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Abstract 

Ensuring reliable operation in electricity transmission networks requires efficient fault 

detection, classification, and localization. However, the integration of distributed 

generators and the dynamic nature of these systems pose challenges to traditional relaying 

devices in managing fault currents. This study investigates the application of deep learning 

techniques to address these challenges by autonomously extracting fault characteristics 

from three-phase voltage and current signals. Using Artificial Neural Networks (ANNs) 

and one-dimensional Convolutional Neural Networks (1D-CNNs), fault detection, 

classification, and localization are performed on the IEEE 9-bus system. Simulated fault 

data is generated in MATLAB/Simulink, and deep learning models are trained using 

Python libraries such as scikit-learn and TensorFlow. Results indicate high accuracy, with 

1D-CNN achieving 99.87% for faulty line identification, 92.42% for fault classification, 

and 96.95% for fault location. Similarly, the ANN model attained 99.54%, 92.35%, and 

96.24%, respectively. To optimize the cost and complexity of phasor measurement unit 

(PMU) deployment, a selective feature reduction strategy was implemented, focusing on 

critical buses (5, 6, and 8), demonstrated that fault analysis can be effectively performed 

with reduced data inputs, while minimizing the required PMUs. Additionally, transfer 

learning for N-1 contingency scenarios allowed the pre-trained models to efficiently adapt 

to new cases, enhancing fault diagnosis performance. These findings highlight the potential 

of deep learning to improve the accuracy and reliability of fault diagnosis in power 

transmission systems, supporting future real-time implementation.  
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1. Introduction 

The reliable operation of power systems depends on the rapid detection, classification, and 

localization of faults. Faults, whether caused by environmental factors, equipment failures, or 

unexpected operational conditions, pose a significant threat to grid stability and require swift 

action to prevent cascading failures and minimize service interruptions [1]. In power 

transmission systems, faults occur when system parameters, such as voltage and current, 

exceed their threshold values due to abnormal conditions. This is particularly common in 

overhead transmission lines, which are more exposed to environmental factors compared to 

underground cables, making them more susceptible to faults. These faults can be broadly 
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classified into series (open conductor) and shunt (short circuit) types, with shunt faults further 

divided into asymmetrical (e.g., line-to-ground, line-to-line) and symmetrical (e.g., three-phase) 

categories [2]. Figure 1 shows classification of fault.  

There have been several studies to determine the best methods for fault detection and 

classifications. The available methods can be divided into three main types; prominent 

technique, hybrid technique, and modern technique. The prominent approaches include 

wavelet which involves the wavelet transformations, Artificial Neural Network (ANN), and 

fuzzy logic. The hybrid approaches apply a combination of more than one approach to detect 

and classify faults, and includes hybrid methods of neuro and fuzzy techniques, wavelet and 

ANN, Wavelet and fuzzy logic, and wavelet and neuro-fuzzy technique. The third type is 

modern techniques including the recently used approaches such as Support Vector Machine 

(SVM), genetic algorithms, decision tree technique, deep learning technique, pattern 

recognition technic to name a few [3]. 

Over the years, researchers have explored various methodologies to enhance fault detection 

and classification techniques, aiming to mitigate downtime and prevent cascading failures in 

power networks. This report concentrates on the literature related to Fault detection, 

classification and localization in power distribution systems and power transmission systems 

using traditional method, machine learning as well as deep learning algorithms [4]. Fault 

classification and localization techniques have traditionally included Support Vector 

Machines (SVM) and Fuzzy Logic Systems (FLS), offering significant improvements over 

rule-based methods by enhancing fault identification accuracy and reliability [5],[6],[7]. 

While machine learning-based approaches such as SVM, K-Nearest Neighbor (KNN), and 

fuzzy inference systems provide benefits for specific power system configurations, these 

models often require extensive feature engineering and manual adjustments, limiting their 

adaptability to the increasingly dynamic nature of modern power networks [8],[9] and also 

KNN response slow in high-dimension problems [10].  

A method for identifying and categorizing power system failures on transmission lines was 

presented in [11]. To detect and categorize defects, it employed a rule-based decision tree 

and a Stockwell transform-based multi-resolution analysis of current signals. In [12] 

proposed a protection fault scheme that uses a discrete wavelet transform (DWT), genetic 

algorithm (GA) and neural network (NN). To improve the performance of the classifier, the 

GA technique is used to determine the optimal parameters of the NN scheme. The scheme is 

test on a practical network and a high accuracy is obtained for fault determination. 

