mathematical relationship is represented as NGDP – 
inflation rate = RGDP.

 GDP computation is based on the principle of averages, which has an upward bias. There-
fore, GDP does not capture income, expenditure, or production changes at the regional level. For 
instance, if a large group of people experience declining income at a time when its complement 
group in the same population is smaller but experiences upwardly rising incomes, then GDP 
registers rise. To overcome this upward bias to a sufficiently large extent, in this paper, we focus 
on the concept of GDP per capita, which gives a more realistic picture of a nation's economic 
health. GDP measures an economy's current market value for all products and services generated 
during the assessment period. This value encompasses spending and costs on personal consump-
tion, government purchases, inventories, and the foreign trade balance. Thus, the total capital at 
stake and covered under the GDP envelope of a specific period can be viewed through (i) produc-
tion undertaken, (ii) income generated and (iii) expenditure accrued for the same period.

 Several research studies have been designed on the temporal data template where study 
units are macroeconomic units like countries or sub-regions like states, districts, or countries. In 
the present paper, we employ Autoregressive Integrated Moving Average (ARIMA) model 
proposed by Box and Jenkins (1970) for understanding the GDP movement with time. Past studies 
have used predictive ARIMA modelling for GDP of different countries. For instance, Kiriakidis 
and Kargas (2013) used predictive ARIMA model for predicting GDP of Greece, while correctly 
predicting recession in the near future. The RGDP in Greece for the period 2015-2017 was forecast 
by Dritsaki (2015) using an ARIMA (1, 1, 1) model based on data for the period of 1980-2013 
which correctly indicated a gradual rise in GDP. Wabomba et al. (2016) projected Kenya's GDP 
from 2013-2017 using an ARIMA (2, 2, 2) model based on data for period of 1960-2012. Predicted 
estimates correctly indicated that Kenya's GDP will expand faster over the next five years, from 
2013-2017. Agrawal (2018) estimated RGDP in India using publicly available quarterly RGDP 
data from Quarter 2 of 1996 to Quarter 2 of 2017 using ARIMA model. Abonazel et al. (2019) 
used an ARIMA (1, 2, 1) model over the period 1965-2016 to correctly forecast the rise in GDP for 
Egypt during for the period 2017-2026 and Eissa (2020) forecasted the GDP per capita for Egypt 
and Saudi Arabia, from 2019-2030 using the ARIMA (1, 1, 2) and ARIMA (1, 1, 1) models 
respectively based on data from the period 1968-2018. Their study showed that both Egypt's and 
Saudi Arabia's GDP per capita would continue to rise. In order to forecast the GDP and consumer 
`price index (CPI) for the Jordanian economy between 2020 and 2022, Ghazo (2021) employed 
ARIMA (3, 1, 1) model for GDP and ARIMA (1, 1, 0) model for CPI respectively, based on 
sample data from the period 19762019. They rightly anticipated stagflation for the Jordanian 
economy as a result of the predicted shrinkage in GDP and first rise in CPI. In order to escape the 
stagflationary cycle and achieve more stable CPI, this study provided inputs to the economic policy 
makers to develop sensible measures for boosting GDP and fending off inflationary forces. 
Mohamed (2022) used an ARIMA (5, 1, 2) model for the period between 1960-2022 to forecast 

trajectory of GDP in Somalia for the next fourteen quarters. In order to forecast the quarterly GDP 
of Philippines, Polintan et al. (2023) used data from 2018-2022 through an ARIMA (1, 2, 1) model 
for forecasting GDP in the Philippines, for 2022-2029 and predicted a steady growth trajectory. 
Lngale and Senan (2023) used predictive ARIMA (0, 2, 1) model for predicting GDP of India, 
pertaining to the period 1960-2020 and predicted a steady growth trajectory. Tolulope et al. (2023) 
used an ARIMA (2, 1, 2) model for predicting the Nigerian GDP using both in sample and out of 
sample prediction method, based on data for the period of 19602020 which correctly indicated a 
gradual rise in GDP. Urruttia (2019) used an ARIMA (1, 1, 1) model over the period from the first 
quarter of 1990 to the fourth quarter of 2017 with a total of 112 observations for forecasting future 
GDP. Remittance income in Nepal vis- a vis GDP has between studied by Gaudel (2006). Srivas-
tava and Chaudhary (2007) looked in to role of remittance in economic development of Nepal. 
Energy – GDP dependence in Nepal is focus of work under taken by Asghar (2008). Dahal (2010) 
studied role of GDP on educational enrolment and teaching strength in the school system of Nepal. 
GDP and oil consumption relations are analyzed by Bhusal (2010). Thagunna and Acharya (2013) 
assessed investment, saving, exports and imports as determinants of GDP. Chaudhary and Xiumin 
(2018) analysed determinants of inflation in Nepal. Interrelations between foreign trade and GDP 
of Nepal are investigated by Prajuli (2021). The present paper is the first study where a self-re-
gressed Bayesian investigation on GDP is made with identification of a unique TS statistical model 
to project future pattern of GDP in Nepal. One step ahead prediction for the year 2022 is validated 
by the recent World Bank report. Information about GDP can be quite advantageous for the 
business and economy, particularly for investors, business people and the governmental units 
aiming for cost effectiveness and maximizing profit in addition to guiding the government for 
framing future economic policies and in planning and control of various economic measures. 

The Study Region

 The Federal Democratic Republic of Nepal is a landlocked country in South Asia sharing 
its boundaries with India and Tibet. World Bank 2022 report the total GDP (hence froth, GDP) of 
Nepal to be 36.29 billion USD with 122 billion USD Purchasing Power Parity (PPP). GDP per 
capita is placed at 1,230 USD and PPP at 4,190 USD for the year 2021. GDP growth rate for Nepal 
is 2.7% while GDP of Nepal represents 0.02% of the world economy for the year 2021. The main 
economic sectors in Nepal are agricultural, hydro-power, natural resources, tourism and handi-
crafts. These sectors have a significant impact on Nepal economy in terms of their contribution to 
the GDP. Empirical research conducted by Nepal Rastra Bank (NRB) in the year 2020 concluded 
tourism to be a crucial economic sector for both the short-run and the long- run economic growth 
of Nepal. The NRB report indicated a significant relationship between tourism industry and the 
county’s economic growth which is one of the fasted growing industries in the country. More than 
a million indigenous people are engaged in the tourism industry for their livelihood. Tourism 
accounts for 7.9% of the total GDP while 65% of the population is engaged in agricultural activi-
ties contributing to 31.7% of GDP. About 20% of the area is cultivable, another 40.7 % is forested 
and the remaining land is mountainous. Thus, Nepal’s GDP is heavily dependent on remittance. 
According to the Central Bureau of Statistics Nepal (2022) report, Nepal has received remittance 
amounting to Nepalese Rupees (NRs.) 875 billion in the financial year 2019-20, which translates 
into a remittance to GDP ratio of 23.23%. Nepal is primarily a remittance-based country with 
remittance inflow amounting to more than a quarter of the country’s GDP. Nepal’s total labour 
force in the year 2020 was 16,016,900 with sectoral distribution by occupation as 43% in agricul-
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ture 21% in industry and share of services at 35%. The inflation rate in Nepal was recorded at 6% 
and the unemployment rate at 1.4%. Nepal’s total exports were reported to be worth 918 million 
USD in the year 2020, its main exports being carpets, textiles, pulses, tea, etc. Its main export 
partners are India, USA, Japan, Malaysia, Singapore, Germany, and Bangladesh. Total imports for 
the same period were recorded at 10 billion USD with prominent import goods being petroleum, 
electrical goods, machinery, gold, etc. Its principal import partners are India and China. 

 In this paper, we estimate and predict the GDP per capita of Nepal for next one and half 
decade by using ARIMA time series model. Section 2 describes model determination methodology 
used in the present work. Section 3 enumerates the models and the model adequacy measures. 
Section 4 focusses on data description and its analysis. Conclusion and recommendations are 
summarised in section 5. 

Methodology

 Time series models are characterized by the clustering effect or serial correlation in time. 
In the present paper, we employ ARIMA modelling to estimate and forecast Nepal's GDP. ARIMA 
modelling addresses such issues of dependent errors by introducing time lagged dependent variable 
and past error terms on the determinant side of the time series model. ARIMA model consists of 
AR, I, and MA segments where AR indicate the autoregressive part, I indicate integration i.e., the 
order of differencing in the observed series to achieve stationarity and MA indicate the moving 
average component in the model. The four stages of the iterative ARIMA model fitting process are 
Identification, estimation, diagnostic checking, and time series forecasting. (Figure 1). 

Figure 1
 Iterative ModellingProgression for a Stationary Variable in Box

 It employs a general technique for choosing a possible model from a large class of models. 
The chosen model is then evaluated to see if it can accurately explain the series using the historical 
data. Auto-correlation function (ACF) and partial auto-correlation function (PACF) are used to 
select one or more ARIMA models that seem appropriate during the identification stage. The next 
stage involves estimating the parameters of a specific Box-Jenkins model (1970) for a given time 
series. This step verifies the parsimony in terms of the number of model parameters or lack of 
over-specification by determining whether, in addition to the residuals being uncorrelated, the 
chosen least amount of squared residuals are found in the AR and/or MA parameters. A critical and 
sensitive aspect of an ARIMA model is parsimony. An over-parameterized model cannot predict as 
efficiently as a sparse model. Model diagnostics and testing is carried out in the third step. The 
underlying presumption is that the error terms, ε_t,  behave in a manner consistent with that of a 

stationary, unchanging process. If the residuals are drawn from a fixed distribution with constant 
mean and variance, they should be white noise. The most adequate Box-Jenkins model fulfils these 
prerequisites for the residual distribution. The best model needs to be decided based on these four 
paradigms. Thus, testing of the residuals would lead to a better suitable model. A graphical 
technique called a quantile-quantile (Q-Q) plot compares the distributional similarities of two 
datasets. In the context of ARIMA models, a Q-Q plot is often used to check whether the model's 
residuals follow a normal distribution. 

The Model and Forecast

1.  Autoregressive Model 

 With the intent to estimate the coefficients β_(j,) j = 1,2, …,p, an AR process for the 
univariate model is the one that shows a changing variable regressed on its own lagged values. AR 
model of order p, or AR (p), is expressed as,

ACF gives a correlation coefficient between the dependent variable and the same variable with 
different lags, but the effect of shorter lags is not kept constant, meaning that the effect of shorter 
lag is remained in the autocorrelation function. The correlation between y_t and y_(t-2) includes 
the correlation effect between y_t and y_(t-1). On the other hand, PACF gives a correlation coeffi-
cient between the dependent variable and its lag values while keeping the effect of shorter lags 
constant. The correlation between y_t and y_(t-2) does not include the effect of correlation 
between y_t and y_(t-1).

2.  Moving Average Model

 Let ε_t (t = 1,2,…)  be a white noise process, with t standing for a series of independent 
and identically distributed (iid) random variables expecting ε_t is zero and variance of ε_t is σ^2. 
After that, the qth order MA model, which accounts for the relationship between an observation 
and a residual error, is expressed as

  represents the impact of past errors on the response variable. Estimated coefficients θ_(j,) j 
= 1,2, …   ,q,  accounting for short-term memory help in forecasting.

3.   Autoregressive Moving Average Model

 The model AR, coupled with the MA modelling strategy is called Autoregressive Moving 
Average (ARMA) models intended for stationary data series. ARMA (p, q) model is expressed as:

 An amalgam of the AR and MA models is represented by (3). In this instance, the greatest 

order of p or q cannot be provided merely by ACF or PACF.

4.  Autoregressive Integrated Moving Average Model

 The extension of ARMA model is ARIMA model which enable to transform data by 
differencing to make data stationary. ARIMA model can be written as ARIMA (p, d, q), where p is 
the order of AR term, d is the number of differencing required to make series stationery and q is 
the order of MA term. For example, if y_it  is a non-stationary series, we will take a first-difference 
of y_t to make ∆y_t= stationary, and then the ARIMA (p, 1, q) model is expressed as: 
 

 Where ∆ y_t= y_t- y_(t-1), then d = 1, which implies a one-time differencing step. The 
model transforms into a random walk model, categorized as ARIMA (0.1,0), if p = q = 0.

Table 1 
ARIMA (p, d, q) Model for d = 0, 1, 2

5.  Model Adequacy Measures

 Before employing a model for predicting, diagnostic testing must be done on it. The 
residuals that remain after the model has been fitted are deemed sufficient if they are just white 
noise, and the residuals' ACF and PACF patterns may provide insight into how the model might be 
improved. Akaike (1973) developed a numerical score that can be used to identify the best model 
from among several candidate models for a specific data set. Akaike information criterion (AIC) 
results are helpful compared to other AIC scores for the same data set. A smaller AIC score 
indicates a better empirical fit. Estimated log-likelihood (L) is used to compute AIC as,
 
AIC = - 2(L + s)                                                                                                                         (5)          
 Such that s is the number of variables in the model plus the intercept term. Schwarz (1978) 
developed an alternative model comparison score known as Bayesian (Schwarz) information 
criterion BIC (or SIC) as an asymptotic approximation to the transformation of the Bayesian 
posterior probability of a candidate model expressed as,

BIC or SIC = - 2L + s log(n)                                                                                                     (6)             
 L is the maximum likelihood of the model, s is the number of parameters in the model, and 
n is the sample size. Like AIC, BIC also balances the goodness of fit and model complexity. 
However, BIC places a higher penalty on model complexity compared to AIC because it includes a 
term that depends on the sample size (s log(n)). As with AIC, the goal is to minimize the BIC value 
to select the best model.

 6.   Forecasting 

 Box-Jenkin's time series model method applies only to stationary and invertible time 
series. Lidiema (2017), Dritsakis and Klazoglou (2019). Future value forecasting can begin once 
the requirements have been met through procedures like differencing. We can utilize the chosen 
ARIMA model to predict when it meets the requirements of a stationary univariate process. 
Further, diagnostic checking is done to verify the forecasting accuracy of the ARIMA model. 
   
7.  Forecasting Accuracy

 We now present different measures listed to determine the accuracy of a prediction model.
 
 (i) Mean Absolute Error 

 The mean absolute difference between a dataset's actual (observed) values and the model's 
predicted values is computed using the Mean Absolute Error (MAE) algorithm. The absolute rather 
than squared differences make MAE more robust to the outliers. The formula to calculate the MAE 
is,
                                                     
 
 Where n is the total number of observations, y_(i )is the actual value of time series in data 
point i, and y _i denotes forecasted value of time series data point i.       

 (ii)  Root Mean Square Error 

 Root Mean Square Error (RMSE) is a popular accuracy measure in regression analysis 
based on the difference between a dataset's actual (observed) values and the model's predicted 
values. Lower RMSE indicates the alignment of the model's predictions with the actual data. The 
formula to calculate the RMSE is,
                  (8)
                                    
  
 However, due to the squaring of deviations, RMSE gives underweight to the outliers and 
may not be suitable for all types of datasets. Depending on the specific problem and characteristics 
of the data, we can use metrics such as Mean Absolute Error (MAE) or R-squared (coefficient of 
determination) may also be used in conjunction with RMSE to gain a more comprehensive under-
standing of the model's performance.            
                                                                                                                                                                                                              
                                                                                                                                                                                                                                                                                                                                                                                                                   
 (iii) Mean Absolute Percentage Error 

 Mean Absolute Percentage Error (MAPE) is used to measure the percentage variation 
between a dataset's actual (observed) values and the model's predicted values, and it is useful to 
understand the relative size of the errors compared to the actual values. The formula to calculate 
the MAPE is,

 However, it needs to be more well-defined when the actual values are zero or near zero, 
which can result in non-sensical very large MAPE values.

 (iv)  Mean Percentage Error 

 Mean Percentage Error (MPE) is instead of taking the absolute percentage difference like 
in MADE consider the signed percentage difference. Therefore, accounting for both the (positive 
and negative) magnitude of the errors. The formula to calculate the MPE is,
                                                      
                                              (10)        

 Such that, lower values of MPE indicate better forecast accuracy. A value of zero MPE 
would imply that the forecasted values match the actual values perfectly. However, MPE can have 
some limitations, such as the potential for the errors to cancel each other out, leading to an artifi-
cially low MPE even if the model's performance is unsatisfactory.

 (v) Mean Absolute Scaled Error 

 Mean Absolute Scaled Error (MASE) measures the performance of a model relative to the 
performance of a naive or benchmark model. The MASE provides a more interpretable measure of 
forecast accuracy than metrics like Mean Absolute Error (MAE), especially when dealing with 
time series data and comparing different forecasting models. It provides insights into whether a 
model provides meaningful improvements over a basic, naive forecasting approach. The formula to 
calculate the MASE is,   
                   (11)  
                                         

  where n is the length of the series and m is its frequency, i.e., m=1 for yearly data, m=4 for 
quarterly, m=12 for monthly, etc.
 MASE measures how well the model performs relative to the naive model's forecast errors taken 
as a benchmark. A value of MASE less than 1 indicates that the model performs better than the 
naive model regarding absolute forecast errors, while a value greater than 1 shows worse perfor-
mance than the naive model.

Data and Analysis

 For modelling and forecasting non-seasonal time series data of the annual GDP of Nepal, 
we have obtained data from the website of World Bank for the period 1960 – 2022. This implies 
that we have 63 observations of GDP, based on this data, we have proposed the ARIMA (2, 2, 1) 
model to forecast the GDP of Nepal for the next fifteen years (2023 – 2037).    

