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  Abstract 

Hypergeometric functions are transcendental functions that are applicable in various branches 

of mathematics, physics, and engineering. They are solutions to a class of differential equations 

called hypergeometric differential equations. In this paper we will be using theta functions, null 

zeta function and Ramanujan’s identities to study the behavior of heat kernel in a torus surface 

with rectangular Lattice. 
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1. Introduction 

1.1 Guass Hypergeometric Function 

The generalized hypergeometric function qp F  having p number of numerator and q number of 

denominator parameters is defined by [1- 4] is given by 
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where Ckkkhhh qp ...,,,..., 2121
 and n)(  denotes the Pochhammer symbol with its usual 

representation in terms of Gamma function defined by  
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Where )( is the gamma function defined by  
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where 0)Re( z  
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The generalized hypergeometric series for 2p and 1q is reduces to Guassian hypergeometric 

function defined for cba  and )1,0(z  
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or equivalently[4], 
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The exponential function in terms of hypergeometric function can be written as  
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Now the Guass formula for the hypergeometric function is given by 
12 F (a, b; c; z) in terms of gamma 

function is  
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1.2 Fourier Sine and Cosine Series 

The Fourier sine series and the cosine series for the function
xexf )( , lx 0 , is given by [5] 
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respectively. 

1.3  Theta Function 

The theta function [6] for z is Cz and Cq  with 1q , we define  
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Corollary 1: The relations (1.10-1.13) are valid for the real valued function )1,0(q . 

The relations (1.9-1.12) coincides with the Fourier series with the real coefficients whose values 

consists of symmetry in the power of k where values proves the symmetry in power of k. Then we can 

write the Jacobi’s theta function as the function of the pair of the variable CxHz ),(  where 

}0)Im(;{  ZCzH  

1.4 Heat Kernel 

Heat kernel is the fundamental solution to the heat equation on a given domain under the defined 

boundary conditions. It represents the evolution of temperature in a region whose boundary is held fixed 

at a fixed temperature, such that the initial unit of heat energy kept at an initial temperature [7]. The heat 

kernel in n- dimensional Euclidean space follows the Guassian function. [8] 
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2. Main Results  

2.1 Elliptical integral and theta function 

2.1.1. Theorem 

If the theta function for z is Cz and Cq  with 1q , The square of the ratio of the theta nulls 

gives the elliptical modulus or the eccentricity of the ellipse. i. e. . 
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 where k is  the elliptical modulus or the eccentricity of the ellipse. 

Proof:  

If q is replaced by ,, He iz 
in (1.9) then the series converges. Now by Whittaker Watson of Steirs 

and Shakarelin [9], the product representation for ),(3 qz is represented by 
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Now for )1,0(q in (2.1) we have, 
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for every RzZl  ,  
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Also from (2.1), the theta null functions depends upon q are desired by setting 0z . But we 

have 1;0),0(1  qq . As it is an odd function of z and the theta functions are even with respect with 

respect to z  . By setting ,0z from equations (1.9-1.11), the theta nulls [10] are given by 
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The relations (2.3-2.5) can be established by using Poisson Summation formulae by setting 
ieq   as 

given below.  
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From the Ramanujan identity [11], the Berndt’s relation expresses the connection between theta nulls of 

Jacobi’s theta function and hypergeometric function 
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where k is the elliptical modulus or often called the eccentricity. The numerical value of k is defined by 
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and 
ieq   

Thus eccentricity depends upon 
ieq  , H . Further let us define an complementary elliptical 

modulus k’ such that  

1'22  kk       ...(2.11) 

Hence a complete elliptical integral of the first kind is obtained which is given by [12,13] 
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Further the relationship between
2 , 3 and

4  as defined by Conway et. al [14] is  
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Now, dividing both sides of (2.13) by 
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Now comparing (2.14) with (2.11) we get  
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This proves the theorem. 