Addressing transmission line faults exposed to environmental conditions, [13] proposed an 

artificial neural network (ANN) approach utilizing a feed-forward ANN with 

backpropagation for fault detection and classification. This model significantly improves 

fault detection accuracy, contributing to power system quality and stability. Furthermore, in 

[15], a customized convolutional neural network (CNN) was presented for fault classification 

in distributed networks with distributed generation (DG) systems. This deep learning model 

requires no pre-processing, demonstrating effective fault classification with high cross-

validation accuracy, though fault localization was designated for future work. Expanding on 

deep learning applications, [16] introduced a method using both ANN and 1D-CNN models 

for fault detection, classification, and location in smart grids, though its applicability may be 

constrained due to potential noise sensitivity and limited validation on the IEEE 6-bus 
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system. In [17] a paper presented an advanced real-time short-term voltage stability (STVS) 

assessment using a hybrid Temporal Convolutional Neural Network (TempCNN) and Long 

Short-Term Memory (LSTM) model. A key highlight of this study incorporated the N-1 

contingency scenario, with transfer learning enabling the model to adapt effectively to 

unseen conditions with minimal labeled data, highlighting its robustness in real-time 

applications.  

Given the critical need for resilient and adaptable fault detection methods, this study 

investigates the use of deep learning techniques, specifically ANN and CNN models, for 

fault detection, classification, and localization within the IEEE 9-bus system. By 

simulating faults under both normal and fault conditions, this research evaluates the 

effectiveness of these models in managing diverse fault scenarios. Additionally, it explores 

the potential of transfer learning in N-1 contingency cases and selective feature reduction to 

enhance model robustness, improving adaptability to unforeseen disturbances and providing 

a cost-effective solution for practical deployment in real-world power systems. 

 

Figure 1: Classification of fault [2] 

2. Methodology 

2.1 Research framework 

The framework shown in Figure 2 presents the overall workflow for fault detection, 

classification, and localization in a power system using deep learning models. It has three 

main stages: Data Generation Base Case, Offline Training, and Online Implementation, with 

an   additional section dedicated to Transfer Learning for N-1 Contingency Case. During the 

Offline Training phase, the generated dataset is divided into Training and Test Sets or 

subjected to Cross-validation using 10-fold splits. Deep learning models, such as ANN and 

1D-CNN, are trained on this data to perform fault detection and localization. After training, 

the models are evaluated based on their performance in the base case (without any 

contingency), and the results are documented. 

The trained deep learning models are saved for future use and possible transfer learning 

scenarios. The Online Implementation phase involves deploying the trained models for real-

time fault monitoring at a control center. Time-series voltage and current data, obtained from 

a Wide-Area Monitoring System (WAMS), is continuously fed into the models. These 

deployed models monitor the system for fault conditions in real-time and identify the Fault 

Class, Faulty Line, and Fault Location when faults occur. This system operates in an online 

environment, providing ongoing fault detection for the power system network. Finally, the 
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Transfer Learning for N-1 Contingency Case adapts the pre-trained base case models to 

account for changes in network topology due to a single component failure. A new dataset, 

representing the N-1 contingency scenario, is generated, following a similar process as in the 

base case. The pre-trained model is fine-tuned using this new dataset, allowing it to handle 

system conditions with altered configurations. The model's performance is then re-evaluated 

for the N-1 contingency case, and the newly trained model is saved for future deployment in 

online systems. 

The proposed methodology aims to build a comprehensive fault detection, classification, 

and localization system for power networks using deep learning models. By leveraging a 

combination of Artificial Neural Networks (ANN), Convolutional Neural Networks 

(CNN), and Transfer Learning, the system addresses the core tasks of Faulty Line 

Identification (FLI), Fault Class Type (FCT) determination, and Fault Location Estimation 

(FLE). Each of these deep learning techniques contributes uniquely to optimizing model 

performance, as described in the following sections 2.3 and 2.4.   

 

Figure 2: Proposed framework for fault condition assessment using deep learning 
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Figure 3: Flowchart of the Project based on ANN and CNN in general 

 

As illustrated in Figure 3, the input features consist of voltage and current vectors obtained 

from various busbars in the power system. These features are fed into the proposed models, 

which are based on Artificial Neural Networks (ANN) and Convolutional Neural Networks 

(CNN) architectures. The models process the input data to perform three critical tasks 

Faulty Line Identification (FLI), Fault Class Type (FCT) and Fault Location Estimation 

(FLE). 

2.2 System Simulation and Data Collection 

This section outlines the process of generating and preparing the dataset for fault detection, 

classification, and localization using the IEEE 9-bus system. The IEEE 9-bus system is a 

standard test case used for power system analysis, providing a simplified model of a 

transmission network. The system consists of loads, transmission lines, and generators as 

shown in Table 1. The transmission lines are modeled as medium lines with three-phase pi 

section lines. Additionally, the system includes three loads that consume both active and 

reactive power at bus 5, bus 6, and bus 8. 