1. Model Identification for GDP

 Progression of GDP per capita of Nepal is graphed in Figure 2. A steady long-term rise is 
observed during 1960 – 2022. Beyond 2010 the rate of upward trend increases sharply. The time 
series may be quickly and easily determined to be unstable because of the GDP of Nepal's clearly 

marked increasing trend. Autocorrelation Function (ACF) (Figure 3) and Partial Autocorrelation 
Function (PACF) (Figure 4) are studied further to understand genesis of data structure. It is evident 
from the PACF that a single prominence indicates the fictitious primary value of n=1 when it 
crosses the confidence intervals. Furthermore, at ACF 11 heights, the same issue occurs. Accord-
ing to the ACF plot, the autocorrelations in the observed series is very high, and positive. A slow 
decay in ACF suggests that there may be changes in both the mean and the variability over time for 
this series. The arithmetic mean may be moving upward, with rising variability. Variability can be 
managed by calculating the natural logarithm of the given data, and the mean trend can be elimi-
nated by differencing once or twice as needed to achieve stationarity in the original observed 
series. An instantaneous nonlinear transformation applied to the optimal forecast of a variable may 
not produce the transformed variable's ideal forecast (Granger and Newbold, 1976). In particular, 
using the exponential function to forecasts for the original variable when excellent forecasts of the 
logs are available may not always be the best course of action. Therefore, we further employ the 
differencing process on the untransformed actual data series.

Flgure 2
The GDP Data During 1960 to 2021

2. Diagnostics and Estimation for GDP

 Based on GDP time chronological data for the period 1960 – 2022, we have considered ten 
tentative ARIMA (p, d, q) models (Table 2) and estimate the parameters using R interface.   The 
model with minimum AIC is deemed to fit best and will be referred to as Model I, henceforth. 

Table 2 
Tentative ARIMA (p, d, q) Models of GDP for Nepal

 The applicability test assesses the error or residual sequence of the fitted data for consisten-
cy. If a white noise sequence for residuals is obtained, then the model I is considered suitable for 
forecast.  If not, then the model needs improving. In this research, the ACF graph (Figure 5) and 
PACF graph (Figure 6) of residual sequence are exhibit white noise process. Hence, ARIMA 
(2,2,1) well fits (Table 2) the considered time series GDP data from Nepal.                                                

Figure 5
Autocorrelation Function Graphs of the Residual Series 

             
Figure 6 
Partial Autocorrelation Function Graphs of the Residual Series

 
 
Figure 7
 Q-Q Plot of the Residual Series

Figure 7, illustrates the normal Q-Q plot, the maximum points seem to falls on or near the line. So, 

it can be said that the model residuals are normally distributed which is one of the assumptions of 
linear regression.

 Table 3 represents the estimated coefficients and model adequacy criterion for both Model I 
and Model II. Model II estimates have smaller standard errors (Table 3) with smaller RMSE, MAE, 
MPE, MAPE and MASE. Table 4 which indicate smaller associated residuals for model fit. However, 
from the viewpoint of sample-based information, of AIC and BIC, Model I is a better representative 
for the considered time series.                         

3.  Forecasting  of GDP for Nepal

 One use of a model is to anticipate the future values of a time series after the model has been 
discovered, its parameters determined, and its diagnostics examined. Table 5 provides the GDP 
projections for the time window 2023 – 2037.  Figure 8 (a) and Figure 8 (b) shows the trend of the 
actual and forecasted GDP values with their 95% confidence limits for the years 1960 – 2022, as well 
as the GDP that would be predicted, based on these 63 years for the next 15 years forecasted values 
of GDP for the Model I and Model II respectively by using the proposed ARIMA (2, 2, 1) model. 
The Model I predicted values indicate that the Nepal GDP specific growth run continues. Since the 
national economy is a complex and dynamic system, and that the outcome is simply a predicted 
number, therefore in order to prevent the economy from suffering from strong fluctuations, the 
administrators we should maintain the stability and continuity of microeconomic regulation and 
control with special attention to the risk of adjustment in economic operation, (Wabomba et al. 2016). 
We should also adjust the corresponding target value in light of the current situation. Thus, to assess 

Table 3  
Estimated Coefficients and Model Adequacy Criterion

 

Model I II 

Process AR1 AR2 MA1 AR1 AR2 MA1 

Coefficients 0.0665       -0.4065        -0.7644   0.0664       -0.4081       -0.7655 

Standard 

Error 

0.1333    0.1264    0.0911 0.1216    0.1143    0.0842 

AIC 618.36    689.70    

BIC 626.81 698.64 

 

Table 4  
Model Comparison Measures

 

Model RMSE MAE MPE MAPE MASE 

I 34.98561 20.4341 1.276214 6.908845 0.8097521 

II 32.95309 18.13002 1.138476 6.129198 0.6330358 

 

robustness of the model-based prediction we next include the first eight predicted values for the 
years 2023 – 2030 in the original time series data base. The same R program is now re-run for the 
composite period 1960 – 2030. Again ARIMA (2, 2, 1) emerges as the best fit model on the basis 
of AIC from among the eleven considered models. With the new compounded data model (Model 
II, henceforth). We predict the next seven annual GDP values for the period 2031 – 2037. 95% 
confidence interval for Model II are found to be shorter (Table 5) thus retrieving that Model II is 
more efficient for predictive purpose

Table 5
Forecasted of GDP for Nepal

 

Figure 8 (b) 
Time Series Plot for Actual and Forecasted GDP Values for Model II

         Figure 8 (b): Time Series Plot for Actual and Forecasted GDP Values for Model II.

Conclusion and Recommendations
  
 Our study discovers that the proposed ARIMA models are useful for future GDP per capita 
of Nepal. For the development and assessment of different ARIMA models, we have used annual 
data from 1960 – 2022 and found that the ARIMA (2, 2, 1) model as the most appropriate one. Our 
findings are in line with earlier research, which discovered that ARIMA models as effective tools 
of forecasting economic indicators like GDP. Our present study makes a practical contribution by 
providing in-depth explanations of how ARIMA models might be used to predict Nepal's per-capita 
GDP. The best fitted ARIMA model has been used to obtain forecast values for next one and half 
decade. The finding shows that the forecast values of Nepal’s GDP will be $1384.426 per capita in 
2023 and $2180.822per capita in 2037. The results show that Nepal a growing GDP substantially, 
however, this growth is not sufficient. So, it is suggested to the policy maker to invest more on 
areas of infrastructure development, research and development, and facilitate to establishing more 
startups with focus on green investment and sustainability.

 Model II reinforces that short- term prediction of GDP is more precise (Table 5). Model 
based prediction enable planners to address specific economic challenges such as resource alloca-
tion. A robust GDP prediction could guide the government about the expected revenue generation, 
and expenditure optimization. Business and governments could plan investment, inventory manage-
ment and volume of production. Statistical prediction thus empowers a decision maker with scope 
for evidence informed decision- making. However, one must be always aware that any model is 
sustainable as long as the background conditions such as other influencing market forces remain at 
the same level.
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beauty perspective, and construction design is somewhat lacking. This paper covers the 
state-of-the-art golden ratio based on its mathematical structures and their constructional properties 
instead of its mathematical properties.  The rest of the paper is as follows. Section 2 is about the 
geometry of the golden ratio in plane geometry and Section 3 is in solid geometry. Finally, Section 4 
concludes the paper.

The golden ratio in Plane Geometry 

 Here, we are presenting the golden ratio corresponding to plane geometry. For details, we 
refer to (Akhtaruzzaman & Shafie, 2011; Livio, 2002; and Markowsky, G. (1992).

1  The golden ratio corresponds to a line segment

 A straight line is said to have been cut in extreme and mean ratio when, as the whole line is 
to the greater segment, so is the greater to the less, as illustrated in Figure 1. 

 Figure 1 
The golden ratio in a line segment

Algorithm 1. Construction in a line segment
 

 Being an irrational number, it has non-repeating, non-terminating, and non-recurring decimal 
representation, like  ϕ =1.6180339887498948482... This ratio is also known as the divine ratio or 
divine proportion.  Here, we are using the term golden ratio
 1.1 The golden ratio corresponds to internal division 
 
 The golden ratio can be constructed corresponding to the internal division of a line segment. 

Algorithm 2 Construction corresponds to the internal division in a line segment

Figure 2 
The golden ratio from the internal division of a line segment

2   The golden ratio corresponds to exterior division

 It can also be constructed in the form of the external division of a line segment.  

Algorithm 3 Construction with exterior division of a line segment.

 

Figure 3  
The Golden Ratio corresponds to the external division of a line segment

 

 2  The golden ratio corresponds to different triangles

It can also be defined as corresponding to an isosceles triangle and an equilateral triangle: 

 2.1 The golden ratio corresponds to isosceles triangles 

Algorithm 4. Construction corresponding to an isosceles triangle 

Figure 4
Construction of a golden cut, golden gnomon, and golden triangle 

 Note that, such a cut BP in ∆ABC is the golden cut where triangles  ∆ABP and  ∆BCP are 
the golden gnomon and the golden triangle, respectively, Akhtaruzzaman & Shafie, 2011.

 2.2 The golden ratio corresponds to an equilateral triangle 

Algorithm 5 Construction corresponding to an equilateral triangle

Figure 5 
Construction corresponding to an equilateral triangle.

 

3.  The golden ratio corresponds to different quadrilaterals 
 
 Here, we are presenting its geometry corresponding to different variants of the quadrilaterals, 
Akhtaruzzaman & Shafie, 2011. 

 GROSS DEMESTIC PRODUCT (GDP) is a strategic compo-
nent in measuring National Income and Product Accounts. GDP 
represents the total value of final goods and services. GDP assessment 
is based on the quantum of consumption and investment by house-
holds and businesses in addition to the governmental expenditure and 
net exports. GDP is, therefore, crucial in maintaining a healthy 
economy as it embodies all financial transactions, including banking 
aspects. Planning and decision-making for the entire economy is thus 
conditioned on accurate information with respect of all the three 
stakeholders in the economic transactions, namely, households, 

 
 THE GOLDEN RATIO  has been used for centuries in design, 
architecture, structure, and construction. It has been used not only in 
ancient and classical structures but also in modern architecture, 
artwork, and photography. It is found in nature, the universe, and 
various aspects of mathematical sciences. The golden ratio is one of the 
fascinating topics. Mathematicians since Euclid have studied it. Mathe-
matics theorem and the golden ratio have been given great importance 
in the history of Mathematics, as Johannes Kepler also said, Geometry 
has two great treasures: one is the theorem of Pythagoras, and the other 
is the division of a line into mean and extreme ratios. The first we may 
compare to a mass of gold, the second, we may call a precious jewel. 
For details, we refer to (Bell, 1940; Boyer, 1968; Herz-Fischler, 2000; 
and Pacioli, 1509).

 There has been a lot of work about its historical background 
and existence. However, its systematic overview from the geometrical 



businesses and government, which GDP is capable of delivering. We thus have an estimated 
nominal GDP (NGDP) which is used for the purpose of future planning by the finance ministry of 
the country. The real GDP (RGDP) is obtained after adjusting the estimated NGDP for inflation. 
The latter is also known as observed GDP in actual real-time. However, all budget planning and 
projections utilize the former, i.e., NGDP, whereas RGDP directly impacts the common citizen. 
Therefore, fluctuations in the level of GDP covariates are important in determining the gap 
between NGDP and RGDP. The effective mathematical relationship is represented as NGDP – 
inflation rate = RGDP.

 GDP computation is based on the principle of averages, which has an upward bias. There-
fore, GDP does not capture income, expenditure, or production changes at the regional level. For 
instance, if a large group of people experience declining income at a time when its complement 
group in the same population is smaller but experiences upwardly rising incomes, then GDP 
registers rise. To overcome this upward bias to a sufficiently large extent, in this paper, we focus 
on the concept of GDP per capita, which gives a more realistic picture of a nation's economic 
health. GDP measures an economy's current market value for all products and services generated 
during the assessment period. This value encompasses spending and costs on personal consump-
tion, government purchases, inventories, and the foreign trade balance. Thus, the total capital at 
stake and covered under the GDP envelope of a specific period can be viewed through (i) produc-
tion undertaken, (ii) income generated and (iii) expenditure accrued for the same period.

 Several research studies have been designed on the temporal data template where study 
units are macroeconomic units like countries or sub-regions like states, districts, or countries. In 
the present paper, we employ Autoregressive Integrated Moving Average (ARIMA) model 
proposed by Box and Jenkins (1970) for understanding the GDP movement with time. Past studies 
have used predictive ARIMA modelling for GDP of different countries. For instance, Kiriakidis 
and Kargas (2013) used predictive ARIMA model for predicting GDP of Greece, while correctly 
predicting recession in the near future. The RGDP in Greece for the period 2015-2017 was forecast 
by Dritsaki (2015) using an ARIMA (1, 1, 1) model based on data for the period of 1980-2013 
which correctly indicated a gradual rise in GDP. Wabomba et al. (2016) projected Kenya's GDP 
from 2013-2017 using an ARIMA (2, 2, 2) model based on data for period of 1960-2012. Predicted 
estimates correctly indicated that Kenya's GDP will expand faster over the next five years, from 
2013-2017. Agrawal (2018) estimated RGDP in India using publicly available quarterly RGDP 
data from Quarter 2 of 1996 to Quarter 2 of 2017 using ARIMA model. Abonazel et al. (2019) 
used an ARIMA (1, 2, 1) model over the period 1965-2016 to correctly forecast the rise in GDP for 
Egypt during for the period 2017-2026 and Eissa (2020) forecasted the GDP per capita for Egypt 
and Saudi Arabia, from 2019-2030 using the ARIMA (1, 1, 2) and ARIMA (1, 1, 1) models 
respectively based on data from the period 1968-2018. Their study showed that both Egypt's and 
Saudi Arabia's GDP per capita would continue to rise. In order to forecast the GDP and consumer 
`price index (CPI) for the Jordanian economy between 2020 and 2022, Ghazo (2021) employed 
ARIMA (3, 1, 1) model for GDP and ARIMA (1, 1, 0) model for CPI respectively, based on 
sample data from the period 19762019. They rightly anticipated stagflation for the Jordanian 
economy as a result of the predicted shrinkage in GDP and first rise in CPI. In order to escape the 
stagflationary cycle and achieve more stable CPI, this study provided inputs to the economic policy 
makers to develop sensible measures for boosting GDP and fending off inflationary forces. 
Mohamed (2022) used an ARIMA (5, 1, 2) model for the period between 1960-2022 to forecast 

trajectory of GDP in Somalia for the next fourteen quarters. In order to forecast the quarterly GDP 
of Philippines, Polintan et al. (2023) used data from 2018-2022 through an ARIMA (1, 2, 1) model 
for forecasting GDP in the Philippines, for 2022-2029 and predicted a steady growth trajectory. 
Lngale and Senan (2023) used predictive ARIMA (0, 2, 1) model for predicting GDP of India, 
pertaining to the period 1960-2020 and predicted a steady growth trajectory. Tolulope et al. (2023) 
used an ARIMA (2, 1, 2) model for predicting the Nigerian GDP using both in sample and out of 
sample prediction method, based on data for the period of 19602020 which correctly indicated a 
gradual rise in GDP. Urruttia (2019) used an ARIMA (1, 1, 1) model over the period from the first 
quarter of 1990 to the fourth quarter of 2017 with a total of 112 observations for forecasting future 
GDP. Remittance income in Nepal vis- a vis GDP has between studied by Gaudel (2006). Srivas-
tava and Chaudhary (2007) looked in to role of remittance in economic development of Nepal. 
Energy – GDP dependence in Nepal is focus of work under taken by Asghar (2008). Dahal (2010) 
studied role of GDP on educational enrolment and teaching strength in the school system of Nepal. 
GDP and oil consumption relations are analyzed by Bhusal (2010). Thagunna and Acharya (2013) 
assessed investment, saving, exports and imports as determinants of GDP. Chaudhary and Xiumin 
(2018) analysed determinants of inflation in Nepal. Interrelations between foreign trade and GDP 
of Nepal are investigated by Prajuli (2021). The present paper is the first study where a self-re-
gressed Bayesian investigation on GDP is made with identification of a unique TS statistical model 
to project future pattern of GDP in Nepal. One step ahead prediction for the year 2022 is validated 
by the recent World Bank report. Information about GDP can be quite advantageous for the 
business and economy, particularly for investors, business people and the governmental units 
aiming for cost effectiveness and maximizing profit in addition to guiding the government for 
framing future economic policies and in planning and control of various economic measures. 