Corollary 2: Since the elliptical integrals can be represented by another parameter n other than the 

modulus value of k [15]. Then  
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Corollary 3: For any n’, the conjugate of n, the relation 1'22  nn satisfies then, we get  
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Now let us introduce the real valued theta functions defined by   
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for ,3,2j and 4. This is the theta nulls of Jacobi’s theta function restricted to 
  Req  ,  

2.2 Effect of Heat Kernel 

2.2.1 Theorem 

The hottest and coldest temperature in the rectangular lattice of two extremal temperature conditions in 

a torus surface with a rectangular lattice is given by the hypergeometric function 
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Proof: 

Let us consider the rectangular lattice and subject to precise coldest and hottest temperature on the 

rectangular torus within a fixed area as shown in the figure 1 and figure 2. 

The extremal temperature problem for the rectangular lattice can be studied by using the theta functions 

[16, 17]. The geometry of the rectangular torus can be described uniquely by the ratio of its hottest and 

coldest point and this ratio refers to the elliptical modulus of the complete elliptical integral of the first 

kind. By using Ramanujan results, it is possible to determine the temperature on a rectangular torus 

lattice only if the ratios are known. This is because the elliptical modulus defines the geometry of the 

torus.  

Now the associated heat kernel in the rectangular lattice of two extremal temperature condition [8] can 

be written as  
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Then let the heat kernel ),,( tyxP associated to the torus 
2

T can be defined in terms of maximal and 

minimal temperatures for the fixed time t, is given by  
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respectively. From equations (2.9), the minimal and maximal temperatures in equations (2.20) and 

(2.21) can be represented by the hypergeometric functions [8] 

 

 

 

Figure 2. Rectangular lattice 

 

 

Figure 1: Torus surface 



   Himalayan Journal of Applied Science and Engineering (HiJASE), Vol. 5, Issue 1, July, 2024 

[Poudel]  Page 29 

 

),( tA  







tP ;

2

1
,

2

1
        ...(2.22) 

and     ),( tB   tP ;0,0       ...(2.23) 

Now the heat kernel of equation (2.19) can be written in terms of theta function by using the relation 

(2.18)  
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If 1 , then from (2.24) and (2.25), the heat kernel ),1( tP of the square torus of surface area 

 Rtt ,1
and )1,0('k , the ratio of the coldest and hottest temperature, then from (1.6), (2.9), coldest 

and hottest temperature on the torus ),1(2 tT is given by the hypergeometric functions  
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respectively. This completes the proof of the theorem. 

2.2.2. The interpretation of the results 

The different relationship between the heat kernel and the temperature ratios between the coldest and 

hottest temperature expressed by the equations (2.26) and (2.27) are shown by the figures 3 and 4 

respectively. The numerical value of above equations (2.26, 2.27) on RHS are obtained through 

Mathematica. 
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Figure 3: Relation between the temprature ratio and heat Kernel 
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Figure 4: Relation between the conjuagate temprature ratio and heat Kernel 
 

The figure given below (figure 5) shows the comparative behaviour of the heat kernel with respect to the 

temperature ratio. The temperature ratio and its conjugate are symmetrical about the line 1y . The 

curves for ),1( tA and ),1( tB are asymptotic in nature and tends to infinity at 1k . 
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Figure 5: Comparative curve of A (1, t) and B(1, t) 

The relationship between the temperature ratio (k) and its conjugate (k’) are explicitly shown in the 

figure given below. The equation (2.11) is described by the figure 6.  
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Figure 6: Relationship between temperature and conjugate Ratio 
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Figure 7: Relationship between squares of temperature ratio and its conjugate 

3. Conclusions 

In this paper, hypergeometric function is briefly introduced togather with its application in heat Kernel 

in a torus surface with a rectangular lattice.  The guassian hypergeometric function, theta fuction, theta 

null and the Ramanujan Identities in [8] are used to simplify the mathematical relations involved in the 

heat equations. Due to the elliptical nature of the torus surface, the heat kernel  relations on the 

temprature ratio of the coldest and hottest temprature are conjuage to each other. The various relations 

among the hottest and cpldest surface, eeliptical nature of the conjugate ratios are shown through the 

graphs on figures 3, 4, 5, 6 and 7. Most of the relations shown here are applicable in thermodynamics, 

rocket propulsion technology, mechanical engineering and some other branches of applied science.   
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