Figure 4 shows the single-line diagram of IEEE 9-bus system, which comprises three 

traditional voltage sources with a voltage rating for transmission lines of 220 kV and a 

frequency of 60 HZ. The system has six transmission lines with a length of 100 km, 9 

buses, 3 transformer and three general loads i.e. Load A, Load B and Load C. 
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Figure 4: Single-line diagram of IEEE 9-Bus System 

 

  Table 1: IEEE 9-bus system, generator information and load data 

Gen No. S(MVA) P(MW) Q(MVAR) V(pu) Load at 

Bus No 

P(MW) Q(MVAR) 

G1 247.5 71.6 27 1.04 At Bus 5 125 50 

G2 192 163 6.7 1.03 At Bus 6 90 30 

G3 128 85 -10.9 1.02 At Bus 8 100 35 

 

Fault simulations were performed using MATLAB/Simulink. The system allows the 

introduction of various fault types through a three-phase fault block, where faults could be 

introduced at different phases (A, B, C) and ground (G). The transmission lines were 

divided into two sections, enabling variation in resistance and inductance to simulate faults 

at different locations. The simulation system proposed in this study captures voltage and 

current signals in three phases, which are sampled at a frequency of 500 Hz, resulting in 

100 samples in total over the 0.2 second simulation period. To obtain sufficient data for 

training and evaluating the proposed model’s performance, various fault and non-fault 

scenarios are simulated by adjusting the system’s parameters and settings. Table 2 presents 

detailed configurations for both fault and non-fault scenarios. These simulations are 

conducted to ensure the model’s versatility and ability to detect and classify different types 

of faults that may occur in the system. 
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    Table 2: Configuration for fault possibility cases during simulation 

Parameters Possible Configuration No. of 

Cases 

Fault Class 

 

Faulty Line 

 

Fault Location 

A-G, B-G, C-G, AB, BC, AC, AB-G, BC-G, AC-G, ABC, 

and Normal 

Line 4-5, Line 4-6, Line 5-7, Line 6-9, Line 7-8, line 8-

9, and Normal 

10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90% 

of line length, and Normal (100 km) 

11 

 

7 

 

10 

 

The simulations were carried out using MATLAB/Simulink 2024a to generate time-series 

voltage and current signals for the IEEE 9-bus system. All experiments were conducted on 

a system equipped with an AMD Ryzen 5 7520U processor with Radeon Graphics (8 

CPUs) operating at approximately 2.8 GHz, along with 8 GB of RAM. The operating 

system used was Windows 11 Home Single Language (64-bit, Build 22631). The training 

progress was implemented using the Python within a Jupyter notebook environment. 

2.3 Artificial Neural Network (ANN) 

Figure 5 outlines the proposed methodology through a schematic block diagram. The 

Artificial Neural Network (ANN) used in this research is a multi-layer feedforward 

network designed to process features extracted from the power system's operational data, 

specifically for detecting, classifying, and localizing faults in the IEEE 9-bus system. The 

ANN model is structured to enable it to learn complex relationships from the input data, 

such as voltage and current measurements during different fault conditions. The ANN 

architecture consists of three main parts: an input layer, hidden layers, and an output layer. 

The input layer receives feature sets from the dataset, and the hidden layers are composed 

of fully connected (Dense) layers with ReLU (Rectified Linear Unit) activation functions, 

which enhance the model’s capacity to capture non-linear relationships. Hyperparameter 

tuning is used to optimize the number of neurons in each hidden layer. The output layer 

utilizes a Softmax activation function, ideal for multi-class classification, as it outputs 

probability distributions over the different fault classes. During model compilation, the 

Adam optimizer with a learning rate of 0.001 is employed to adjust learning rates 

dynamically for efficient convergence. Categorical cross-entropy serves as the loss 

function, common for multi-class classification, with accuracy as the evaluation metric. 

The ANN model comprises five layers (L0–L4) with a total of 48,268 trainable parameters 

for fault classification (FCT), 55,240 for fault line identification (FLI), and 54,603 for fault 

location estimation (FLE), as detailed in Table 3. 

The Artificial Neural Network (ANN) model follows a layered architecture where each 

dense layer performs a weighted sum of its inputs, adds a bias, and passes the result 

through an activation function. The mathematical operation for the dense layers in an 

Artificial Neural Network (ANN) can be expressed as: 

 
Where, Zn represents the output of the n-th layer, f denotes the activation function, Wn is the 

weight matrix, Zn-1 is the input to the layer (or the output of the previous layer), and bn is 

the bias vector. Each dense layer in the ANN applies this operation sequentially to 
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propagate information forward through the network. 

 
Figure 5: Proposed ANN architecture for fault classification, identification, and 

location 

     Table 3: Structures of ANN models 

 

 

 

 

 

 

 

 

This equation illustrates the transformation from one layer to the next, beginning from the 

input layer Z0 = X.  

The forward propagation can be represented as: 

1. Input Layer: Z0 =X 

2. Layer 1: Z1 = f1(W1.Z0 + b1) 

3. Layer 2: Z2 = f2(W2.Z1 + b2) 

4. Layer 3: Z3 = f3(W3.Z2 + b3) 

5. Output Layer: Z = f4(W4.Z3 + b4) 

The output of the ANN model is given by the following compact equation: 

 
In this equation:  

 X is the input feature vector. 

 Wn and bn are the weights and biases for the n-th layer, representing learnable 

parameters of the model. 

 f1, f2, f3 are the activation functions for the hidden first, second and third dense 

layers, typically ReLU or Tanh, which add non-linear transformations to the 

network. 

 f4 is the activation function for the output layer, often a Softmax function for 

classification tasks. 