The Study Region

 The Federal Democratic Republic of Nepal is a landlocked country in South Asia sharing 
its boundaries with India and Tibet. World Bank 2022 report the total GDP (hence froth, GDP) of 
Nepal to be 36.29 billion USD with 122 billion USD Purchasing Power Parity (PPP). GDP per 
capita is placed at 1,230 USD and PPP at 4,190 USD for the year 2021. GDP growth rate for Nepal 
is 2.7% while GDP of Nepal represents 0.02% of the world economy for the year 2021. The main 
economic sectors in Nepal are agricultural, hydro-power, natural resources, tourism and handi-
crafts. These sectors have a significant impact on Nepal economy in terms of their contribution to 
the GDP. Empirical research conducted by Nepal Rastra Bank (NRB) in the year 2020 concluded 
tourism to be a crucial economic sector for both the short-run and the long- run economic growth 
of Nepal. The NRB report indicated a significant relationship between tourism industry and the 
county’s economic growth which is one of the fasted growing industries in the country. More than 
a million indigenous people are engaged in the tourism industry for their livelihood. Tourism 
accounts for 7.9% of the total GDP while 65% of the population is engaged in agricultural activi-
ties contributing to 31.7% of GDP. About 20% of the area is cultivable, another 40.7 % is forested 
and the remaining land is mountainous. Thus, Nepal’s GDP is heavily dependent on remittance. 
According to the Central Bureau of Statistics Nepal (2022) report, Nepal has received remittance 
amounting to Nepalese Rupees (NRs.) 875 billion in the financial year 2019-20, which translates 
into a remittance to GDP ratio of 23.23%. Nepal is primarily a remittance-based country with 
remittance inflow amounting to more than a quarter of the country’s GDP. Nepal’s total labour 
force in the year 2020 was 16,016,900 with sectoral distribution by occupation as 43% in agricul-
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ture 21% in industry and share of services at 35%. The inflation rate in Nepal was recorded at 6% 
and the unemployment rate at 1.4%. Nepal’s total exports were reported to be worth 918 million 
USD in the year 2020, its main exports being carpets, textiles, pulses, tea, etc. Its main export 
partners are India, USA, Japan, Malaysia, Singapore, Germany, and Bangladesh. Total imports for 
the same period were recorded at 10 billion USD with prominent import goods being petroleum, 
electrical goods, machinery, gold, etc. Its principal import partners are India and China. 

 In this paper, we estimate and predict the GDP per capita of Nepal for next one and half 
decade by using ARIMA time series model. Section 2 describes model determination methodology 
used in the present work. Section 3 enumerates the models and the model adequacy measures. 
Section 4 focusses on data description and its analysis. Conclusion and recommendations are 
summarised in section 5. 

Methodology

 Time series models are characterized by the clustering effect or serial correlation in time. 
In the present paper, we employ ARIMA modelling to estimate and forecast Nepal's GDP. ARIMA 
modelling addresses such issues of dependent errors by introducing time lagged dependent variable 
and past error terms on the determinant side of the time series model. ARIMA model consists of 
AR, I, and MA segments where AR indicate the autoregressive part, I indicate integration i.e., the 
order of differencing in the observed series to achieve stationarity and MA indicate the moving 
average component in the model. The four stages of the iterative ARIMA model fitting process are 
Identification, estimation, diagnostic checking, and time series forecasting. (Figure 1). 

Figure 1
 Iterative ModellingProgression for a Stationary Variable in Box

 It employs a general technique for choosing a possible model from a large class of models. 
The chosen model is then evaluated to see if it can accurately explain the series using the historical 
data. Auto-correlation function (ACF) and partial auto-correlation function (PACF) are used to 
select one or more ARIMA models that seem appropriate during the identification stage. The next 
stage involves estimating the parameters of a specific Box-Jenkins model (1970) for a given time 
series. This step verifies the parsimony in terms of the number of model parameters or lack of 
over-specification by determining whether, in addition to the residuals being uncorrelated, the 
chosen least amount of squared residuals are found in the AR and/or MA parameters. A critical and 
sensitive aspect of an ARIMA model is parsimony. An over-parameterized model cannot predict as 
efficiently as a sparse model. Model diagnostics and testing is carried out in the third step. The 
underlying presumption is that the error terms, ε_t,  behave in a manner consistent with that of a 

stationary, unchanging process. If the residuals are drawn from a fixed distribution with constant 
mean and variance, they should be white noise. The most adequate Box-Jenkins model fulfils these 
prerequisites for the residual distribution. The best model needs to be decided based on these four 
paradigms. Thus, testing of the residuals would lead to a better suitable model. A graphical 
technique called a quantile-quantile (Q-Q) plot compares the distributional similarities of two 
datasets. In the context of ARIMA models, a Q-Q plot is often used to check whether the model's 
residuals follow a normal distribution. 

The Model and Forecast

1.  Autoregressive Model 

 With the intent to estimate the coefficients β_(j,) j = 1,2, …,p, an AR process for the 
univariate model is the one that shows a changing variable regressed on its own lagged values. AR 
model of order p, or AR (p), is expressed as,

ACF gives a correlation coefficient between the dependent variable and the same variable with 
different lags, but the effect of shorter lags is not kept constant, meaning that the effect of shorter 
lag is remained in the autocorrelation function. The correlation between y_t and y_(t-2) includes 
the correlation effect between y_t and y_(t-1). On the other hand, PACF gives a correlation coeffi-
cient between the dependent variable and its lag values while keeping the effect of shorter lags 
constant. The correlation between y_t and y_(t-2) does not include the effect of correlation 
between y_t and y_(t-1).

2.  Moving Average Model

 Let ε_t (t = 1,2,…)  be a white noise process, with t standing for a series of independent 
and identically distributed (iid) random variables expecting ε_t is zero and variance of ε_t is σ^2. 
After that, the qth order MA model, which accounts for the relationship between an observation 
and a residual error, is expressed as

  represents the impact of past errors on the response variable. Estimated coefficients θ_(j,) j 
= 1,2, …   ,q,  accounting for short-term memory help in forecasting.

3.   Autoregressive Moving Average Model

 The model AR, coupled with the MA modelling strategy is called Autoregressive Moving 
Average (ARMA) models intended for stationary data series. ARMA (p, q) model is expressed as:

 An amalgam of the AR and MA models is represented by (3). In this instance, the greatest 

order of p or q cannot be provided merely by ACF or PACF.

4.  Autoregressive Integrated Moving Average Model

 The extension of ARMA model is ARIMA model which enable to transform data by 
differencing to make data stationary. ARIMA model can be written as ARIMA (p, d, q), where p is 
the order of AR term, d is the number of differencing required to make series stationery and q is 
the order of MA term. For example, if y_it  is a non-stationary series, we will take a first-difference 
of y_t to make ∆y_t= stationary, and then the ARIMA (p, 1, q) model is expressed as: 
 

 Where ∆ y_t= y_t- y_(t-1), then d = 1, which implies a one-time differencing step. The 
model transforms into a random walk model, categorized as ARIMA (0.1,0), if p = q = 0.

Table 1 
ARIMA (p, d, q) Model for d = 0, 1, 2

5.  Model Adequacy Measures

 Before employing a model for predicting, diagnostic testing must be done on it. The 
residuals that remain after the model has been fitted are deemed sufficient if they are just white 
noise, and the residuals' ACF and PACF patterns may provide insight into how the model might be 
improved. Akaike (1973) developed a numerical score that can be used to identify the best model 
from among several candidate models for a specific data set. Akaike information criterion (AIC) 
results are helpful compared to other AIC scores for the same data set. A smaller AIC score 
indicates a better empirical fit. Estimated log-likelihood (L) is used to compute AIC as,
 
AIC = - 2(L + s)                                                                                                                         (5)          
 Such that s is the number of variables in the model plus the intercept term. Schwarz (1978) 
developed an alternative model comparison score known as Bayesian (Schwarz) information 
criterion BIC (or SIC) as an asymptotic approximation to the transformation of the Bayesian 
posterior probability of a candidate model expressed as,

BIC or SIC = - 2L + s log(n)                                                                                                     (6)             
 L is the maximum likelihood of the model, s is the number of parameters in the model, and 
n is the sample size. Like AIC, BIC also balances the goodness of fit and model complexity. 
However, BIC places a higher penalty on model complexity compared to AIC because it includes a 
term that depends on the sample size (s log(n)). As with AIC, the goal is to minimize the BIC value 
to select the best model.

 6.   Forecasting 

 Box-Jenkin's time series model method applies only to stationary and invertible time 
series. Lidiema (2017), Dritsakis and Klazoglou (2019). Future value forecasting can begin once 
the requirements have been met through procedures like differencing. We can utilize the chosen 
ARIMA model to predict when it meets the requirements of a stationary univariate process. 
Further, diagnostic checking is done to verify the forecasting accuracy of the ARIMA model. 
   
7.  Forecasting Accuracy

 We now present different measures listed to determine the accuracy of a prediction model.
 
 (i) Mean Absolute Error 

 The mean absolute difference between a dataset's actual (observed) values and the model's 
predicted values is computed using the Mean Absolute Error (MAE) algorithm. The absolute rather 
than squared differences make MAE more robust to the outliers. The formula to calculate the MAE 
is,
                                                     
 
 Where n is the total number of observations, y_(i )is the actual value of time series in data 
point i, and y _i denotes forecasted value of time series data point i.       

 (ii)  Root Mean Square Error 

 Root Mean Square Error (RMSE) is a popular accuracy measure in regression analysis 
based on the difference between a dataset's actual (observed) values and the model's predicted 
values. Lower RMSE indicates the alignment of the model's predictions with the actual data. The 
formula to calculate the RMSE is,
                  (8)
                                    
  
 However, due to the squaring of deviations, RMSE gives underweight to the outliers and 
may not be suitable for all types of datasets. Depending on the specific problem and characteristics 
of the data, we can use metrics such as Mean Absolute Error (MAE) or R-squared (coefficient of 
determination) may also be used in conjunction with RMSE to gain a more comprehensive under-
standing of the model's performance.            
                                                                                                                                                                                                              
                                                                                                                                                                                                                                                                                                                                                                                                                   
 (iii) Mean Absolute Percentage Error 

 Mean Absolute Percentage Error (MAPE) is used to measure the percentage variation 
between a dataset's actual (observed) values and the model's predicted values, and it is useful to 
understand the relative size of the errors compared to the actual values. The formula to calculate 
the MAPE is,

 However, it needs to be more well-defined when the actual values are zero or near zero, 
which can result in non-sensical very large MAPE values.

 (iv)  Mean Percentage Error 

 Mean Percentage Error (MPE) is instead of taking the absolute percentage difference like 
in MADE consider the signed percentage difference. Therefore, accounting for both the (positive 
and negative) magnitude of the errors. The formula to calculate the MPE is,
                                                      
                                              (10)        

 Such that, lower values of MPE indicate better forecast accuracy. A value of zero MPE 
would imply that the forecasted values match the actual values perfectly. However, MPE can have 
some limitations, such as the potential for the errors to cancel each other out, leading to an artifi-
cially low MPE even if the model's performance is unsatisfactory.

 (v) Mean Absolute Scaled Error 

 Mean Absolute Scaled Error (MASE) measures the performance of a model relative to the 
performance of a naive or benchmark model. The MASE provides a more interpretable measure of 
forecast accuracy than metrics like Mean Absolute Error (MAE), especially when dealing with 
time series data and comparing different forecasting models. It provides insights into whether a 
model provides meaningful improvements over a basic, naive forecasting approach. The formula to 
calculate the MASE is,   
                   (11)  
                                         

  where n is the length of the series and m is its frequency, i.e., m=1 for yearly data, m=4 for 
quarterly, m=12 for monthly, etc.
 MASE measures how well the model performs relative to the naive model's forecast errors taken 
as a benchmark. A value of MASE less than 1 indicates that the model performs better than the 
naive model regarding absolute forecast errors, while a value greater than 1 shows worse perfor-
mance than the naive model.

Data and Analysis

 For modelling and forecasting non-seasonal time series data of the annual GDP of Nepal, 
we have obtained data from the website of World Bank for the period 1960 – 2022. This implies 
that we have 63 observations of GDP, based on this data, we have proposed the ARIMA (2, 2, 1) 
model to forecast the GDP of Nepal for the next fifteen years (2023 – 2037).    

1. Model Identification for GDP

 Progression of GDP per capita of Nepal is graphed in Figure 2. A steady long-term rise is 
observed during 1960 – 2022. Beyond 2010 the rate of upward trend increases sharply. The time 
series may be quickly and easily determined to be unstable because of the GDP of Nepal's clearly 

marked increasing trend. Autocorrelation Function (ACF) (Figure 3) and Partial Autocorrelation 
Function (PACF) (Figure 4) are studied further to understand genesis of data structure. It is evident 
from the PACF that a single prominence indicates the fictitious primary value of n=1 when it 
crosses the confidence intervals. Furthermore, at ACF 11 heights, the same issue occurs. Accord-
ing to the ACF plot, the autocorrelations in the observed series is very high, and positive. A slow 
decay in ACF suggests that there may be changes in both the mean and the variability over time for 
this series. The arithmetic mean may be moving upward, with rising variability. Variability can be 
managed by calculating the natural logarithm of the given data, and the mean trend can be elimi-
nated by differencing once or twice as needed to achieve stationarity in the original observed 
series. An instantaneous nonlinear transformation applied to the optimal forecast of a variable may 
not produce the transformed variable's ideal forecast (Granger and Newbold, 1976). In particular, 
using the exponential function to forecasts for the original variable when excellent forecasts of the 
logs are available may not always be the best course of action. Therefore, we further employ the 
differencing process on the untransformed actual data series.

Flgure 2
The GDP Data During 1960 to 2021

2. Diagnostics and Estimation for GDP

 Based on GDP time chronological data for the period 1960 – 2022, we have considered ten 
tentative ARIMA (p, d, q) models (Table 2) and estimate the parameters using R interface.   The 
model with minimum AIC is deemed to fit best and will be referred to as Model I, henceforth. 

Table 2 
Tentative ARIMA (p, d, q) Models of GDP for Nepal

 The applicability test assesses the error or residual sequence of the fitted data for consisten-
cy. If a white noise sequence for residuals is obtained, then the model I is considered suitable for 
forecast.  If not, then the model needs improving. In this research, the ACF graph (Figure 5) and 
PACF graph (Figure 6) of residual sequence are exhibit white noise process. Hence, ARIMA 
(2,2,1) well fits (Table 2) the considered time series GDP data from Nepal.                                                

Figure 5
Autocorrelation Function Graphs of the Residual Series 

             
Figure 6 
Partial Autocorrelation Function Graphs of the Residual Series

 
 
Figure 7
 Q-Q Plot of the Residual Series

Figure 7, illustrates the normal Q-Q plot, the maximum points seem to falls on or near the line. So, 

it can be said that the model residuals are normally distributed which is one of the assumptions of 
linear regression.

 Table 3 represents the estimated coefficients and model adequacy criterion for both Model I 
and Model II. Model II estimates have smaller standard errors (Table 3) with smaller RMSE, MAE, 
MPE, MAPE and MASE. Table 4 which indicate smaller associated residuals for model fit. However, 
from the viewpoint of sample-based information, of AIC and BIC, Model I is a better representative 
for the considered time series.                         

3.  Forecasting  of GDP for Nepal

 One use of a model is to anticipate the future values of a time series after the model has been 
discovered, its parameters determined, and its diagnostics examined. Table 5 provides the GDP 
projections for the time window 2023 – 2037.  Figure 8 (a) and Figure 8 (b) shows the trend of the 
actual and forecasted GDP values with their 95% confidence limits for the years 1960 – 2022, as well 
as the GDP that would be predicted, based on these 63 years for the next 15 years forecasted values 
of GDP for the Model I and Model II respectively by using the proposed ARIMA (2, 2, 1) model. 
The Model I predicted values indicate that the Nepal GDP specific growth run continues. Since the 
national economy is a complex and dynamic system, and that the outcome is simply a predicted 
number, therefore in order to prevent the economy from suffering from strong fluctuations, the 
administrators we should maintain the stability and continuity of microeconomic regulation and 
control with special attention to the risk of adjustment in economic operation, (Wabomba et al. 2016). 
We should also adjust the corresponding target value in light of the current situation. Thus, to assess 

robustness of the model-based prediction we next include the first eight predicted values for the 
years 2023 – 2030 in the original time series data base. The same R program is now re-run for the 
composite period 1960 – 2030. Again ARIMA (2, 2, 1) emerges as the best fit model on the basis 
of AIC from among the eleven considered models. With the new compounded data model (Model 
II, henceforth). We predict the next seven annual GDP values for the period 2031 – 2037. 95% 
confidence interval for Model II are found to be shorter (Table 5) thus retrieving that Model II is 
more efficient for predictive purpose

Table 5
Forecasted of GDP for Nepal

 

 

Year Forecasted GDP per capita 95% Confidence Interval 

Model -I Model-II Model-I Model-II 

Lower 

limit 

Upper limit Lower 

limit 

Upper 

limit 

2023 1384.426  1312.961 1455.891   

2024 1421.475  1304.142 1538.808   

2025 1481.899  1338.590 1625.207   

2026 1548.280  1379.252 1717.308   

2027 1605.555  1403.154 1807.956   

2028 1659.803  1421.051 1898.554   

2029 1717.551  1442.946 1992.155   

2030 1776.762  1465.340 2088.185   

2031 1834.648 1834.645 1484.161 2185.135 1767.657 1901.634 

2032 1891.851 1891.843 1500.546 2283.156 1781.928 2001.758 

2033 1949.547 1949.538 1516.257 2382.838 1815.423 2083.653 

2034 2007.554 2007.545 1531.025 2484.084 1849.483 2165.607 

2035 2065.381 2065.370 1544.189 2586.573 1876.158 2254.582 

2036 2123.070 2123.056 1555.862 2690.278 1899.910 2346.202 

2037 2180.822 2180.806 1566.364 2795.281 1924.230 2437.382 
 

Figure 8 (b) 
Time Series Plot for Actual and Forecasted GDP Values for Model II

         Figure 8 (b): Time Series Plot for Actual and Forecasted GDP Values for Model II.

