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 Forest fires have significantly contributed to forest degradation and 

pollution all over Nepal. Despite their high severity, limited studies have 

been conducted on the spatial-temporal analysis and risk mapping of 

these fires especially in the Mid-hill region. This study aims to fill this 

gap by analyzing Visible Infrared Imaging Radiometer Suite (VIIRS) 

data from 2012 to 2022, along with satellite imagery, using remote 

sensing and geographic information systems (GIS) technology. Nine 

variables, including land class, distance to roads, proximity to 

settlements, temperature, wind speed, precipitation, slope, aspect, and 

elevation, were utilized to identify forest fire patterns and create a fire 

risk map. A multi-parametric hierarchical weighted index model was 

employed, with multicollinearity checked (VIF<2) to ensure model 

accuracy and validated by Area Under Curve (AUC=0.787). The study 

revealed an increasing trend of forest fires, particularly during March to 

May, in broad-leaved forests near human interference. Out of the total 

forested area of 1447.58 km2, 42.9%, 46.03%, and 11.07% were 

classified under high, moderate, and low-risk zones, respectively. The 

study emphasizes the recurring forest fire problem in often-neglected 

Mid-hill districts and underscores the need to prioritize them in future 

strategies. 

INTRODUCTION 

Forest fires represent a critical threat to 

global forest ecosystems, posing catastrophic 

consequences for ecology, the environment, 

populations, and property (Kala, 2023; 

Sastry, 2002). With approximately 4.06 

billion hectares of the Earth's surface covered 

by forests, an estimated 82.09 million 

hectares of forest experience annual burning 

making forest fires a significant concern for 

forest degradation (Zhang et al., 2020). These 

fires, primarily influenced by a complex 

interplay of natural and human-induced 

factors, including fuel composition, weather 

conditions, and ignition sources, constitute a 

multifaceted phenomenon responsible for an 

increasing number of incidents on a global 

scale (Jain et al., 2020; Tariq et al., 2021).  
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Recent advancements in Remote Sensing 

(RS) and Geographic Information Systems 

(GIS) have revolutionized forest fire 

susceptibility mapping by harnessing various 

techniques to assess factors like vegetation, 

climate, human activities, and topography 

(Calkin et al., 2014; Castelli et al., 2015; 

Khalid et al., 2015). These technologies, in 

conjunction with historical fire records, 

facilitate the development of precise 

predictive models on a global scale, utilizing 

spatial relationships between influencing 

variables (Bowman & Murphy, 2010; Calkin 

et al., 2014; Matin et al., 2017; Nelson & 

Chomitz, 2011; Samanta et al., 2011; Viegas 

et al., 1999). The integration of diverse data 

sources has significantly enhanced forest fire 

risk assessments, providing critical insights 

into the complexities of fire occurrences 

across different spatial scales. Various 

mapping techniques such as predictive 

modeling (Qadir et al., 2021), deep learning 

(Mishra et al., 2023), regression analysis 

(Mohammadi et al., 2014), Analytical 

Hierarchical Process (Goleiji et al., 2017), 

and systematic fire rating (Chuvieco & 

Congalton, 1989; Matin et al., 2017; Parajuli 

et al., 2020) have been employed to construct 

fire risk maps. These methodologies offer 

diverse approaches to assess and predict 

forest fire risks, contributing to a more 

comprehensive understanding of fire 

dynamics. 

In context of Nepal, forest fires pose a 

significant and escalating threat to its natural 

landscape (Kunwar & Khaling, 2006). Each 

year, the country witnesses a surge in active 

fire incidents and burning days, leading to a 

disturbing trend of more frequent forest fires 

(Parajuli et al., 2015). The threat of forest 

degradation in Nepal stems significantly 

from various factors, with fires accounting 

for 27.75% of the damage, ranking second 

only to grazing, cutting, and lopping, as 

reported by the Department of Forest 

Research and Survey (DFRS, 2015). 

Particularly vulnerable to fire outbreaks is the 

western part of the country, where seasonal 

dynamics of short and late monsoons 

contribute to heightened fire incidents 

(Kansakar et al., 2004; Parajuli et al., 2015). 

Specifically, the Far-western province stands 

out as highly susceptible, detecting 19% of 

Nepal's total fires despite covering only 

16.94% of the forest area (Thapa et al., 2021; 

DFRS, 2015). Contrary to the perception that 

hilly regions like the Mid-hills are less prone 

to fires compared to lower elevated regions, 

research shows that the western hilly 

districts, such as Doti, remain at a high risk 

due to the aforementioned seasonal 

characteristics (Matin et al., 2017). Despite 

Mid-hills' vulnerability to disasters like forest 

fires, they are underrepresented in Nepal's 

policy and research, as previous researches 

have predominantly focused on the Terai or 

Chure regions (Badal & Mandal, 2021; 

Bhusal & Mandal, 2020; Kunwar, 2006; 

Parajuli et al., 2023), creating a research gap 

in understanding fire dynamics and risks in 

these areas. 

Addressing these gaps, this research centers 

its focus on Doti, situated in the Mid-hill 

region, characterized by unique 

vulnerabilities such as challenging 

geography, harsh climate, economic 

constraints, and disintegrating forest-people 

relationships (Karki et al., 2022; Tiwari et al., 

2022). This study aims to fill the void by 

conducting a spatial-temporal analysis of 

forest fires in Doti, offering insights into the 

district's fire risk extent and developing a 

replicable risk index applicable to similar 

Mid-hill regions. By focusing on Doti 

district, this research seeks to contribute 

essential insights into fire dynamics, enhance 

fire prevention and response measures, 

addressing the critical research gaps in 

understanding forest fires within Nepal's 

vulnerable Mid-hill areas. 