Layer No. Layer Detail Output Shape Training Parameters 

L0 Input data (72 × 1) - 

L1 dense (Dense) (None, 128) 9,344 

L2 dense_1 (Dense) (None, 256) 33,024 

L3 dense_2 (Dense (None, 512) 131,584 

L4 dense_3 (Dense) FCT (None, 11) 5,643 

  FLI (None, 7) 3,591 

  FLE (None, 10) 5,130 
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This sequential composition of transformations allows the ANN to map the input X to an 

output Z, learning the complex relationships in the data through its layered structure. Each 

layer extracts progressively higher-level features, culminating in an output that represents 

the probabilities for each class or the desired target values. This representation highlights 

the mathematical foundation of the ANN and its ability to model non-linear patterns in the 

data. In the proposed ANN model, three hidden layers with optimal configurations are 

utilized to extract complex patterns in the dataset. The model is optimized using the Adam 

optimizer with categorical cross-entropy loss. Custom train/test splits and 10-fold cross-

validation methods are employed to ensure robust evaluation of the model's performance. 

This architecture enables the ANN to effectively detect, classify, and localize faults in the 

IEEE 9-bus system. 

2.4 Convolution Neural Network 

The Convolutional Neural Network (CNN) is another deep learning architecture utilized in 

this research, designed for fault classification, identification and localization using time-

series data of voltage and current waveforms from the IEEE 9-bus system. CNN’s are 

particularly effective in recognizing patterns in time-series data due to their ability to 

capture local spatial dependencies through convolutional filters. However, the study 

proposes a deep learning algorithm using One-Dimensional Convolutional Neural Network 

(1D-CNN) for Fault Classification (FCT), Line Faulty Detection (LFI), and Fault Location 

Estimation (FLE) based on raw data samples. 1D-CNN is well-suited for handling the 

sequential nature of power system data (such as voltage, current, or sensor readings over 

time). The 1D-CNN architecture consists of three primary layers: the convolutional layer, 

pooling layer, and fully connected layer. The architecture of the 1DCNN model is visually 

depicted in Figure 6. 

                    Figure 6: Architecture of the proposed 1D-CNN model 

The 1D-CNN model's input layer is configured to accept time-series data shaped as (72, 1), 

where 72 timesteps correspond to voltage and current waveforms measured under faulted 

and normal conditions. Each convolutional layer employs a kernel size of 3, with 16 or 32 

filters to capture local dependencies critical for fault localization. After each pair of 

convolution layers, MaxPooling1D layers are used to reduce data dimensionality, 

mitigating overfitting and accelerating learning. Batch Normalization layers are also 

applied to stabilize and expedite training by normalizing the outputs of the convolution 

layers. The output from these layers is then flattened into a one-dimensional vector and 

passed through a dense layer with 576 neurons, culminating in a SoftMax activation 

function for multi-class classification in the final dense layer. The CNN model is compiled 

using the Adam optimizer with a 0.001 learning rate, categorical cross-entropy as the loss 
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function, and accuracy as the main evaluation metric. The 1D-CNN comprises 11 layers 

(L0–L10), including four dense or weighted layers, as detailed in Table 4. 

 

    Table 4: Architectural details of proposed 1D-CNN model 

 

The activation function, such as ReLU or Tanh, transforms inputs into non-linear outputs, 

functioning as a gate that controls information flow between input, hidden neurons, and 

output layers in the network. Each convolutional layer employs the rectified linear 

activation function (ReLU or Tanh), enhancing the network’s ability to model non-linear 

relationships in the data. 

The mathematical operation for the one-dimensional convolution is represented by the 

following equation: 

 𝐶𝑗 = 𝑓   (

𝑛

𝑖=1

𝑥𝑖+𝑗 × 𝑤𝑖) + 𝑏                                                         … (3) 

 
where Cj, is the output of the convolution layer, 𝑓 denotes the ReLU activation function, 𝑥 

and   represent the mini-batch of input data and the filters respectively, 𝑏 is the bias term, 

and 𝑛 is the dimension of the filter. Batch normalization (BN) is also applied to input 𝑥 to 

stabilize the learning process. The model’s 1D convolutional layers, positioned at layers 

L1, L2, L4, and L5, utilize learnable filters to capture features. The first stacked 

convolutional layer employs 16 filters, while the second stacked convolutional layer uses 

32 filters. Both the 10-fold cross-validation method and custom train/test split were 

employed. 

2.5  Hyperparameter and Training Process 

Hyperparameter tuning is essential in optimizing the performance of the Artificial Neural 

Network (ANN) and Convolutional Neural Network (CNN) models used in this study, as 

these models are sensitive to their hyperparameter settings. Hyperparameters, such as the 

number of neurons in each layer, activation function type, batch size, number of epochs, 

and learning rate, must be defined before training and significantly impact the model’s 

ability to generalize. To select the optimal configuration, RandomizedSearchCV is 

employed. This method randomly samples a specified number of hyperparameter 

combinations, which are evaluated using cross-validation to identify the best-performing 

Layer 
No. 