Conclusion and Recommendations
  
 Our study discovers that the proposed ARIMA models are useful for future GDP per capita 
of Nepal. For the development and assessment of different ARIMA models, we have used annual 
data from 1960 – 2022 and found that the ARIMA (2, 2, 1) model as the most appropriate one. Our 
findings are in line with earlier research, which discovered that ARIMA models as effective tools 
of forecasting economic indicators like GDP. Our present study makes a practical contribution by 
providing in-depth explanations of how ARIMA models might be used to predict Nepal's per-capita 
GDP. The best fitted ARIMA model has been used to obtain forecast values for next one and half 
decade. The finding shows that the forecast values of Nepal’s GDP will be $1384.426 per capita in 
2023 and $2180.822per capita in 2037. The results show that Nepal a growing GDP substantially, 
however, this growth is not sufficient. So, it is suggested to the policy maker to invest more on 
areas of infrastructure development, research and development, and facilitate to establishing more 
startups with focus on green investment and sustainability.

 Model II reinforces that short- term prediction of GDP is more precise (Table 5). Model 
based prediction enable planners to address specific economic challenges such as resource alloca-
tion. A robust GDP prediction could guide the government about the expected revenue generation, 
and expenditure optimization. Business and governments could plan investment, inventory manage-
ment and volume of production. Statistical prediction thus empowers a decision maker with scope 
for evidence informed decision- making. However, one must be always aware that any model is 
sustainable as long as the background conditions such as other influencing market forces remain at 
the same level.
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beauty perspective, and construction design is somewhat lacking. This paper covers the 
state-of-the-art golden ratio based on its mathematical structures and their constructional properties 
instead of its mathematical properties.  The rest of the paper is as follows. Section 2 is about the 
geometry of the golden ratio in plane geometry and Section 3 is in solid geometry. Finally, Section 4 
concludes the paper.

The golden ratio in Plane Geometry 

 Here, we are presenting the golden ratio corresponding to plane geometry. For details, we 
refer to (Akhtaruzzaman & Shafie, 2011; Livio, 2002; and Markowsky, G. (1992).

1  The golden ratio corresponds to a line segment

 A straight line is said to have been cut in extreme and mean ratio when, as the whole line is 
to the greater segment, so is the greater to the less, as illustrated in Figure 1. 

 Figure 1 
The golden ratio in a line segment

Algorithm 1. Construction in a line segment
 

 Being an irrational number, it has non-repeating, non-terminating, and non-recurring decimal 
representation, like  ϕ =1.6180339887498948482... This ratio is also known as the divine ratio or 
divine proportion.  Here, we are using the term golden ratio
 1.1 The golden ratio corresponds to internal division 
 
 The golden ratio can be constructed corresponding to the internal division of a line segment. 

Algorithm 2 Construction corresponds to the internal division in a line segment

Figure 2 
The golden ratio from the internal division of a line segment

2   The golden ratio corresponds to exterior division

 It can also be constructed in the form of the external division of a line segment.  

Algorithm 3 Construction with exterior division of a line segment.

 

Figure 3  
The Golden Ratio corresponds to the external division of a line segment

 

 2  The golden ratio corresponds to different triangles

It can also be defined as corresponding to an isosceles triangle and an equilateral triangle: 

 2.1 The golden ratio corresponds to isosceles triangles 

Algorithm 4. Construction corresponding to an isosceles triangle 

Figure 4
Construction of a golden cut, golden gnomon, and golden triangle 

 Note that, such a cut BP in ∆ABC is the golden cut where triangles  ∆ABP and  ∆BCP are 
the golden gnomon and the golden triangle, respectively, Akhtaruzzaman & Shafie, 2011.

 2.2 The golden ratio corresponds to an equilateral triangle 

Algorithm 5 Construction corresponding to an equilateral triangle

Figure 5 
Construction corresponding to an equilateral triangle.

 

3.  The golden ratio corresponds to different quadrilaterals 
 
 Here, we are presenting its geometry corresponding to different variants of the quadrilaterals, 
Akhtaruzzaman & Shafie, 2011. 

 GROSS DEMESTIC PRODUCT (GDP) is a strategic compo-
nent in measuring National Income and Product Accounts. GDP 
represents the total value of final goods and services. GDP assessment 
is based on the quantum of consumption and investment by house-
holds and businesses in addition to the governmental expenditure and 
net exports. GDP is, therefore, crucial in maintaining a healthy 
economy as it embodies all financial transactions, including banking 
aspects. Planning and decision-making for the entire economy is thus 
conditioned on accurate information with respect of all the three 
stakeholders in the economic transactions, namely, households, 

 
 THE GOLDEN RATIO  has been used for centuries in design, 
architecture, structure, and construction. It has been used not only in 
ancient and classical structures but also in modern architecture, 
artwork, and photography. It is found in nature, the universe, and 
various aspects of mathematical sciences. The golden ratio is one of the 
fascinating topics. Mathematicians since Euclid have studied it. Mathe-
matics theorem and the golden ratio have been given great importance 
in the history of Mathematics, as Johannes Kepler also said, Geometry 
has two great treasures: one is the theorem of Pythagoras, and the other 
is the division of a line into mean and extreme ratios. The first we may 
compare to a mass of gold, the second, we may call a precious jewel. 
For details, we refer to (Bell, 1940; Boyer, 1968; Herz-Fischler, 2000; 
and Pacioli, 1509).

 There has been a lot of work about its historical background 
and existence. However, its systematic overview from the geometrical 



businesses and government, which GDP is capable of delivering. We thus have an estimated 
nominal GDP (NGDP) which is used for the purpose of future planning by the finance ministry of 
the country. The real GDP (RGDP) is obtained after adjusting the estimated NGDP for inflation. 
The latter is also known as observed GDP in actual real-time. However, all budget planning and 
projections utilize the former, i.e., NGDP, whereas RGDP directly impacts the common citizen. 
Therefore, fluctuations in the level of GDP covariates are important in determining the gap 
between NGDP and RGDP. The effective mathematical relationship is represented as NGDP – 
inflation rate = RGDP.

 GDP computation is based on the principle of averages, which has an upward bias. There-
fore, GDP does not capture income, expenditure, or production changes at the regional level. For 
instance, if a large group of people experience declining income at a time when its complement 
group in the same population is smaller but experiences upwardly rising incomes, then GDP 
registers rise. To overcome this upward bias to a sufficiently large extent, in this paper, we focus 
on the concept of GDP per capita, which gives a more realistic picture of a nation's economic 
health. GDP measures an economy's current market value for all products and services generated 
during the assessment period. This value encompasses spending and costs on personal consump-
tion, government purchases, inventories, and the foreign trade balance. Thus, the total capital at 
stake and covered under the GDP envelope of a specific period can be viewed through (i) produc-
tion undertaken, (ii) income generated and (iii) expenditure accrued for the same period.

 Several research studies have been designed on the temporal data template where study 
units are macroeconomic units like countries or sub-regions like states, districts, or countries. In 
the present paper, we employ Autoregressive Integrated Moving Average (ARIMA) model 
proposed by Box and Jenkins (1970) for understanding the GDP movement with time. Past studies 
have used predictive ARIMA modelling for GDP of different countries. For instance, Kiriakidis 
and Kargas (2013) used predictive ARIMA model for predicting GDP of Greece, while correctly 
predicting recession in the near future. The RGDP in Greece for the period 2015-2017 was forecast 
by Dritsaki (2015) using an ARIMA (1, 1, 1) model based on data for the period of 1980-2013 
which correctly indicated a gradual rise in GDP. Wabomba et al. (2016) projected Kenya's GDP 
from 2013-2017 using an ARIMA (2, 2, 2) model based on data for period of 1960-2012. Predicted 
estimates correctly indicated that Kenya's GDP will expand faster over the next five years, from 
2013-2017. Agrawal (2018) estimated RGDP in India using publicly available quarterly RGDP 
data from Quarter 2 of 1996 to Quarter 2 of 2017 using ARIMA model. Abonazel et al. (2019) 
used an ARIMA (1, 2, 1) model over the period 1965-2016 to correctly forecast the rise in GDP for 
Egypt during for the period 2017-2026 and Eissa (2020) forecasted the GDP per capita for Egypt 
and Saudi Arabia, from 2019-2030 using the ARIMA (1, 1, 2) and ARIMA (1, 1, 1) models 
respectively based on data from the period 1968-2018. Their study showed that both Egypt's and 
Saudi Arabia's GDP per capita would continue to rise. In order to forecast the GDP and consumer 
`price index (CPI) for the Jordanian economy between 2020 and 2022, Ghazo (2021) employed 
ARIMA (3, 1, 1) model for GDP and ARIMA (1, 1, 0) model for CPI respectively, based on 
sample data from the period 19762019. They rightly anticipated stagflation for the Jordanian 
economy as a result of the predicted shrinkage in GDP and first rise in CPI. In order to escape the 
stagflationary cycle and achieve more stable CPI, this study provided inputs to the economic policy 
makers to develop sensible measures for boosting GDP and fending off inflationary forces. 
Mohamed (2022) used an ARIMA (5, 1, 2) model for the period between 1960-2022 to forecast 

trajectory of GDP in Somalia for the next fourteen quarters. In order to forecast the quarterly GDP 
of Philippines, Polintan et al. (2023) used data from 2018-2022 through an ARIMA (1, 2, 1) model 
for forecasting GDP in the Philippines, for 2022-2029 and predicted a steady growth trajectory. 
Lngale and Senan (2023) used predictive ARIMA (0, 2, 1) model for predicting GDP of India, 
pertaining to the period 1960-2020 and predicted a steady growth trajectory. Tolulope et al. (2023) 
used an ARIMA (2, 1, 2) model for predicting the Nigerian GDP using both in sample and out of 
sample prediction method, based on data for the period of 19602020 which correctly indicated a 
gradual rise in GDP. Urruttia (2019) used an ARIMA (1, 1, 1) model over the period from the first 
quarter of 1990 to the fourth quarter of 2017 with a total of 112 observations for forecasting future 
GDP. Remittance income in Nepal vis- a vis GDP has between studied by Gaudel (2006). Srivas-
tava and Chaudhary (2007) looked in to role of remittance in economic development of Nepal. 
Energy – GDP dependence in Nepal is focus of work under taken by Asghar (2008). Dahal (2010) 
studied role of GDP on educational enrolment and teaching strength in the school system of Nepal. 
GDP and oil consumption relations are analyzed by Bhusal (2010). Thagunna and Acharya (2013) 
assessed investment, saving, exports and imports as determinants of GDP. Chaudhary and Xiumin 
(2018) analysed determinants of inflation in Nepal. Interrelations between foreign trade and GDP 
of Nepal are investigated by Prajuli (2021). The present paper is the first study where a self-re-
gressed Bayesian investigation on GDP is made with identification of a unique TS statistical model 
to project future pattern of GDP in Nepal. One step ahead prediction for the year 2022 is validated 
by the recent World Bank report. Information about GDP can be quite advantageous for the 
business and economy, particularly for investors, business people and the governmental units 
aiming for cost effectiveness and maximizing profit in addition to guiding the government for 
framing future economic policies and in planning and control of various economic measures. 

The Study Region

 The Federal Democratic Republic of Nepal is a landlocked country in South Asia sharing 
its boundaries with India and Tibet. World Bank 2022 report the total GDP (hence froth, GDP) of 
Nepal to be 36.29 billion USD with 122 billion USD Purchasing Power Parity (PPP). GDP per 
capita is placed at 1,230 USD and PPP at 4,190 USD for the year 2021. GDP growth rate for Nepal 
is 2.7% while GDP of Nepal represents 0.02% of the world economy for the year 2021. The main 
economic sectors in Nepal are agricultural, hydro-power, natural resources, tourism and handi-
crafts. These sectors have a significant impact on Nepal economy in terms of their contribution to 
the GDP. Empirical research conducted by Nepal Rastra Bank (NRB) in the year 2020 concluded 
tourism to be a crucial economic sector for both the short-run and the long- run economic growth 
of Nepal. The NRB report indicated a significant relationship between tourism industry and the 
county’s economic growth which is one of the fasted growing industries in the country. More than 
a million indigenous people are engaged in the tourism industry for their livelihood. Tourism 
accounts for 7.9% of the total GDP while 65% of the population is engaged in agricultural activi-
ties contributing to 31.7% of GDP. About 20% of the area is cultivable, another 40.7 % is forested 
and the remaining land is mountainous. Thus, Nepal’s GDP is heavily dependent on remittance. 
According to the Central Bureau of Statistics Nepal (2022) report, Nepal has received remittance 
amounting to Nepalese Rupees (NRs.) 875 billion in the financial year 2019-20, which translates 
into a remittance to GDP ratio of 23.23%. Nepal is primarily a remittance-based country with 
remittance inflow amounting to more than a quarter of the country’s GDP. Nepal’s total labour 
force in the year 2020 was 16,016,900 with sectoral distribution by occupation as 43% in agricul-
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ture 21% in industry and share of services at 35%. The inflation rate in Nepal was recorded at 6% 
and the unemployment rate at 1.4%. Nepal’s total exports were reported to be worth 918 million 
USD in the year 2020, its main exports being carpets, textiles, pulses, tea, etc. Its main export 
partners are India, USA, Japan, Malaysia, Singapore, Germany, and Bangladesh. Total imports for 
the same period were recorded at 10 billion USD with prominent import goods being petroleum, 
electrical goods, machinery, gold, etc. Its principal import partners are India and China. 

 In this paper, we estimate and predict the GDP per capita of Nepal for next one and half 
decade by using ARIMA time series model. Section 2 describes model determination methodology 
used in the present work. Section 3 enumerates the models and the model adequacy measures. 
Section 4 focusses on data description and its analysis. Conclusion and recommendations are 
summarised in section 5. 

Methodology

 Time series models are characterized by the clustering effect or serial correlation in time. 
In the present paper, we employ ARIMA modelling to estimate and forecast Nepal's GDP. ARIMA 
modelling addresses such issues of dependent errors by introducing time lagged dependent variable 
and past error terms on the determinant side of the time series model. ARIMA model consists of 
AR, I, and MA segments where AR indicate the autoregressive part, I indicate integration i.e., the 
order of differencing in the observed series to achieve stationarity and MA indicate the moving 
average component in the model. The four stages of the iterative ARIMA model fitting process are 
Identification, estimation, diagnostic checking, and time series forecasting. (Figure 1). 

Figure 1
 Iterative ModellingProgression for a Stationary Variable in Box

 It employs a general technique for choosing a possible model from a large class of models. 
The chosen model is then evaluated to see if it can accurately explain the series using the historical 
data. Auto-correlation function (ACF) and partial auto-correlation function (PACF) are used to 
select one or more ARIMA models that seem appropriate during the identification stage. The next 
stage involves estimating the parameters of a specific Box-Jenkins model (1970) for a given time 
series. This step verifies the parsimony in terms of the number of model parameters or lack of 
over-specification by determining whether, in addition to the residuals being uncorrelated, the 
chosen least amount of squared residuals are found in the AR and/or MA parameters. A critical and 
sensitive aspect of an ARIMA model is parsimony. An over-parameterized model cannot predict as 
efficiently as a sparse model. Model diagnostics and testing is carried out in the third step. The 
underlying presumption is that the error terms, ε_t,  behave in a manner consistent with that of a 

stationary, unchanging process. If the residuals are drawn from a fixed distribution with constant 
mean and variance, they should be white noise. The most adequate Box-Jenkins model fulfils these 
prerequisites for the residual distribution. The best model needs to be decided based on these four 
paradigms. Thus, testing of the residuals would lead to a better suitable model. A graphical 
technique called a quantile-quantile (Q-Q) plot compares the distributional similarities of two 
datasets. In the context of ARIMA models, a Q-Q plot is often used to check whether the model's 
residuals follow a normal distribution. 

The Model and Forecast

1.  Autoregressive Model 

 With the intent to estimate the coefficients β_(j,) j = 1,2, …,p, an AR process for the 
univariate model is the one that shows a changing variable regressed on its own lagged values. AR 
model of order p, or AR (p), is expressed as,

ACF gives a correlation coefficient between the dependent variable and the same variable with 
different lags, but the effect of shorter lags is not kept constant, meaning that the effect of shorter 
lag is remained in the autocorrelation function. The correlation between y_t and y_(t-2) includes 
the correlation effect between y_t and y_(t-1). On the other hand, PACF gives a correlation coeffi-
cient between the dependent variable and its lag values while keeping the effect of shorter lags 
constant. The correlation between y_t and y_(t-2) does not include the effect of correlation 
between y_t and y_(t-1).

2.  Moving Average Model

 Let ε_t (t = 1,2,…)  be a white noise process, with t standing for a series of independent 
and identically distributed (iid) random variables expecting ε_t is zero and variance of ε_t is σ^2. 
After that, the qth order MA model, which accounts for the relationship between an observation 
and a residual error, is expressed as

  represents the impact of past errors on the response variable. Estimated coefficients θ_(j,) j 
= 1,2, …   ,q,  accounting for short-term memory help in forecasting.

3.   Autoregressive Moving Average Model

 The model AR, coupled with the MA modelling strategy is called Autoregressive Moving 
Average (ARMA) models intended for stationary data series. ARMA (p, q) model is expressed as:

 An amalgam of the AR and MA models is represented by (3). In this instance, the greatest 

order of p or q cannot be provided merely by ACF or PACF.