Layer Detail Kernel 
Size 

Output 
Shape 

Training 
Parameters 

L0 Input data - 72 × 1 - 

L1 Conv1d_2+Relu 1 × 3 72 × 16 64 
L2 Conv1d_3+Relu 1 × 3 72 × 16 784 
L3 MaxPooling1D 1 × 2 36 × 16 0 
L4 Conv1d_4+Relu 1 × 3 36 × 32  1,568 
L5 Conv1d_5+Relu 1 × 3 36 × 32 3,104 
L6 MaxPooling1D 1 × 2 18 × 32 0 
L7 BatchNormaliza

tion 
- 18 × 32 128 

L8 Flatten - 576  0 
L9 Dense - 576 332,352 
L1
0 

Dense+SoftMax - 11 6,347 

  - 7 4,039 
  - 10 5,770 
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settings without the computational demands of exhaustive grid search. The finalized 

hyperparameters are outlined in Table 5 and Table 6.  

For both ANN and CNN, the Adam optimizer is used with a learning rate of 0.001, 

categorical cross-entropy loss function, and a Softmax output layer for multi-class 

classification tasks. 

Table 5 : Hyperparameter Search Values 

Hyperparameter Search Values 

Neurons Layer 1 [64, 128, 256] 

Neurons Layer 2 [64, 128, 256] 

Neurons Layer 3 [128, 256, 512] 

Activation Function ['ReLU', 'tanh'] 

Batch Size [64, 128] 

Epochs [50, 100] 

Learning Rate [0.0001, 0.001, 0.01] 

Optimizer Adam (fixed) 

Table 6: Hyperparameter Tuning Search Space 

Hyperparameter ANN Fault Class ANN Line Faulty ANN Fault Location 

Optimizer Adam Adam Adam 

Neurons Layer 1 64 64 256 

Neurons Layer 2 64 256 64 

Neurons Layer 3 512 128 256 

Activation Function Tanh ReLU ReLU 

Batch Size 128 128 128 

Epochs 100 100 100 

Learning Rate 0.001 0.001 0.001 

Loss Function categorical categorical categorical 

Output Layer Softmax Softmax Softmax 

 

The training process is vital to developing robust deep learning models that can accurately 

predict and generalize to new data. Both ANN and CNN models are trained to handle fault 

classification, faulty line detection, and fault location tasks in power systems. The training 

follows two approaches: Normal Classification (NC) and Cross-Fold Validation (CV). In 

NC, 80% of the dataset is used for training, and 20% for testing, while CV applies a 10-

fold cross-validation, exposing the model to the entire dataset and mitigating overfitting. 

During training, models iteratively optimize trainable parameters using gradient descent 

and backpropagation, running for up to 100 epochs with a batch size of 128. Once training 

is complete, the model is tested in an online mode, predicting fault classifications, fault 

locations, and line faults using the trained parameters without additional preprocessing, as 

illustrated in Figure 7. This structured workflow underscores the transition from training to 

real-time testing and demonstrates the model’s effectiveness in addressing power system 

fault scenarios. 
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                Figure 7: Flow chart of data training and testing based on proposed methods 

2.6 Performance Evaluation 

The evaluation of the proposed models is a critical aspect of determining their performance 

and reliability in fault detection, classification, and localization tasks within power 

systems. To evaluate the models’ performance various performance metrics were used: 

Accuracy, Precision, Recall and F1-Score, based on based on True Positives (TP), False 

Positives (FP), False Negatives (FN), and True Negatives (TN). Accuracy is used 

commonly to evaluate the performance of the deep learning and machine learning models 

for the assessment of fault condition in power systems. It is calculated from the confusion 

matrix using Equation (4). In the context of binary and multiclass classification, the 

abbreviations have the following meanings: 

• TP (True Positives) represents the number of positive elements correctly predicted as 

positive. 

• FP (False Positives) denotes the number of negative elements incorrectly predicted as 

positive. 

• FN (False Negatives) represents the number of positive elements incorrectly predicted as 

negative. 

• TN (True Negatives) denotes the number of negative elements correctly predicted as 

negative. 

The performance metric formulas are as follows: 

Accuracy =                                                            (4) 

Precision =                                                                                       (5) 
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Recall =                                                                               (6) 

F1-Score = 2×                                                                   (7) 

Accuracy is the ratio of correctly predicted instances to the total instances. Precision is the 

ratio of true positive predictions to the total number of instances predicted as positive. A 

high precision indicates that the model is reliable in making positive predictions. The recall 

measures how many positive class predictions were made out of all positive class 

predictions in the data set. Finally, the F1-score provides a single score that balances both 

the concerns of precision and recall in one number. It is the harmonic mean of precision 

and recall. The greater the F1-score, the better the classifier’s performance. 
2.7 Transfer Learning for N-1 Contingency Case 

Transfer learning is a key approach used to improve the performance of deep learning 

models in scenarios where only a limited amount of new data is available. In this project, 

transfer learning is applied to adapt pre-trained ANN and CNN models for the N-1 

contingency case on the IEEE 9-bus system, where one generator has been removed. In 

normal base case, the original deep learning models (both ANN and CNN) are pre-trained 

on data generated from normal operational conditions of the IEEE 9-bus system. The 

model learns to predict fault class, line faulty, and fault location using the dataset that 

reflects the entire system functioning with all components in place. But, For the transfer 

learning phase, the pre-trained models are fine-tuned on the new dataset, which is collected 

after simulating the failure of one generator (N-1 contingency). The fine-tuning process 

involves retraining only the final few layers of the network or adjusting the learning rates 

to ensure the model adapts without overfitting to the new data. Finally, the re-trained deep 

learning model at the control center can classify fault, identify faulty line and estimate the 

fault location of the power system. 

2.8 Selective Feature Reduction for Cost-Effective PMU Deployment 

In modern power systems, the deployment of phasor measurement units (PMUs) is 

essential for real-time monitoring, fault detection, classification, and location estimation. 

However, the cost of installing and maintaining PMUs at every bus in large networks can 

be prohibitive. To address this challenge, this study proposes a selective feature reduction 

approach aimed at minimizing the number of PMUs required while ensuring the 

effectiveness of fault analysis. By focusing on strategically selected buses, the study aims 

to maintain high monitoring accuracy with a reduced financial investment. 

For this purpose, Buses 5, 6, and 8 were strategically chosen for monitoring based on their 

critical positions in the IEEE 9-bus system. These buses were selected due to their high 

connectivity and their placement in areas where faults are more likely to propagate through 

multiple branches. By focusing on these key buses, essential information about the power 

network’s state can still be captured, allowing for effective fault analysis with fewer PMUs. 

The feature reduction process involved isolating data from these selected buses and using 

only this subset of features in model training. This approach not only reduces the cost 

associated with PMU installation and maintenance but also simplifies data processing by 

reducing the dimensionality of the input data.  With this reduced feature set, the study 

aimed to train and validate that ANN and CNN models could maintain high levels of 
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accuracy in fault detection tasks while relying on data from only a few critical locations 

within the network. This selective deployment of PMUs exemplifies a practical and cost-

effective solution for utilities, enabling robust monitoring without the financial burden of 

comprehensive network-wide PMU coverage. 

For model evaluation, the primary measure of success was the accuracy of the fault 

detection, classification, and location estimation tasks. This focus on accuracy is critical in 

demonstrating that the selective feature reduction did not compromise the effectiveness of 

the models. Emphasizing accuracy as the evaluation metric aligns with industry standards 

for fault detection, where timely and reliable identification of issues is paramount. 

3. Results and Discussions 

This section provides a detailed evaluation of the deep learning models developed for fault 

detection, classification, and localization within the IEEE 9-bus power system. The 

performance of the Artificial Neural Network (ANN) and Convolutional Neural Network 

(CNN) models is analyzed across two scenarios: normal (base case) operation and an N-1 

contingency case, wherein Generator 1 is removed. Fault data, simulated using MATLAB 

Simulink, was used to train and test the models in various fault diagnosis tasks. Evaluations 

focus on training and loss curves, confusion matrices, and 10-fold cross-validation results. 

A comparative analysis of model performance in the N-1 contingency case with and 

without transfer learning is also included, demonstrating the benefits of model fine-tuning 

on unseen fault data. This section ultimately seeks to validate the effectiveness and 

robustness of the models in accurately detecting, classifying, and localizing faults, 

providing a balance of complexity and performance. 

 

3.1 Performance of the ANN Model 

The performance of the ANN model across fault classification, line identification, and fault 

location tasks demonstrates its effectiveness in power system fault diagnosis. The model 

achieved high accuracy rates, with 92.35% for fault classification, 99.54% for line 

identification, and 96.24% for fault location estimation. These results underscore the ANNs 

ability to accurately predict fault classes, identify faulty lines, and estimate fault locations. 

Figures 8 and 9 further illustrate the model's performance. Figure 8 presents the ANNs 

training and loss curves, showing a steady increase in training and validation accuracy 

while both training and validation loss stabilized, indicating minimal overfitting. Figure 9 

displays the confusion matrix for the Artificial Neural Network (ANN) model applied to 

fault detection, classification, and localization tasks in the power system, which highlights 

the model's strengths in correct classification across tasks. 

 It represents the predicted results in the matrix’s rows and the actual results in the 

columns. The matrix’s diagonal dominance reveals high precision, with few 

misclassifications, mainly among similar fault classes and adjacent lines. Additionally, 10-

fold cross-validation further validated the robustness of the ANN model, confirming its 

generalization ability for fault classification. Overall, these results demonstrate the ANN 

model’s practical potential for real-time fault detection and diagnosis in power systems, 

effectively balancing accuracy and computational efficiency. 

The performance of the proposed ANN model for fault classification was assessed through 

10-fold cross-validation, and the outcomes are presented in Table 7 and Table 8. A detailed 
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analysis of Fold 5 is provided as a representative sample for in-depth understanding. 