4.  Autoregressive Integrated Moving Average Model

 The extension of ARMA model is ARIMA model which enable to transform data by 
differencing to make data stationary. ARIMA model can be written as ARIMA (p, d, q), where p is 
the order of AR term, d is the number of differencing required to make series stationery and q is 
the order of MA term. For example, if y_it  is a non-stationary series, we will take a first-difference 
of y_t to make ∆y_t= stationary, and then the ARIMA (p, 1, q) model is expressed as: 
 

 Where ∆ y_t= y_t- y_(t-1), then d = 1, which implies a one-time differencing step. The 
model transforms into a random walk model, categorized as ARIMA (0.1,0), if p = q = 0.

Table 1 
ARIMA (p, d, q) Model for d = 0, 1, 2

5.  Model Adequacy Measures

 Before employing a model for predicting, diagnostic testing must be done on it. The 
residuals that remain after the model has been fitted are deemed sufficient if they are just white 
noise, and the residuals' ACF and PACF patterns may provide insight into how the model might be 
improved. Akaike (1973) developed a numerical score that can be used to identify the best model 
from among several candidate models for a specific data set. Akaike information criterion (AIC) 
results are helpful compared to other AIC scores for the same data set. A smaller AIC score 
indicates a better empirical fit. Estimated log-likelihood (L) is used to compute AIC as,
 
AIC = - 2(L + s)                                                                                                                         (5)          
 Such that s is the number of variables in the model plus the intercept term. Schwarz (1978) 
developed an alternative model comparison score known as Bayesian (Schwarz) information 
criterion BIC (or SIC) as an asymptotic approximation to the transformation of the Bayesian 
posterior probability of a candidate model expressed as,

BIC or SIC = - 2L + s log(n)                                                                                                     (6)             
 L is the maximum likelihood of the model, s is the number of parameters in the model, and 
n is the sample size. Like AIC, BIC also balances the goodness of fit and model complexity. 
However, BIC places a higher penalty on model complexity compared to AIC because it includes a 
term that depends on the sample size (s log(n)). As with AIC, the goal is to minimize the BIC value 
to select the best model.

 6.   Forecasting 

 Box-Jenkin's time series model method applies only to stationary and invertible time 
series. Lidiema (2017), Dritsakis and Klazoglou (2019). Future value forecasting can begin once 
the requirements have been met through procedures like differencing. We can utilize the chosen 
ARIMA model to predict when it meets the requirements of a stationary univariate process. 
Further, diagnostic checking is done to verify the forecasting accuracy of the ARIMA model. 
   
7.  Forecasting Accuracy

 We now present different measures listed to determine the accuracy of a prediction model.
 
 (i) Mean Absolute Error 

 The mean absolute difference between a dataset's actual (observed) values and the model's 
predicted values is computed using the Mean Absolute Error (MAE) algorithm. The absolute rather 
than squared differences make MAE more robust to the outliers. The formula to calculate the MAE 
is,
                                                     
 
 Where n is the total number of observations, y_(i )is the actual value of time series in data 
point i, and y _i denotes forecasted value of time series data point i.       

 (ii)  Root Mean Square Error 

 Root Mean Square Error (RMSE) is a popular accuracy measure in regression analysis 
based on the difference between a dataset's actual (observed) values and the model's predicted 
values. Lower RMSE indicates the alignment of the model's predictions with the actual data. The 
formula to calculate the RMSE is,
                  (8)
                                    
  
 However, due to the squaring of deviations, RMSE gives underweight to the outliers and 
may not be suitable for all types of datasets. Depending on the specific problem and characteristics 
of the data, we can use metrics such as Mean Absolute Error (MAE) or R-squared (coefficient of 
determination) may also be used in conjunction with RMSE to gain a more comprehensive under-
standing of the model's performance.            
                                                                                                                                                                                                              
                                                                                                                                                                                                                                                                                                                                                                                                                   
 (iii) Mean Absolute Percentage Error 

 Mean Absolute Percentage Error (MAPE) is used to measure the percentage variation 
between a dataset's actual (observed) values and the model's predicted values, and it is useful to 
understand the relative size of the errors compared to the actual values. The formula to calculate 
the MAPE is,

 However, it needs to be more well-defined when the actual values are zero or near zero, 
which can result in non-sensical very large MAPE values.

 (iv)  Mean Percentage Error 

 Mean Percentage Error (MPE) is instead of taking the absolute percentage difference like 
in MADE consider the signed percentage difference. Therefore, accounting for both the (positive 
and negative) magnitude of the errors. The formula to calculate the MPE is,
                                                      
                                              (10)        

 Such that, lower values of MPE indicate better forecast accuracy. A value of zero MPE 
would imply that the forecasted values match the actual values perfectly. However, MPE can have 
some limitations, such as the potential for the errors to cancel each other out, leading to an artifi-
cially low MPE even if the model's performance is unsatisfactory.

 (v) Mean Absolute Scaled Error 

 Mean Absolute Scaled Error (MASE) measures the performance of a model relative to the 
performance of a naive or benchmark model. The MASE provides a more interpretable measure of 
forecast accuracy than metrics like Mean Absolute Error (MAE), especially when dealing with 
time series data and comparing different forecasting models. It provides insights into whether a 
model provides meaningful improvements over a basic, naive forecasting approach. The formula to 
calculate the MASE is,   
                   (11)  
                                         

  where n is the length of the series and m is its frequency, i.e., m=1 for yearly data, m=4 for 
quarterly, m=12 for monthly, etc.
 MASE measures how well the model performs relative to the naive model's forecast errors taken 
as a benchmark. A value of MASE less than 1 indicates that the model performs better than the 
naive model regarding absolute forecast errors, while a value greater than 1 shows worse perfor-
mance than the naive model.

Data and Analysis

 For modelling and forecasting non-seasonal time series data of the annual GDP of Nepal, 
we have obtained data from the website of World Bank for the period 1960 – 2022. This implies 
that we have 63 observations of GDP, based on this data, we have proposed the ARIMA (2, 2, 1) 
model to forecast the GDP of Nepal for the next fifteen years (2023 – 2037).    

1. Model Identification for GDP

 Progression of GDP per capita of Nepal is graphed in Figure 2. A steady long-term rise is 
observed during 1960 – 2022. Beyond 2010 the rate of upward trend increases sharply. The time 
series may be quickly and easily determined to be unstable because of the GDP of Nepal's clearly 

marked increasing trend. Autocorrelation Function (ACF) (Figure 3) and Partial Autocorrelation 
Function (PACF) (Figure 4) are studied further to understand genesis of data structure. It is evident 
from the PACF that a single prominence indicates the fictitious primary value of n=1 when it 
crosses the confidence intervals. Furthermore, at ACF 11 heights, the same issue occurs. Accord-
ing to the ACF plot, the autocorrelations in the observed series is very high, and positive. A slow 
decay in ACF suggests that there may be changes in both the mean and the variability over time for 
this series. The arithmetic mean may be moving upward, with rising variability. Variability can be 
managed by calculating the natural logarithm of the given data, and the mean trend can be elimi-
nated by differencing once or twice as needed to achieve stationarity in the original observed 
series. An instantaneous nonlinear transformation applied to the optimal forecast of a variable may 
not produce the transformed variable's ideal forecast (Granger and Newbold, 1976). In particular, 
using the exponential function to forecasts for the original variable when excellent forecasts of the 
logs are available may not always be the best course of action. Therefore, we further employ the 
differencing process on the untransformed actual data series.

Flgure 2
The GDP Data During 1960 to 2021

2. Diagnostics and Estimation for GDP

 Based on GDP time chronological data for the period 1960 – 2022, we have considered ten 
tentative ARIMA (p, d, q) models (Table 2) and estimate the parameters using R interface.   The 
model with minimum AIC is deemed to fit best and will be referred to as Model I, henceforth. 

Table 2 
Tentative ARIMA (p, d, q) Models of GDP for Nepal

 The applicability test assesses the error or residual sequence of the fitted data for consisten-
cy. If a white noise sequence for residuals is obtained, then the model I is considered suitable for 
forecast.  If not, then the model needs improving. In this research, the ACF graph (Figure 5) and 
PACF graph (Figure 6) of residual sequence are exhibit white noise process. Hence, ARIMA 
(2,2,1) well fits (Table 2) the considered time series GDP data from Nepal.                                                

Figure 5
Autocorrelation Function Graphs of the Residual Series 

             
Figure 6 
Partial Autocorrelation Function Graphs of the Residual Series

 
 
Figure 7
 Q-Q Plot of the Residual Series

Figure 7, illustrates the normal Q-Q plot, the maximum points seem to falls on or near the line. So, 

it can be said that the model residuals are normally distributed which is one of the assumptions of 
linear regression.

 Table 3 represents the estimated coefficients and model adequacy criterion for both Model I 
and Model II. Model II estimates have smaller standard errors (Table 3) with smaller RMSE, MAE, 
MPE, MAPE and MASE. Table 4 which indicate smaller associated residuals for model fit. However, 
from the viewpoint of sample-based information, of AIC and BIC, Model I is a better representative 
for the considered time series.                         

3.  Forecasting  of GDP for Nepal

 One use of a model is to anticipate the future values of a time series after the model has been 
discovered, its parameters determined, and its diagnostics examined. Table 5 provides the GDP 
projections for the time window 2023 – 2037.  Figure 8 (a) and Figure 8 (b) shows the trend of the 
actual and forecasted GDP values with their 95% confidence limits for the years 1960 – 2022, as well 
as the GDP that would be predicted, based on these 63 years for the next 15 years forecasted values 
of GDP for the Model I and Model II respectively by using the proposed ARIMA (2, 2, 1) model. 
The Model I predicted values indicate that the Nepal GDP specific growth run continues. Since the 
national economy is a complex and dynamic system, and that the outcome is simply a predicted 
number, therefore in order to prevent the economy from suffering from strong fluctuations, the 
administrators we should maintain the stability and continuity of microeconomic regulation and 
control with special attention to the risk of adjustment in economic operation, (Wabomba et al. 2016). 
We should also adjust the corresponding target value in light of the current situation. Thus, to assess 

robustness of the model-based prediction we next include the first eight predicted values for the 
years 2023 – 2030 in the original time series data base. The same R program is now re-run for the 
composite period 1960 – 2030. Again ARIMA (2, 2, 1) emerges as the best fit model on the basis 
of AIC from among the eleven considered models. With the new compounded data model (Model 
II, henceforth). We predict the next seven annual GDP values for the period 2031 – 2037. 95% 
confidence interval for Model II are found to be shorter (Table 5) thus retrieving that Model II is 
more efficient for predictive purpose

Table 5
Forecasted of GDP for Nepal

 

Figure 8 (b) 
Time Series Plot for Actual and Forecasted GDP Values for Model II

         Figure 8 (b): Time Series Plot for Actual and Forecasted GDP Values for Model II.

Conclusion and Recommendations
  
 Our study discovers that the proposed ARIMA models are useful for future GDP per capita 
of Nepal. For the development and assessment of different ARIMA models, we have used annual 
data from 1960 – 2022 and found that the ARIMA (2, 2, 1) model as the most appropriate one. Our 
findings are in line with earlier research, which discovered that ARIMA models as effective tools 
of forecasting economic indicators like GDP. Our present study makes a practical contribution by 
providing in-depth explanations of how ARIMA models might be used to predict Nepal's per-capita 
GDP. The best fitted ARIMA model has been used to obtain forecast values for next one and half 
decade. The finding shows that the forecast values of Nepal’s GDP will be $1384.426 per capita in 
2023 and $2180.822per capita in 2037. The results show that Nepal a growing GDP substantially, 
however, this growth is not sufficient. So, it is suggested to the policy maker to invest more on 
areas of infrastructure development, research and development, and facilitate to establishing more 
startups with focus on green investment and sustainability.

 Model II reinforces that short- term prediction of GDP is more precise (Table 5). Model 
based prediction enable planners to address specific economic challenges such as resource alloca-
tion. A robust GDP prediction could guide the government about the expected revenue generation, 
and expenditure optimization. Business and governments could plan investment, inventory manage-
ment and volume of production. Statistical prediction thus empowers a decision maker with scope 
for evidence informed decision- making. However, one must be always aware that any model is 
sustainable as long as the background conditions such as other influencing market forces remain at 
the same level.
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beauty perspective, and construction design is somewhat lacking. This paper covers the 
state-of-the-art golden ratio based on its mathematical structures and their constructional properties 
instead of its mathematical properties.  The rest of the paper is as follows. Section 2 is about the 
geometry of the golden ratio in plane geometry and Section 3 is in solid geometry. Finally, Section 4 
concludes the paper.

The golden ratio in Plane Geometry 

 Here, we are presenting the golden ratio corresponding to plane geometry. For details, we 
refer to (Akhtaruzzaman & Shafie, 2011; Livio, 2002; and Markowsky, G. (1992).

1  The golden ratio corresponds to a line segment

 A straight line is said to have been cut in extreme and mean ratio when, as the whole line is 
to the greater segment, so is the greater to the less, as illustrated in Figure 1. 

 Figure 1 
The golden ratio in a line segment

Algorithm 1. Construction in a line segment
 

 Being an irrational number, it has non-repeating, non-terminating, and non-recurring decimal 
representation, like  ϕ =1.6180339887498948482... This ratio is also known as the divine ratio or 
divine proportion.  Here, we are using the term golden ratio
 1.1 The golden ratio corresponds to internal division 
 
 The golden ratio can be constructed corresponding to the internal division of a line segment. 

Algorithm 2 Construction corresponds to the internal division in a line segment

Figure 2 
The golden ratio from the internal division of a line segment

2   The golden ratio corresponds to exterior division

 It can also be constructed in the form of the external division of a line segment.  

Algorithm 3 Construction with exterior division of a line segment.

 

Figure 3  
The Golden Ratio corresponds to the external division of a line segment

 

 2  The golden ratio corresponds to different triangles

It can also be defined as corresponding to an isosceles triangle and an equilateral triangle: 

 2.1 The golden ratio corresponds to isosceles triangles 

Algorithm 4. Construction corresponding to an isosceles triangle 

Figure 4
Construction of a golden cut, golden gnomon, and golden triangle 

 Note that, such a cut BP in ∆ABC is the golden cut where triangles  ∆ABP and  ∆BCP are 
the golden gnomon and the golden triangle, respectively, Akhtaruzzaman & Shafie, 2011.

 2.2 The golden ratio corresponds to an equilateral triangle 

Algorithm 5 Construction corresponding to an equilateral triangle

Figure 5 
Construction corresponding to an equilateral triangle.

 

3.  The golden ratio corresponds to different quadrilaterals 
 
 Here, we are presenting its geometry corresponding to different variants of the quadrilaterals, 
Akhtaruzzaman & Shafie, 2011. 

 GROSS DEMESTIC PRODUCT (GDP) is a strategic compo-
nent in measuring National Income and Product Accounts. GDP 
represents the total value of final goods and services. GDP assessment 
is based on the quantum of consumption and investment by house-
holds and businesses in addition to the governmental expenditure and 
net exports. GDP is, therefore, crucial in maintaining a healthy 
economy as it embodies all financial transactions, including banking 
aspects. Planning and decision-making for the entire economy is thus 
conditioned on accurate information with respect of all the three 
stakeholders in the economic transactions, namely, households, 

 
 THE GOLDEN RATIO  has been used for centuries in design, 
architecture, structure, and construction. It has been used not only in 
ancient and classical structures but also in modern architecture, 
artwork, and photography. It is found in nature, the universe, and 
various aspects of mathematical sciences. The golden ratio is one of the 
fascinating topics. Mathematicians since Euclid have studied it. Mathe-
matics theorem and the golden ratio have been given great importance 
in the history of Mathematics, as Johannes Kepler also said, Geometry 
has two great treasures: one is the theorem of Pythagoras, and the other 
is the division of a line into mean and extreme ratios. The first we may 
compare to a mass of gold, the second, we may call a precious jewel. 
For details, we refer to (Bell, 1940; Boyer, 1968; Herz-Fischler, 2000; 
and Pacioli, 1509).

 There has been a lot of work about its historical background 
and existence. However, its systematic overview from the geometrical 



businesses and government, which GDP is capable of delivering. We thus have an estimated 
nominal GDP (NGDP) which is used for the purpose of future planning by the finance ministry of 
the country. The real GDP (RGDP) is obtained after adjusting the estimated NGDP for inflation. 
The latter is also known as observed GDP in actual real-time. However, all budget planning and 
projections utilize the former, i.e., NGDP, whereas RGDP directly impacts the common citizen. 
Therefore, fluctuations in the level of GDP covariates are important in determining the gap 
between NGDP and RGDP. The effective mathematical relationship is represented as NGDP – 
inflation rate = RGDP.

 GDP computation is based on the principle of averages, which has an upward bias. There-
fore, GDP does not capture income, expenditure, or production changes at the regional level. For 
instance, if a large group of people experience declining income at a time when its complement 
group in the same population is smaller but experiences upwardly rising incomes, then GDP 
registers rise. To overcome this upward bias to a sufficiently large extent, in this paper, we focus 
on the concept of GDP per capita, which gives a more realistic picture of a nation's economic 
health. GDP measures an economy's current market value for all products and services generated 
during the assessment period. This value encompasses spending and costs on personal consump-
tion, government purchases, inventories, and the foreign trade balance. Thus, the total capital at 
stake and covered under the GDP envelope of a specific period can be viewed through (i) produc-
tion undertaken, (ii) income generated and (iii) expenditure accrued for the same period.