Additionally, Figure 10 displays the training curve for specific fold number 5 for fault 

classification using ANN model. 

 

 

 

 

 

 

 

 

 

 

Figure 8: Training and loss curve of ANN for training progress 
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                               Figure 9: Confusion matrix of the proposed ANN model 

Table 7: Performance result of the 10-fold cross-validation for fault classification using the 

ANN 

Fold No. Accuracy Precision Recall F1-Score 

Fold-1 0.921673 0.929185 0.920852 0.922697 

Fold-2 0.924605 0.933116 0.924102 0.926091 

Fold-3 0.923118 0.933005 0.922537 0.92483 

Fold-4 0.924398 0.930619 0.923728 0.925241 

Fold-5 0.924023 0.927426 0.923049 0.924103 

Fold-6 0.921677 0.928896 0.921146 0.922638 

Fold-7 0.920638 0.922866 0.920138 0.92052 

Fold-8 0.921629 0.929223 0.920807 0.922786 

Fold-9 0.925184 0.930937 0.924515 0.925716 

Fold-10 0.924354 0.930823 0.923684 0.925195 

Average 0.923129 0.929617 0.922456 0.923982 
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   Table 8: Performance result detailed metrics of fold no. 5 for the proposed ANN 

Class Precision Recall F1-Score Support 

AB 0.99 0.91 0.95 2151 

ABC 0.58 0.99 0.73 2205 

ABG 1.00 0.90 0.95 2170 

AC 0.98 0.91 0.94 2147 

ACG 1.00 0.90 0.95 2232 

AG 0.93 0.90 0.91 2117 

BC 1.00 0.89 0.94 2211 

BCG 1.00 0.91 0.95 2148 

BG 0.97 0.90 0.94 2261 

CG 1.00 0.92 0.96 2129 

Normal 0.98 1.00 0.99 2448 

Average 0.95 0.92 0.93 24219 

 

 

 

 

 

 

 

 

 

      

Figure 10: Training and loss curve of fold no. 5 for fault classification using ANN model 

3.2 Performance of the CNN Model 

The performance of the CNN model across fault classification, line identification, and fault 

location tasks highlights its strong capability in power system fault detection and diagnosis. 

The model achieved exceptional accuracy rates, with 92.42% for fault classification, 

99.87% for line identification, and 96.95% for fault location estimation. These results 

demonstrate the CNN’s high precision in identifying fault types, pinpointing faulty 

transmission lines, and estimating fault locations. Figure 11 shows the training and loss 

curves for fault classification, revealing steady increases in training and validation 

accuracy, while both training and validation loss curves converge, suggesting strong 

generalization with minimal overfitting. 
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                                   Figure 11: Training and Loss Curve of CNN for training progress 

 

Figure 12 showcases the confusion matrix results for the CNN model across all three tasks. 

The matrix reveals high precision in fault classification, faulty line identification, and fault 

location estimation, with diagonal dominance showing correct classifications for the 

majority of instances. Minor misclassifications are observed between similar fault classes, 

but these are minimal and do not significantly impact the overall performance. 
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                                 Figure 12: Confusion matrix of the Proposed CNN model 

Furthermore, the CNN model was validated using 10-fold cross-validation, providing 

robust evidence of its generalization ability across different fault conditions. The cross-

validation results further support the model's potential for real-time deployment in power 

system diagnostics, highlighting its efficiency and reliability in fault detection tasks. The 

performance of the proposed CNN model for fault classification was assessed through 10-

fold cross-validation, and the outcomes are presented in Table 9 and Table 10. A detailed 

analysis of Fold 5 is provided as a representative sample for in-depth understanding. 

Additionally, Figure 13. displays the training curve for specific fold number 5 for fault 

classification using CNN model. 

Table 9: Performance result of the 10-fold cross-validation for fault classification using the 

CNN 

Fold No. Accuracy Precision Recall F1-Score 

Fold-1 0.92143 0.93291 0.92061 0.92350 

Fold-2 0.92436 0.94745 0.92381 0.93008 

Fold-3 0.92279 0.94775 0.92232 0.92863 

Fold-4 0.92427 0.94182 0.92368 0.92814 
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Fold-5 0.92336 0.93594 0.92233 0.92565 

Fold-6 0.92105 0.94977 0.92062 0.92815 

Fold-7 0.92126 0.93788 0.92038 0.92482 

Fold-8 0.92126 0.93788 0.92038 0.92482 

Fold-9 0.92473 0.93336 0.92412 0.92576 

Fold-10 0.92473 0.94134 0.92407 0.92830 

Average 0.92291 0.94104 0.92225 0.92689 

 

     Table 10: Performance result detailed metrics of fold no. 5 for the proposed CNN 

Class Precision Recall F1-Score Support 

AB 1.00 0.92 0.96 2157 

ABC 0.86 0.92 0.89 2130 

ABG 1.00 0.90 0.95 2194 

AC 0.98 0.91 0.95 2159 

ACG 0.61 0.98 0.75 2202 

AG 0.98 0.89 0.94 2167 

BC 1.00 0.90 0.95 2216 

BCG 1.00 0.92 0.96 2184 

BG 1.00 0.91 0.96 2146 

CG 1.00 0.91 0.95 2262 

Normal 0.99 1.00 0.99 2401 

Average 0.95 0.93 0.93 24218 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Figure 13: Training and loss curve of fold no. 5 for fault classification using CNN model 

3.3 Performance Comparison 

The performance comparison between the ANN and CNN models for fault detection, 

classification, and localization is summarized in Table 11.Both models demonstrate high 

accuracy across the three tasks, with CNN showing a slight improvement in performance 

over ANN. 
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       Table 11: Performance Comparison Base Case 

Metric ANN Accuracy CNN Accuracy 

Fault Classification 92.35% 92.42% 

Fault Line Identification 99.54% 99.87% 

Fault Location Estimation 96.24% 96.95% 

 

The performance differences, while not large, indicate that the CNN model is slightly 

better suited for this specific fault diagnosis application due to its ability to better capture 

complex patterns in the data. However, ANN still provides comparable performance, 

demonstrating its effectiveness as a simpler alternative. Table 12 demonstrates the 

significant improvements achieved through transfer learning (TL) in the N-1 contingency 

case, particularly for fault classification, faulty line identification and estimating fault 

location. 

 

Table 12: Performance comparision using proposed transfer learning method for N-1 

contingency case 

 

Here, the classification accuracy of the pre-trained model for the unseen N-1 contingency 

case is significantly low without transfer learning. However, it can be seen from the table 

that by applying transfer learning with fine-tuning, the pre-trained models were able to 

leverage the knowledge from the base case, improving their performance significantly. 

The accuracy results for each task using selective feature reduction are summarized in the 

Table 13 below. 

     Table 13: Performance Comparision using Selective Feature Reduction 

Metric ANN Accuracy CNN Accuracy 

Fault Classification 92.233% 92.231% 

Fault Line Identification 99.789% 99.818% 

Fault Location Estimation 83.295% 85.047% 

By limiting the dataset to features from Buses 5, 6, and 8, both the ANN and CNN models 

demonstrated strong performance in fault classification, line identification, and location 

estimation tasks indicate that selective feature reduction effectively balances cost efficiency 

and model performance in power system monitoring. These outcomes demonstrate that the 

strategic selection of monitored buses is sufficient for accurate fault analysis. However, the 

fault location estimation accuracy for both models revealed a minor trade-off, with ANN 

achieving 83.295% and CNN 85.047%. Although the selective feature approach resulted in 

a slight decrease in fault location accuracy, particularly in complex scenarios, this trade-off 

is justified by the significant reduction in PMU deployment costs. 

 

 
Task 

ANN CNN 
Test Accuracy 
(Without TL) 

Test Accuracy 
(With TL) 

Test Accuracy 
(Without TL) 

Test Accuracy 
(With TL) 

Fault 
Classification 

53.039% 92.611% 59.679% 76.484% 

Fault Line 
Identification 

64.937% 100% 14.709% 95.557% 

Fault Location 13.956% 95.787% 10.009% 27.373% 
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4. Conclusions 

This study presented a deep neural network (DNN)-based approach for fault detection, 

classification, and localization in power systems, using both ANN and CNN models within 

the IEEE 9-bus system. The results demonstrated that both models effectively performed 

fault detection tasks, with CNN exhibiting a slight advantage due to its ability to capture 

spatial correlations in the data.  

The ANN model achieved notable accuracy rates, with 92.35% for fault classification, 

99.56% for faulty line identification, and 96.27% for fault location estimation. Similarly, 

the CNN model delivered strong performance, achieving 92.42% for fault classification, 

99.87% for faulty line identification, and 96.95% for fault location estimation. While both 

models performed well, the CNN model showed a marginal advantage in fault 

classification and location estimation, and both models were nearly flawless in identifying 

faulty lines, with CNN achieving slightly higher accuracy than ANN. This study also 

explored transfer learning to improve the models' ability to handle unseen data in N-1 

contingency scenarios. Initially, without transfer learning, both models struggled to predict 

faults under these conditions. However, fine-tuning the models through transfer learning 

led to significant improvements. Additionally, a selective feature reduction strategy 

focusing on key buses (5, 6, and 8) allowed the models to maintain high diagnostic 

accuracy while reducing PMU requirements, offering a practical approach for cost-

effective deployment. 

In conclusion, CNN showed strong potential for fault condition assessment, with ANN 

providing a simpler yet effective alternative. Future research should focus on scaling these 

models to larger power systems, such as the IEEE 14-bus or 30-bus systems, and 

incorporating real-world fault data to increase model resilience against noise and load 

variations. Further development in real-time deployment frameworks and advanced transfer 

learning methods, such as for N-1-1 scenarios, will enhance these models’ adaptability and 

utility for comprehensive fault diagnosis in diverse grid environments. 
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