 Several research studies have been designed on the temporal data template where study 
units are macroeconomic units like countries or sub-regions like states, districts, or countries. In 
the present paper, we employ Autoregressive Integrated Moving Average (ARIMA) model 
proposed by Box and Jenkins (1970) for understanding the GDP movement with time. Past studies 
have used predictive ARIMA modelling for GDP of different countries. For instance, Kiriakidis 
and Kargas (2013) used predictive ARIMA model for predicting GDP of Greece, while correctly 
predicting recession in the near future. The RGDP in Greece for the period 2015-2017 was forecast 
by Dritsaki (2015) using an ARIMA (1, 1, 1) model based on data for the period of 1980-2013 
which correctly indicated a gradual rise in GDP. Wabomba et al. (2016) projected Kenya's GDP 
from 2013-2017 using an ARIMA (2, 2, 2) model based on data for period of 1960-2012. Predicted 
estimates correctly indicated that Kenya's GDP will expand faster over the next five years, from 
2013-2017. Agrawal (2018) estimated RGDP in India using publicly available quarterly RGDP 
data from Quarter 2 of 1996 to Quarter 2 of 2017 using ARIMA model. Abonazel et al. (2019) 
used an ARIMA (1, 2, 1) model over the period 1965-2016 to correctly forecast the rise in GDP for 
Egypt during for the period 2017-2026 and Eissa (2020) forecasted the GDP per capita for Egypt 
and Saudi Arabia, from 2019-2030 using the ARIMA (1, 1, 2) and ARIMA (1, 1, 1) models 
respectively based on data from the period 1968-2018. Their study showed that both Egypt's and 
Saudi Arabia's GDP per capita would continue to rise. In order to forecast the GDP and consumer 
`price index (CPI) for the Jordanian economy between 2020 and 2022, Ghazo (2021) employed 
ARIMA (3, 1, 1) model for GDP and ARIMA (1, 1, 0) model for CPI respectively, based on 
sample data from the period 19762019. They rightly anticipated stagflation for the Jordanian 
economy as a result of the predicted shrinkage in GDP and first rise in CPI. In order to escape the 
stagflationary cycle and achieve more stable CPI, this study provided inputs to the economic policy 
makers to develop sensible measures for boosting GDP and fending off inflationary forces. 
Mohamed (2022) used an ARIMA (5, 1, 2) model for the period between 1960-2022 to forecast 

trajectory of GDP in Somalia for the next fourteen quarters. In order to forecast the quarterly GDP 
of Philippines, Polintan et al. (2023) used data from 2018-2022 through an ARIMA (1, 2, 1) model 
for forecasting GDP in the Philippines, for 2022-2029 and predicted a steady growth trajectory. 
Lngale and Senan (2023) used predictive ARIMA (0, 2, 1) model for predicting GDP of India, 
pertaining to the period 1960-2020 and predicted a steady growth trajectory. Tolulope et al. (2023) 
used an ARIMA (2, 1, 2) model for predicting the Nigerian GDP using both in sample and out of 
sample prediction method, based on data for the period of 19602020 which correctly indicated a 
gradual rise in GDP. Urruttia (2019) used an ARIMA (1, 1, 1) model over the period from the first 
quarter of 1990 to the fourth quarter of 2017 with a total of 112 observations for forecasting future 
GDP. Remittance income in Nepal vis- a vis GDP has between studied by Gaudel (2006). Srivas-
tava and Chaudhary (2007) looked in to role of remittance in economic development of Nepal. 
Energy – GDP dependence in Nepal is focus of work under taken by Asghar (2008). Dahal (2010) 
studied role of GDP on educational enrolment and teaching strength in the school system of Nepal. 
GDP and oil consumption relations are analyzed by Bhusal (2010). Thagunna and Acharya (2013) 
assessed investment, saving, exports and imports as determinants of GDP. Chaudhary and Xiumin 
(2018) analysed determinants of inflation in Nepal. Interrelations between foreign trade and GDP 
of Nepal are investigated by Prajuli (2021). The present paper is the first study where a self-re-
gressed Bayesian investigation on GDP is made with identification of a unique TS statistical model 
to project future pattern of GDP in Nepal. One step ahead prediction for the year 2022 is validated 
by the recent World Bank report. Information about GDP can be quite advantageous for the 
business and economy, particularly for investors, business people and the governmental units 
aiming for cost effectiveness and maximizing profit in addition to guiding the government for 
framing future economic policies and in planning and control of various economic measures. 

The Study Region

 The Federal Democratic Republic of Nepal is a landlocked country in South Asia sharing 
its boundaries with India and Tibet. World Bank 2022 report the total GDP (hence froth, GDP) of 
Nepal to be 36.29 billion USD with 122 billion USD Purchasing Power Parity (PPP). GDP per 
capita is placed at 1,230 USD and PPP at 4,190 USD for the year 2021. GDP growth rate for Nepal 
is 2.7% while GDP of Nepal represents 0.02% of the world economy for the year 2021. The main 
economic sectors in Nepal are agricultural, hydro-power, natural resources, tourism and handi-
crafts. These sectors have a significant impact on Nepal economy in terms of their contribution to 
the GDP. Empirical research conducted by Nepal Rastra Bank (NRB) in the year 2020 concluded 
tourism to be a crucial economic sector for both the short-run and the long- run economic growth 
of Nepal. The NRB report indicated a significant relationship between tourism industry and the 
county’s economic growth which is one of the fasted growing industries in the country. More than 
a million indigenous people are engaged in the tourism industry for their livelihood. Tourism 
accounts for 7.9% of the total GDP while 65% of the population is engaged in agricultural activi-
ties contributing to 31.7% of GDP. About 20% of the area is cultivable, another 40.7 % is forested 
and the remaining land is mountainous. Thus, Nepal’s GDP is heavily dependent on remittance. 
According to the Central Bureau of Statistics Nepal (2022) report, Nepal has received remittance 
amounting to Nepalese Rupees (NRs.) 875 billion in the financial year 2019-20, which translates 
into a remittance to GDP ratio of 23.23%. Nepal is primarily a remittance-based country with 
remittance inflow amounting to more than a quarter of the country’s GDP. Nepal’s total labour 
force in the year 2020 was 16,016,900 with sectoral distribution by occupation as 43% in agricul-
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ture 21% in industry and share of services at 35%. The inflation rate in Nepal was recorded at 6% 
and the unemployment rate at 1.4%. Nepal’s total exports were reported to be worth 918 million 
USD in the year 2020, its main exports being carpets, textiles, pulses, tea, etc. Its main export 
partners are India, USA, Japan, Malaysia, Singapore, Germany, and Bangladesh. Total imports for 
the same period were recorded at 10 billion USD with prominent import goods being petroleum, 
electrical goods, machinery, gold, etc. Its principal import partners are India and China. 

 In this paper, we estimate and predict the GDP per capita of Nepal for next one and half 
decade by using ARIMA time series model. Section 2 describes model determination methodology 
used in the present work. Section 3 enumerates the models and the model adequacy measures. 
Section 4 focusses on data description and its analysis. Conclusion and recommendations are 
summarised in section 5. 

Methodology

 Time series models are characterized by the clustering effect or serial correlation in time. 
In the present paper, we employ ARIMA modelling to estimate and forecast Nepal's GDP. ARIMA 
modelling addresses such issues of dependent errors by introducing time lagged dependent variable 
and past error terms on the determinant side of the time series model. ARIMA model consists of 
AR, I, and MA segments where AR indicate the autoregressive part, I indicate integration i.e., the 
order of differencing in the observed series to achieve stationarity and MA indicate the moving 
average component in the model. The four stages of the iterative ARIMA model fitting process are 
Identification, estimation, diagnostic checking, and time series forecasting. (Figure 1). 

Figure 1
 Iterative ModellingProgression for a Stationary Variable in Box

 It employs a general technique for choosing a possible model from a large class of models. 
The chosen model is then evaluated to see if it can accurately explain the series using the historical 
data. Auto-correlation function (ACF) and partial auto-correlation function (PACF) are used to 
select one or more ARIMA models that seem appropriate during the identification stage. The next 
stage involves estimating the parameters of a specific Box-Jenkins model (1970) for a given time 
series. This step verifies the parsimony in terms of the number of model parameters or lack of 
over-specification by determining whether, in addition to the residuals being uncorrelated, the 
chosen least amount of squared residuals are found in the AR and/or MA parameters. A critical and 
sensitive aspect of an ARIMA model is parsimony. An over-parameterized model cannot predict as 
efficiently as a sparse model. Model diagnostics and testing is carried out in the third step. The 
underlying presumption is that the error terms, ε_t,  behave in a manner consistent with that of a 

stationary, unchanging process. If the residuals are drawn from a fixed distribution with constant 
mean and variance, they should be white noise. The most adequate Box-Jenkins model fulfils these 
prerequisites for the residual distribution. The best model needs to be decided based on these four 
paradigms. Thus, testing of the residuals would lead to a better suitable model. A graphical 
technique called a quantile-quantile (Q-Q) plot compares the distributional similarities of two 
datasets. In the context of ARIMA models, a Q-Q plot is often used to check whether the model's 
residuals follow a normal distribution. 

The Model and Forecast

1.  Autoregressive Model 

 With the intent to estimate the coefficients β_(j,) j = 1,2, …,p, an AR process for the 
univariate model is the one that shows a changing variable regressed on its own lagged values. AR 
model of order p, or AR (p), is expressed as,

ACF gives a correlation coefficient between the dependent variable and the same variable with 
different lags, but the effect of shorter lags is not kept constant, meaning that the effect of shorter 
lag is remained in the autocorrelation function. The correlation between y_t and y_(t-2) includes 
the correlation effect between y_t and y_(t-1). On the other hand, PACF gives a correlation coeffi-
cient between the dependent variable and its lag values while keeping the effect of shorter lags 
constant. The correlation between y_t and y_(t-2) does not include the effect of correlation 
between y_t and y_(t-1).

2.  Moving Average Model

 Let ε_t (t = 1,2,…)  be a white noise process, with t standing for a series of independent 
and identically distributed (iid) random variables expecting ε_t is zero and variance of ε_t is σ^2. 
After that, the qth order MA model, which accounts for the relationship between an observation 
and a residual error, is expressed as

  represents the impact of past errors on the response variable. Estimated coefficients θ_(j,) j 
= 1,2, …   ,q,  accounting for short-term memory help in forecasting.

3.   Autoregressive Moving Average Model

 The model AR, coupled with the MA modelling strategy is called Autoregressive Moving 
Average (ARMA) models intended for stationary data series. ARMA (p, q) model is expressed as:

 An amalgam of the AR and MA models is represented by (3). In this instance, the greatest 

order of p or q cannot be provided merely by ACF or PACF.

4.  Autoregressive Integrated Moving Average Model

 The extension of ARMA model is ARIMA model which enable to transform data by 
differencing to make data stationary. ARIMA model can be written as ARIMA (p, d, q), where p is 
the order of AR term, d is the number of differencing required to make series stationery and q is 
the order of MA term. For example, if y_it  is a non-stationary series, we will take a first-difference 
of y_t to make ∆y_t= stationary, and then the ARIMA (p, 1, q) model is expressed as: 
 

 Where ∆ y_t= y_t- y_(t-1), then d = 1, which implies a one-time differencing step. The 
model transforms into a random walk model, categorized as ARIMA (0.1,0), if p = q = 0.

Table 1 
ARIMA (p, d, q) Model for d = 0, 1, 2

5.  Model Adequacy Measures

 Before employing a model for predicting, diagnostic testing must be done on it. The 
residuals that remain after the model has been fitted are deemed sufficient if they are just white 
noise, and the residuals' ACF and PACF patterns may provide insight into how the model might be 
improved. Akaike (1973) developed a numerical score that can be used to identify the best model 
from among several candidate models for a specific data set. Akaike information criterion (AIC) 
results are helpful compared to other AIC scores for the same data set. A smaller AIC score 
indicates a better empirical fit. Estimated log-likelihood (L) is used to compute AIC as,
 
AIC = - 2(L + s)                                                                                                                         (5)          
 Such that s is the number of variables in the model plus the intercept term. Schwarz (1978) 
developed an alternative model comparison score known as Bayesian (Schwarz) information 
criterion BIC (or SIC) as an asymptotic approximation to the transformation of the Bayesian 
posterior probability of a candidate model expressed as,

BIC or SIC = - 2L + s log(n)                                                                                                     (6)             
 L is the maximum likelihood of the model, s is the number of parameters in the model, and 
n is the sample size. Like AIC, BIC also balances the goodness of fit and model complexity. 
However, BIC places a higher penalty on model complexity compared to AIC because it includes a 
term that depends on the sample size (s log(n)). As with AIC, the goal is to minimize the BIC value 
to select the best model.

 6.   Forecasting 

 Box-Jenkin's time series model method applies only to stationary and invertible time 
series. Lidiema (2017), Dritsakis and Klazoglou (2019). Future value forecasting can begin once 
the requirements have been met through procedures like differencing. We can utilize the chosen 
ARIMA model to predict when it meets the requirements of a stationary univariate process. 
Further, diagnostic checking is done to verify the forecasting accuracy of the ARIMA model. 
   
7.  Forecasting Accuracy

 We now present different measures listed to determine the accuracy of a prediction model.
 
 (i) Mean Absolute Error 

 The mean absolute difference between a dataset's actual (observed) values and the model's 
predicted values is computed using the Mean Absolute Error (MAE) algorithm. The absolute rather 
than squared differences make MAE more robust to the outliers. The formula to calculate the MAE 
is,
                                                     
 
 Where n is the total number of observations, y_(i )is the actual value of time series in data 
point i, and y _i denotes forecasted value of time series data point i.       

 (ii)  Root Mean Square Error 

 Root Mean Square Error (RMSE) is a popular accuracy measure in regression analysis 
based on the difference between a dataset's actual (observed) values and the model's predicted 
values. Lower RMSE indicates the alignment of the model's predictions with the actual data. The 
formula to calculate the RMSE is,
                  (8)
                                    
  
 However, due to the squaring of deviations, RMSE gives underweight to the outliers and 
may not be suitable for all types of datasets. Depending on the specific problem and characteristics 
of the data, we can use metrics such as Mean Absolute Error (MAE) or R-squared (coefficient of 
determination) may also be used in conjunction with RMSE to gain a more comprehensive under-
standing of the model's performance.            
                                                                                                                                                                                                              
                                                                                                                                                                                                                                                                                                                                                                                                                   
 (iii) Mean Absolute Percentage Error 

 Mean Absolute Percentage Error (MAPE) is used to measure the percentage variation 
between a dataset's actual (observed) values and the model's predicted values, and it is useful to 
understand the relative size of the errors compared to the actual values. The formula to calculate 
the MAPE is,

 However, it needs to be more well-defined when the actual values are zero or near zero, 
which can result in non-sensical very large MAPE values.

 (iv)  Mean Percentage Error 

 Mean Percentage Error (MPE) is instead of taking the absolute percentage difference like 
in MADE consider the signed percentage difference. Therefore, accounting for both the (positive 
and negative) magnitude of the errors. The formula to calculate the MPE is,
                                                      
                                              (10)        

 Such that, lower values of MPE indicate better forecast accuracy. A value of zero MPE 
would imply that the forecasted values match the actual values perfectly. However, MPE can have 
some limitations, such as the potential for the errors to cancel each other out, leading to an artifi-
cially low MPE even if the model's performance is unsatisfactory.

 (v) Mean Absolute Scaled Error 

 Mean Absolute Scaled Error (MASE) measures the performance of a model relative to the 
performance of a naive or benchmark model. The MASE provides a more interpretable measure of 
forecast accuracy than metrics like Mean Absolute Error (MAE), especially when dealing with 
time series data and comparing different forecasting models. It provides insights into whether a 
model provides meaningful improvements over a basic, naive forecasting approach. The formula to 
calculate the MASE is,   
                   (11)  
                                         

  where n is the length of the series and m is its frequency, i.e., m=1 for yearly data, m=4 for 
quarterly, m=12 for monthly, etc.
 MASE measures how well the model performs relative to the naive model's forecast errors taken 
as a benchmark. A value of MASE less than 1 indicates that the model performs better than the 
naive model regarding absolute forecast errors, while a value greater than 1 shows worse perfor-
mance than the naive model.

Data and Analysis

 For modelling and forecasting non-seasonal time series data of the annual GDP of Nepal, 
we have obtained data from the website of World Bank for the period 1960 – 2022. This implies 
that we have 63 observations of GDP, based on this data, we have proposed the ARIMA (2, 2, 1) 
model to forecast the GDP of Nepal for the next fifteen years (2023 – 2037).    

1. Model Identification for GDP

 Progression of GDP per capita of Nepal is graphed in Figure 2. A steady long-term rise is 
observed during 1960 – 2022. Beyond 2010 the rate of upward trend increases sharply. The time 
series may be quickly and easily determined to be unstable because of the GDP of Nepal's clearly 

marked increasing trend. Autocorrelation Function (ACF) (Figure 3) and Partial Autocorrelation 
Function (PACF) (Figure 4) are studied further to understand genesis of data structure. It is evident 
from the PACF that a single prominence indicates the fictitious primary value of n=1 when it 
crosses the confidence intervals. Furthermore, at ACF 11 heights, the same issue occurs. Accord-
ing to the ACF plot, the autocorrelations in the observed series is very high, and positive. A slow 
decay in ACF suggests that there may be changes in both the mean and the variability over time for 
this series. The arithmetic mean may be moving upward, with rising variability. Variability can be 
managed by calculating the natural logarithm of the given data, and the mean trend can be elimi-
nated by differencing once or twice as needed to achieve stationarity in the original observed 
series. An instantaneous nonlinear transformation applied to the optimal forecast of a variable may 
not produce the transformed variable's ideal forecast (Granger and Newbold, 1976). In particular, 
using the exponential function to forecasts for the original variable when excellent forecasts of the 
logs are available may not always be the best course of action. Therefore, we further employ the 
differencing process on the untransformed actual data series.

Flgure 2
The GDP Data During 1960 to 2021

2. Diagnostics and Estimation for GDP

 Based on GDP time chronological data for the period 1960 – 2022, we have considered ten 
tentative ARIMA (p, d, q) models (Table 2) and estimate the parameters using R interface.   The 
model with minimum AIC is deemed to fit best and will be referred to as Model I, henceforth. 

Table 2 
Tentative ARIMA (p, d, q) Models of GDP for Nepal

 The applicability test assesses the error or residual sequence of the fitted data for consisten-
cy. If a white noise sequence for residuals is obtained, then the model I is considered suitable for 
forecast.  If not, then the model needs improving. In this research, the ACF graph (Figure 5) and 
PACF graph (Figure 6) of residual sequence are exhibit white noise process. Hence, ARIMA 
(2,2,1) well fits (Table 2) the considered time series GDP data from Nepal.                                                

Figure 5
Autocorrelation Function Graphs of the Residual Series 

             
Figure 6 
Partial Autocorrelation Function Graphs of the Residual Series

 
 
Figure 7
 Q-Q Plot of the Residual Series

Figure 7, illustrates the normal Q-Q plot, the maximum points seem to falls on or near the line. So, 

it can be said that the model residuals are normally distributed which is one of the assumptions of 
linear regression.

 Table 3 represents the estimated coefficients and model adequacy criterion for both Model I 
and Model II. Model II estimates have smaller standard errors (Table 3) with smaller RMSE, MAE, 
MPE, MAPE and MASE. Table 4 which indicate smaller associated residuals for model fit. However, 
from the viewpoint of sample-based information, of AIC and BIC, Model I is a better representative 
for the considered time series.                         

3.  Forecasting  of GDP for Nepal

 One use of a model is to anticipate the future values of a time series after the model has been 
discovered, its parameters determined, and its diagnostics examined. Table 5 provides the GDP 
projections for the time window 2023 – 2037.  Figure 8 (a) and Figure 8 (b) shows the trend of the 
actual and forecasted GDP values with their 95% confidence limits for the years 1960 – 2022, as well 
as the GDP that would be predicted, based on these 63 years for the next 15 years forecasted values 
of GDP for the Model I and Model II respectively by using the proposed ARIMA (2, 2, 1) model. 
The Model I predicted values indicate that the Nepal GDP specific growth run continues. Since the 
national economy is a complex and dynamic system, and that the outcome is simply a predicted 
number, therefore in order to prevent the economy from suffering from strong fluctuations, the 
administrators we should maintain the stability and continuity of microeconomic regulation and 
control with special attention to the risk of adjustment in economic operation, (Wabomba et al. 2016). 
We should also adjust the corresponding target value in light of the current situation. Thus, to assess 

robustness of the model-based prediction we next include the first eight predicted values for the 
years 2023 – 2030 in the original time series data base. The same R program is now re-run for the 
composite period 1960 – 2030. Again ARIMA (2, 2, 1) emerges as the best fit model on the basis 
of AIC from among the eleven considered models. With the new compounded data model (Model 
II, henceforth). We predict the next seven annual GDP values for the period 2031 – 2037. 95% 
confidence interval for Model II are found to be shorter (Table 5) thus retrieving that Model II is 
more efficient for predictive purpose

Table 5
Forecasted of GDP for Nepal

 

Figure 8 (b) 
Time Series Plot for Actual and Forecasted GDP Values for Model II

         Figure 8 (b): Time Series Plot for Actual and Forecasted GDP Values for Model II.

Conclusion and Recommendations
  
 Our study discovers that the proposed ARIMA models are useful for future GDP per capita 
of Nepal. For the development and assessment of different ARIMA models, we have used annual 
data from 1960 – 2022 and found that the ARIMA (2, 2, 1) model as the most appropriate one. Our 
findings are in line with earlier research, which discovered that ARIMA models as effective tools 
of forecasting economic indicators like GDP. Our present study makes a practical contribution by 
providing in-depth explanations of how ARIMA models might be used to predict Nepal's per-capita 
GDP. The best fitted ARIMA model has been used to obtain forecast values for next one and half 
decade. The finding shows that the forecast values of Nepal’s GDP will be $1384.426 per capita in 
2023 and $2180.822per capita in 2037. The results show that Nepal a growing GDP substantially, 
however, this growth is not sufficient. So, it is suggested to the policy maker to invest more on 
areas of infrastructure development, research and development, and facilitate to establishing more 
startups with focus on green investment and sustainability.

 Model II reinforces that short- term prediction of GDP is more precise (Table 5). Model 
based prediction enable planners to address specific economic challenges such as resource alloca-
tion. A robust GDP prediction could guide the government about the expected revenue generation, 
and expenditure optimization. Business and governments could plan investment, inventory manage-
ment and volume of production. Statistical prediction thus empowers a decision maker with scope 
for evidence informed decision- making. However, one must be always aware that any model is 
sustainable as long as the background conditions such as other influencing market forces remain at 
the same level.
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beauty perspective, and construction design is somewhat lacking. This paper covers the 
state-of-the-art golden ratio based on its mathematical structures and their constructional properties 
instead of its mathematical properties.  The rest of the paper is as follows. Section 2 is about the 
geometry of the golden ratio in plane geometry and Section 3 is in solid geometry. Finally, Section 4 
concludes the paper.

The golden ratio in Plane Geometry 

 Here, we are presenting the golden ratio corresponding to plane geometry. For details, we 
refer to (Akhtaruzzaman & Shafie, 2011; Livio, 2002; and Markowsky, G. (1992).

1  The golden ratio corresponds to a line segment

 A straight line is said to have been cut in extreme and mean ratio when, as the whole line is 
to the greater segment, so is the greater to the less, as illustrated in Figure 1. 

 Figure 1 
The golden ratio in a line segment

Algorithm 1. Construction in a line segment
 

 Being an irrational number, it has non-repeating, non-terminating, and non-recurring decimal 
representation, like  ϕ =1.6180339887498948482... This ratio is also known as the divine ratio or 
divine proportion.  Here, we are using the term golden ratio
 1.1 The golden ratio corresponds to internal division 
 
 The golden ratio can be constructed corresponding to the internal division of a line segment. 

Algorithm 2 Construction corresponds to the internal division in a line segment

Figure 2 
The golden ratio from the internal division of a line segment

2   The golden ratio corresponds to exterior division

 It can also be constructed in the form of the external division of a line segment.  

Algorithm 3 Construction with exterior division of a line segment.

 

Figure 3  
The Golden Ratio corresponds to the external division of a line segment

 

 2  The golden ratio corresponds to different triangles

It can also be defined as corresponding to an isosceles triangle and an equilateral triangle: 

 2.1 The golden ratio corresponds to isosceles triangles 

Algorithm 4. Construction corresponding to an isosceles triangle 

Figure 4
Construction of a golden cut, golden gnomon, and golden triangle 

 Note that, such a cut BP in ∆ABC is the golden cut where triangles  ∆ABP and  ∆BCP are 
the golden gnomon and the golden triangle, respectively, Akhtaruzzaman & Shafie, 2011.

 2.2 The golden ratio corresponds to an equilateral triangle 

Algorithm 5 Construction corresponding to an equilateral triangle

Figure 5 
Construction corresponding to an equilateral triangle.

 

3.  The golden ratio corresponds to different quadrilaterals 
 
 Here, we are presenting its geometry corresponding to different variants of the quadrilaterals, 
Akhtaruzzaman & Shafie, 2011. 

 GROSS DEMESTIC PRODUCT (GDP) is a strategic compo-
nent in measuring National Income and Product Accounts. GDP 
represents the total value of final goods and services. GDP assessment 
is based on the quantum of consumption and investment by house-
holds and businesses in addition to the governmental expenditure and 
net exports. GDP is, therefore, crucial in maintaining a healthy 
economy as it embodies all financial transactions, including banking 
aspects. Planning and decision-making for the entire economy is thus 
conditioned on accurate information with respect of all the three 
stakeholders in the economic transactions, namely, households, 

 
 THE GOLDEN RATIO  has been used for centuries in design, 
architecture, structure, and construction. It has been used not only in 
ancient and classical structures but also in modern architecture, 
artwork, and photography. It is found in nature, the universe, and 
various aspects of mathematical sciences. The golden ratio is one of the 
fascinating topics. Mathematicians since Euclid have studied it. Mathe-
matics theorem and the golden ratio have been given great importance 
in the history of Mathematics, as Johannes Kepler also said, Geometry 
has two great treasures: one is the theorem of Pythagoras, and the other 
is the division of a line into mean and extreme ratios. The first we may 
compare to a mass of gold, the second, we may call a precious jewel. 
For details, we refer to (Bell, 1940; Boyer, 1968; Herz-Fischler, 2000; 
and Pacioli, 1509).

 There has been a lot of work about its historical background 
and existence. However, its systematic overview from the geometrical 
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businesses and government, which GDP is capable of delivering. We thus have an estimated 
nominal GDP (NGDP) which is used for the purpose of future planning by the finance ministry of 
the country. The real GDP (RGDP) is obtained after adjusting the estimated NGDP for inflation. 
The latter is also known as observed GDP in actual real-time. However, all budget planning and 
projections utilize the former, i.e., NGDP, whereas RGDP directly impacts the common citizen. 
Therefore, fluctuations in the level of GDP covariates are important in determining the gap 
between NGDP and RGDP. The effective mathematical relationship is represented as NGDP – 
inflation rate = RGDP.

 GDP computation is based on the principle of averages, which has an upward bias. There-
fore, GDP does not capture income, expenditure, or production changes at the regional level. For 
instance, if a large group of people experience declining income at a time when its complement 
group in the same population is smaller but experiences upwardly rising incomes, then GDP 
registers rise. To overcome this upward bias to a sufficiently large extent, in this paper, we focus 
on the concept of GDP per capita, which gives a more realistic picture of a nation's economic 
health. GDP measures an economy's current market value for all products and services generated 
during the assessment period. This value encompasses spending and costs on personal consump-
tion, government purchases, inventories, and the foreign trade balance. Thus, the total capital at 
stake and covered under the GDP envelope of a specific period can be viewed through (i) produc-
tion undertaken, (ii) income generated and (iii) expenditure accrued for the same period.

 Several research studies have been designed on the temporal data template where study 
units are macroeconomic units like countries or sub-regions like states, districts, or countries. In 
the present paper, we employ Autoregressive Integrated Moving Average (ARIMA) model 
proposed by Box and Jenkins (1970) for understanding the GDP movement with time. Past studies 
have used predictive ARIMA modelling for GDP of different countries. For instance, Kiriakidis 
and Kargas (2013) used predictive ARIMA model for predicting GDP of Greece, while correctly 
predicting recession in the near future. The RGDP in Greece for the period 2015-2017 was forecast 
by Dritsaki (2015) using an ARIMA (1, 1, 1) model based on data for the period of 1980-2013 
which correctly indicated a gradual rise in GDP. Wabomba et al. (2016) projected Kenya's GDP 
from 2013-2017 using an ARIMA (2, 2, 2) model based on data for period of 1960-2012. Predicted 
estimates correctly indicated that Kenya's GDP will expand faster over the next five years, from 
2013-2017. Agrawal (2018) estimated RGDP in India using publicly available quarterly RGDP 
data from Quarter 2 of 1996 to Quarter 2 of 2017 using ARIMA model. Abonazel et al. (2019) 
used an ARIMA (1, 2, 1) model over the period 1965-2016 to correctly forecast the rise in GDP for 
Egypt during for the period 2017-2026 and Eissa (2020) forecasted the GDP per capita for Egypt 
and Saudi Arabia, from 2019-2030 using the ARIMA (1, 1, 2) and ARIMA (1, 1, 1) models 
respectively based on data from the period 1968-2018. Their study showed that both Egypt's and 
Saudi Arabia's GDP per capita would continue to rise. In order to forecast the GDP and consumer 
`price index (CPI) for the Jordanian economy between 2020 and 2022, Ghazo (2021) employed 
ARIMA (3, 1, 1) model for GDP and ARIMA (1, 1, 0) model for CPI respectively, based on 
sample data from the period 19762019. They rightly anticipated stagflation for the Jordanian 
economy as a result of the predicted shrinkage in GDP and first rise in CPI. In order to escape the 
stagflationary cycle and achieve more stable CPI, this study provided inputs to the economic policy 
makers to develop sensible measures for boosting GDP and fending off inflationary forces. 
Mohamed (2022) used an ARIMA (5, 1, 2) model for the period between 1960-2022 to forecast 

trajectory of GDP in Somalia for the next fourteen quarters. In order to forecast the quarterly GDP 
of Philippines, Polintan et al. (2023) used data from 2018-2022 through an ARIMA (1, 2, 1) model 
for forecasting GDP in the Philippines, for 2022-2029 and predicted a steady growth trajectory. 
Lngale and Senan (2023) used predictive ARIMA (0, 2, 1) model for predicting GDP of India, 
pertaining to the period 1960-2020 and predicted a steady growth trajectory. Tolulope et al. (2023) 
used an ARIMA (2, 1, 2) model for predicting the Nigerian GDP using both in sample and out of 
sample prediction method, based on data for the period of 19602020 which correctly indicated a 
gradual rise in GDP. Urruttia (2019) used an ARIMA (1, 1, 1) model over the period from the first 
quarter of 1990 to the fourth quarter of 2017 with a total of 112 observations for forecasting future 
GDP. Remittance income in Nepal vis- a vis GDP has between studied by Gaudel (2006). Srivas-
tava and Chaudhary (2007) looked in to role of remittance in economic development of Nepal. 
Energy – GDP dependence in Nepal is focus of work under taken by Asghar (2008). Dahal (2010) 
studied role of GDP on educational enrolment and teaching strength in the school system of Nepal. 
GDP and oil consumption relations are analyzed by Bhusal (2010). Thagunna and Acharya (2013) 
assessed investment, saving, exports and imports as determinants of GDP. Chaudhary and Xiumin 
(2018) analysed determinants of inflation in Nepal. Interrelations between foreign trade and GDP 
of Nepal are investigated by Prajuli (2021). The present paper is the first study where a self-re-
gressed Bayesian investigation on GDP is made with identification of a unique TS statistical model 
to project future pattern of GDP in Nepal. One step ahead prediction for the year 2022 is validated 
by the recent World Bank report. Information about GDP can be quite advantageous for the 
business and economy, particularly for investors, business people and the governmental units 
aiming for cost effectiveness and maximizing profit in addition to guiding the government for 
framing future economic policies and in planning and control of various economic measures. 

The Study Region

 The Federal Democratic Republic of Nepal is a landlocked country in South Asia sharing 
its boundaries with India and Tibet. World Bank 2022 report the total GDP (hence froth, GDP) of 
Nepal to be 36.29 billion USD with 122 billion USD Purchasing Power Parity (PPP). GDP per 
capita is placed at 1,230 USD and PPP at 4,190 USD for the year 2021. GDP growth rate for Nepal 
is 2.7% while GDP of Nepal represents 0.02% of the world economy for the year 2021. The main 
economic sectors in Nepal are agricultural, hydro-power, natural resources, tourism and handi-
crafts. These sectors have a significant impact on Nepal economy in terms of their contribution to 
the GDP. Empirical research conducted by Nepal Rastra Bank (NRB) in the year 2020 concluded 
tourism to be a crucial economic sector for both the short-run and the long- run economic growth 
of Nepal. The NRB report indicated a significant relationship between tourism industry and the 
county’s economic growth which is one of the fasted growing industries in the country. More than 
a million indigenous people are engaged in the tourism industry for their livelihood. Tourism 
accounts for 7.9% of the total GDP while 65% of the population is engaged in agricultural activi-
ties contributing to 31.7% of GDP. About 20% of the area is cultivable, another 40.7 % is forested 
and the remaining land is mountainous. Thus, Nepal’s GDP is heavily dependent on remittance. 
According to the Central Bureau of Statistics Nepal (2022) report, Nepal has received remittance 
amounting to Nepalese Rupees (NRs.) 875 billion in the financial year 2019-20, which translates 
into a remittance to GDP ratio of 23.23%. Nepal is primarily a remittance-based country with 
remittance inflow amounting to more than a quarter of the country’s GDP. Nepal’s total labour 
force in the year 2020 was 16,016,900 with sectoral distribution by occupation as 43% in agricul-
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ture 21% in industry and share of services at 35%. The inflation rate in Nepal was recorded at 6% 
and the unemployment rate at 1.4%. Nepal’s total exports were reported to be worth 918 million 
USD in the year 2020, its main exports being carpets, textiles, pulses, tea, etc. Its main export 
partners are India, USA, Japan, Malaysia, Singapore, Germany, and Bangladesh. Total imports for 
the same period were recorded at 10 billion USD with prominent import goods being petroleum, 
electrical goods, machinery, gold, etc. Its principal import partners are India and China. 

 In this paper, we estimate and predict the GDP per capita of Nepal for next one and half 
decade by using ARIMA time series model. Section 2 describes model determination methodology 
used in the present work. Section 3 enumerates the models and the model adequacy measures. 
Section 4 focusses on data description and its analysis. Conclusion and recommendations are 
summarised in section 5. 

Methodology

 Time series models are characterized by the clustering effect or serial correlation in time. 
In the present paper, we employ ARIMA modelling to estimate and forecast Nepal's GDP. ARIMA 
modelling addresses such issues of dependent errors by introducing time lagged dependent variable 
and past error terms on the determinant side of the time series model. ARIMA model consists of 
AR, I, and MA segments where AR indicate the autoregressive part, I indicate integration i.e., the 
order of differencing in the observed series to achieve stationarity and MA indicate the moving 
average component in the model. The four stages of the iterative ARIMA model fitting process are 
Identification, estimation, diagnostic checking, and time series forecasting. (Figure 1). 

Figure 1
 Iterative ModellingProgression for a Stationary Variable in Box

 It employs a general technique for choosing a possible model from a large class of models. 
The chosen model is then evaluated to see if it can accurately explain the series using the historical 
data. Auto-correlation function (ACF) and partial auto-correlation function (PACF) are used to 
select one or more ARIMA models that seem appropriate during the identification stage. The next 
stage involves estimating the parameters of a specific Box-Jenkins model (1970) for a given time 
series. This step verifies the parsimony in terms of the number of model parameters or lack of 
over-specification by determining whether, in addition to the residuals being uncorrelated, the 
chosen least amount of squared residuals are found in the AR and/or MA parameters. A critical and 
sensitive aspect of an ARIMA model is parsimony. An over-parameterized model cannot predict as 
efficiently as a sparse model. Model diagnostics and testing is carried out in the third step. The 
underlying presumption is that the error terms, ε_t,  behave in a manner consistent with that of a 

stationary, unchanging process. If the residuals are drawn from a fixed distribution with constant 
mean and variance, they should be white noise. The most adequate Box-Jenkins model fulfils these 
prerequisites for the residual distribution. The best model needs to be decided based on these four 
paradigms. Thus, testing of the residuals would lead to a better suitable model. A graphical 
technique called a quantile-quantile (Q-Q) plot compares the distributional similarities of two 
datasets. In the context of ARIMA models, a Q-Q plot is often used to check whether the model's 
residuals follow a normal distribution. 

The Model and Forecast

1.  Autoregressive Model 

 With the intent to estimate the coefficients β_(j,) j = 1,2, …,p, an AR process for the 
univariate model is the one that shows a changing variable regressed on its own lagged values. AR 
model of order p, or AR (p), is expressed as,

ACF gives a correlation coefficient between the dependent variable and the same variable with 
different lags, but the effect of shorter lags is not kept constant, meaning that the effect of shorter 
lag is remained in the autocorrelation function. The correlation between y_t and y_(t-2) includes 
the correlation effect between y_t and y_(t-1). On the other hand, PACF gives a correlation coeffi-
cient between the dependent variable and its lag values while keeping the effect of shorter lags 
constant. The correlation between y_t and y_(t-2) does not include the effect of correlation 
between y_t and y_(t-1).

2.  Moving Average Model

 Let ε_t (t = 1,2,…)  be a white noise process, with t standing for a series of independent 
and identically distributed (iid) random variables expecting ε_t is zero and variance of ε_t is σ^2. 
After that, the qth order MA model, which accounts for the relationship between an observation 
and a residual error, is expressed as

  represents the impact of past errors on the response variable. Estimated coefficients θ_(j,) j 
= 1,2, …   ,q,  accounting for short-term memory help in forecasting.

3.   Autoregressive Moving Average Model

 The model AR, coupled with the MA modelling strategy is called Autoregressive Moving 
Average (ARMA) models intended for stationary data series. ARMA (p, q) model is expressed as:

 An amalgam of the AR and MA models is represented by (3). In this instance, the greatest 

order of p or q cannot be provided merely by ACF or PACF.

4.  Autoregressive Integrated Moving Average Model

 The extension of ARMA model is ARIMA model which enable to transform data by 
differencing to make data stationary. ARIMA model can be written as ARIMA (p, d, q), where p is 
the order of AR term, d is the number of differencing required to make series stationery and q is 
the order of MA term. For example, if y_it  is a non-stationary series, we will take a first-difference 
of y_t to make ∆y_t= stationary, and then the ARIMA (p, 1, q) model is expressed as: 
 

 Where ∆ y_t= y_t- y_(t-1), then d = 1, which implies a one-time differencing step. The 
model transforms into a random walk model, categorized as ARIMA (0.1,0), if p = q = 0.

Table 1 
ARIMA (p, d, q) Model for d = 0, 1, 2

5.  Model Adequacy Measures

 Before employing a model for predicting, diagnostic testing must be done on it. The 
residuals that remain after the model has been fitted are deemed sufficient if they are just white 
noise, and the residuals' ACF and PACF patterns may provide insight into how the model might be 
improved. Akaike (1973) developed a numerical score that can be used to identify the best model 
from among several candidate models for a specific data set. Akaike information criterion (AIC) 
results are helpful compared to other AIC scores for the same data set. A smaller AIC score 
indicates a better empirical fit. Estimated log-likelihood (L) is used to compute AIC as,
 
AIC = - 2(L + s)                                                                                                                         (5)          
 Such that s is the number of variables in the model plus the intercept term. Schwarz (1978) 
developed an alternative model comparison score known as Bayesian (Schwarz) information 
criterion BIC (or SIC) as an asymptotic approximation to the transformation of the Bayesian 
posterior probability of a candidate model expressed as,

BIC or SIC = - 2L + s log(n)                                                                                                     (6)             
 L is the maximum likelihood of the model, s is the number of parameters in the model, and 
n is the sample size. Like AIC, BIC also balances the goodness of fit and model complexity. 
However, BIC places a higher penalty on model complexity compared to AIC because it includes a 
term that depends on the sample size (s log(n)). As with AIC, the goal is to minimize the BIC value 
to select the best model.

 6.   Forecasting 

 Box-Jenkin's time series model method applies only to stationary and invertible time 
series. Lidiema (2017), Dritsakis and Klazoglou (2019). Future value forecasting can begin once 
the requirements have been met through procedures like differencing. We can utilize the chosen 
ARIMA model to predict when it meets the requirements of a stationary univariate process. 
Further, diagnostic checking is done to verify the forecasting accuracy of the ARIMA model. 
   
7.  Forecasting Accuracy

 We now present different measures listed to determine the accuracy of a prediction model.
 
 (i) Mean Absolute Error 

 The mean absolute difference between a dataset's actual (observed) values and the model's 
predicted values is computed using the Mean Absolute Error (MAE) algorithm. The absolute rather 
than squared differences make MAE more robust to the outliers. The formula to calculate the MAE 
is,
                                                     
 
 Where n is the total number of observations, y_(i )is the actual value of time series in data 
point i, and y _i denotes forecasted value of time series data point i.       

 (ii)  Root Mean Square Error 

 Root Mean Square Error (RMSE) is a popular accuracy measure in regression analysis 
based on the difference between a dataset's actual (observed) values and the model's predicted 
values. Lower RMSE indicates the alignment of the model's predictions with the actual data. The 
formula to calculate the RMSE is,
                  (8)
                                    
  
 However, due to the squaring of deviations, RMSE gives underweight to the outliers and 
may not be suitable for all types of datasets. Depending on the specific problem and characteristics 
of the data, we can use metrics such as Mean Absolute Error (MAE) or R-squared (coefficient of 
determination) may also be used in conjunction with RMSE to gain a more comprehensive under-
standing of the model's performance.            
                                                                                                                                                                                                              
                                                                                                                                                                                                                                                                                                                                                                                                                   
 (iii) Mean Absolute Percentage Error 

 Mean Absolute Percentage Error (MAPE) is used to measure the percentage variation 
between a dataset's actual (observed) values and the model's predicted values, and it is useful to 
understand the relative size of the errors compared to the actual values. The formula to calculate 
the MAPE is,

 However, it needs to be more well-defined when the actual values are zero or near zero, 
which can result in non-sensical very large MAPE values.

 (iv)  Mean Percentage Error 

 Mean Percentage Error (MPE) is instead of taking the absolute percentage difference like 
in MADE consider the signed percentage difference. Therefore, accounting for both the (positive 
and negative) magnitude of the errors. The formula to calculate the MPE is,
                                                      
                                              (10)        

 Such that, lower values of MPE indicate better forecast accuracy. A value of zero MPE 
would imply that the forecasted values match the actual values perfectly. However, MPE can have 
some limitations, such as the potential for the errors to cancel each other out, leading to an artifi-
cially low MPE even if the model's performance is unsatisfactory.

 (v) Mean Absolute Scaled Error 

 Mean Absolute Scaled Error (MASE) measures the performance of a model relative to the 
performance of a naive or benchmark model. The MASE provides a more interpretable measure of 
forecast accuracy than metrics like Mean Absolute Error (MAE), especially when dealing with 
time series data and comparing different forecasting models. It provides insights into whether a 
model provides meaningful improvements over a basic, naive forecasting approach. The formula to 
calculate the MASE is,   
                   (11)  
                                         

  where n is the length of the series and m is its frequency, i.e., m=1 for yearly data, m=4 for 
quarterly, m=12 for monthly, etc.
 MASE measures how well the model performs relative to the naive model's forecast errors taken 
as a benchmark. A value of MASE less than 1 indicates that the model performs better than the 
naive model regarding absolute forecast errors, while a value greater than 1 shows worse perfor-
mance than the naive model.

Data and Analysis

 For modelling and forecasting non-seasonal time series data of the annual GDP of Nepal, 
we have obtained data from the website of World Bank for the period 1960 – 2022. This implies 
that we have 63 observations of GDP, based on this data, we have proposed the ARIMA (2, 2, 1) 
model to forecast the GDP of Nepal for the next fifteen years (2023 – 2037).    

1. Model Identification for GDP

 Progression of GDP per capita of Nepal is graphed in Figure 2. A steady long-term rise is 
observed during 1960 – 2022. Beyond 2010 the rate of upward trend increases sharply. The time 
series may be quickly and easily determined to be unstable because of the GDP of Nepal's clearly 

marked increasing trend. Autocorrelation Function (ACF) (Figure 3) and Partial Autocorrelation 
Function (PACF) (Figure 4) are studied further to understand genesis of data structure. It is evident 
from the PACF that a single prominence indicates the fictitious primary value of n=1 when it 
crosses the confidence intervals. Furthermore, at ACF 11 heights, the same issue occurs. Accord-
ing to the ACF plot, the autocorrelations in the observed series is very high, and positive. A slow 
decay in ACF suggests that there may be changes in both the mean and the variability over time for 
this series. The arithmetic mean may be moving upward, with rising variability. Variability can be 
managed by calculating the natural logarithm of the given data, and the mean trend can be elimi-
nated by differencing once or twice as needed to achieve stationarity in the original observed 
series. An instantaneous nonlinear transformation applied to the optimal forecast of a variable may 
not produce the transformed variable's ideal forecast (Granger and Newbold, 1976). In particular, 
using the exponential function to forecasts for the original variable when excellent forecasts of the 
logs are available may not always be the best course of action. Therefore, we further employ the 
differencing process on the untransformed actual data series.

Flgure 2
The GDP Data During 1960 to 2021

beauty perspective, and construction design is somewhat lacking. This paper covers the 
state-of-the-art golden ratio based on its mathematical structures and their constructional properties 
instead of its mathematical properties.  The rest of the paper is as follows. Section 2 is about the 
geometry of the golden ratio in plane geometry and Section 3 is in solid geometry. Finally, Section 4 
concludes the paper.

The golden ratio in Plane Geometry 

 Here, we are presenting the golden ratio corresponding to plane geometry. For details, we 
refer to (Akhtaruzzaman & Shafie, 2011; Livio, 2002; and Markowsky, G. (1992).

1  The golden ratio corresponds to a line segment

 A straight line is said to have been cut in extreme and mean ratio when, as the whole line is 
to the greater segment, so is the greater to the less, as illustrated in Figure 1. 

 Figure 1 
The golden ratio in a line segment

Algorithm 1. Construction in a line segment
 

 Being an irrational number, it has non-repeating, non-terminating, and non-recurring decimal 
representation, like  ϕ =1.6180339887498948482... This ratio is also known as the divine ratio or 
divine proportion.  Here, we are using the term golden ratio
 1.1 The golden ratio corresponds to internal division 
 
 The golden ratio can be constructed corresponding to the internal division of a line segment. 

Algorithm 2 Construction corresponds to the internal division in a line segment

Figure 2 
The golden ratio from the internal division of a line segment

2   The golden ratio corresponds to exterior division

 It can also be constructed in the form of the external division of a line segment.  

Algorithm 3 Construction with exterior division of a line segment.

 

Figure 3  
The Golden Ratio corresponds to the external division of a line segment

 

 2  The golden ratio corresponds to different triangles

It can also be defined as corresponding to an isosceles triangle and an equilateral triangle: 

 2.1 The golden ratio corresponds to isosceles triangles 

Algorithm 4. Construction corresponding to an isosceles triangle 

Figure 4
Construction of a golden cut, golden gnomon, and golden triangle 

 Note that, such a cut BP in ∆ABC is the golden cut where triangles  ∆ABP and  ∆BCP are 
the golden gnomon and the golden triangle, respectively, Akhtaruzzaman & Shafie, 2011.

 2.2 The golden ratio corresponds to an equilateral triangle 

Algorithm 5 Construction corresponding to an equilateral triangle

Figure 5 
Construction corresponding to an equilateral triangle.

 

3.  The golden ratio corresponds to different quadrilaterals 
 
 Here, we are presenting its geometry corresponding to different variants of the quadrilaterals, 
Akhtaruzzaman & Shafie, 2011. 

 GROSS DEMESTIC PRODUCT (GDP) is a strategic compo-
nent in measuring National Income and Product Accounts. GDP 
represents the total value of final goods and services. GDP assessment 
is based on the quantum of consumption and investment by house-
holds and businesses in addition to the governmental expenditure and 
net exports. GDP is, therefore, crucial in maintaining a healthy 
economy as it embodies all financial transactions, including banking 
aspects. Planning and decision-making for the entire economy is thus 
conditioned on accurate information with respect of all the three 
stakeholders in the economic transactions, namely, households, 

 
 THE GOLDEN RATIO  has been used for centuries in design, 
architecture, structure, and construction. It has been used not only in 
ancient and classical structures but also in modern architecture, 
artwork, and photography. It is found in nature, the universe, and 
various aspects of mathematical sciences. The golden ratio is one of the 
fascinating topics. Mathematicians since Euclid have studied it. Mathe-
matics theorem and the golden ratio have been given great importance 
in the history of Mathematics, as Johannes Kepler also said, Geometry 
has two great treasures: one is the theorem of Pythagoras, and the other 
is the division of a line into mean and extreme ratios. The first we may 
compare to a mass of gold, the second, we may call a precious jewel. 
For details, we refer to (Bell, 1940; Boyer, 1968; Herz-Fischler, 2000; 
and Pacioli, 1509).

 There has been a lot of work about its historical background 
and existence. However, its systematic overview from the geometrical 

Parajuli, R. (2021) A Study on impact of foreign trade in GDP of Nepal. Interdisciplinary 
Journal of Management and Social Sciences, 2(1), 165-171.  

 Polintan, S.N., Cabauatan, A.L.L., Nepomuceno, J.P., Mabborang, R.C., & Lagos, J.C. 
(2023). Forecasting gross domestic product in the Philippines using ARIMA model. 
European Journal of Computer Science and Information Technology, 11(2), 100-124.   

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461-
464.  

 Srivastava, N.L., & Chaudhary, S.K. (2007) Role of remittance in economic development of 
Nepal. Journal of Nepalese Business Studies, 4(1), 28-37.  

Thagunna, K.S., & Acharya, S. (2013). Empirical analysis of remittance inflow: The case of 
Nepal. International Journal of Economics and Financial Issues, 3(2), 337-344.  

Tolulope,J.O., Babyemi, A.W., Shayau, S.A., &  Sh ehu, B. (2023). Model for forecasting 
Nigerian real GDP using ARIMA. Journal of Mathematical Sciences & 
Computational Mathematics, 4(2), 152-168.  

Urrutia, J.D., Abdul, A.M., & Atienza, J.B.E. (2019) Forecasting Philippines imports and 
exports using Bayesi an artificial neural network and autoregressive integrated 
moving Average. In AIP Conference Proceedings, 2192(1), p. 090015.   

Uwimana, A., Xiuchun, B., & Shuguang, Z. (2018). Modeling and forecasting Africa ’s GDP 
with time series models. International Jo urnal of Scientific and Research 
Publications, 8(4), 41-46. 

Wabomba, M.S., Mutwiri, M.P., & Mungai, F. (2016). Modelling and forecasting Kenyan 
GDP using ARIMA models. Science Journal of Applied Mathematics and Statistics , 
4(2), 64-73.   