MATERIALS AND METHODS 

Study area 

The research was conducted across the entire 

area of Doti District, encompassing two 

municipalities, seven rural municipalities, 

and a section of Khaptad National Park. The 
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district's geographical coordinates range 

from latitudes 28˚54' to 29˚28̍'N and 

longitudes 80˚30' to 81˚14'E, with elevations 

varying between 292 and 3,287 meters above 

mean sea level. The Doti district was selected 

for this study for two main reasons. Firstly, 

Doti primarily consists of forested land, 

accounting for 71.3% of the total area. 

Secondly, Doti possesses frequent forest fire 

occurrence and has been identified as one of 

high risk districts at national level forest fire 

risk mapping of Nepal (Matin et al., 2017). 

Additionally, the district includes a very 

small portion of the highly sensitive Chure 

region and the ecologically diverse Khaptad 

National Park. Given these factors, 

developing a robust fire management plan is 

imperative to mitigate the risks posed by 

wildfires to both natural ecosystems and 

human-inhabited areas.

 
Figure 1: Location of Doti District in western Nepal along with its administrative 

division.

Data collection 

The analysis of fire archives was conducted 

using real-time fire-detected fire points. The 

data were obtained from the Fire Information 

for Resource Management System (FIRMS), 

which provides valuable and accurate 

information for geospatial analysis. FIRMS 

utilizes data from both the Moderate 

Resolution Imaging Spectroradiometer 

(MODIS) and the Visible Infrared Imaging 

Radiometer Suite (VIIRS) to identify active 

fires. While both VIIRS and MODIS show 

agreement with each other, the higher 

resolution and improved nighttime 

performance of VIIRS, a whiskbroom 

scanner radiometer, make it a superior tool 

for fire management and mapping, especially 

in smaller areas (Schroeder et al., 2014). For 

this study, VIIRS fire archive data were used 

to conduct spatial analysis on nine variables 

related to four locality factors: vegetation 

(land class), anthropogenic (distance to road 

and proximity to settlement), topographic 

(slope, aspect, and elevation), and climatic 

(land surface temperature, precipitation, and 

wind speed). The data utilized for the analysis 

were sourced from different verified sources, 

as detailed in Table 1. 
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Table 1: Dataset used in the study 
SN Data Format Data period Resolution Sources 

1. Fire occurrence data SHP 2012-2022 375m NASA/FIRMS /VIIRS 

2. ASTER DEM TIFF 2019 30m NASA/LAADSDAAC/USGS 

3. Land surface temperature HDF 2012-2022 1000m LAADSDAAC/MOD11C3 

4. Precipitation TIFF 2012-2018 2.5min(≈4500m) Worldclim 

5. Administrative and district boundary SHP 2022 1:25000 Department of Survey 

6. Settlement SHP 2015 1:25000 OCHA 

7. Road network SHP 2010 1:250000 ICIMOD 

8. Land cover  SHP 2010 30m ICIMOD 

9. Wind speed (10m) TIFF 2022 300m Wind atlas 

10. Slope/Aspect/Elevation TIFF 2019 30m Prepared From DEM  

Data analysis 

Arc GIS 10.5 was employed for geospatial 

processing of the satellite images. Layers for 

each variable were created according to the 

specifications outlined in Table 3, following 

the methodology depicted in Figure 2. 

Figure 2: Methodological Framework 

The archive fire points obtained from the 

Earth Observing System Data and 

Information System (EOSDIS) archive data 

tool, specifically VIIRS data, were extracted. 

These fire points were used to analyze trends 

and patterns in the layers representing various 

locality factors. Additionally, they served as 

a validation tool for the final risk map 

generated in the study. 

The study extensively examined influential 

factors in forest fires, encompassing 

vegetation, anthropogenic elements, 

topography, and climatic conditions. 

Vegetation type was crucial in providing fuel 

content for fires, as it represents the organic 

matter available for ignition and combustion 

(Salas & Chuvieco, 1994). The land cover 

mapping utilized ICIMOD's land class 

shapefile from 2010, resulting in nine distinct 

classes (Figure 3). 

 
Figure 3: Land cover of Doti District 

Anthropogenic factors, particularly road and 

settlement proximity, are found to 

significantly influence forest fires (Kolanek 

et al., 2021), and their impact was assessed 

using proximity analysis, generating layers 

for distance to the road (Figure 4a) and 

proximity to settlements (Figure 4b). 

Similarly, Topography plays a pivotal role in 

determining forest fire hazards, with 

elevation, slope, and aspect having notable 

impacts on fire behavior (Artsybashev, 1984; 

Brown & Davis, 1973). Slope, aspect and 

elevation were derived from the Digital 

Elevation Model (DEM) using ARC-GIS 

(Figure 4c, 4d and 4e). Climatic variables, 

including temperature, precipitation, and 

wind speed, were significant in influencing 

forest fire dynamics. Temperature data 

(Figure 4f) from MODIS's MOD11C3 

product provided monthly averages at a 1 km 
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resolution (Parajuli et al., 2020). 

Precipitation data from Worldclim covered 

the years 2010-2018 (Figure 4g) (Fick & 

Hijmans, 2017), while wind speed data 

(Figure 4h) from the Global Wind Atlas 

offered wind speeds at a height of 10 meters 

(Global Wind Atlas, version 3.0). Combining 

these variables allowed for a comprehensive 

assessment of fire risk within the study area.

 

 

 

 
Figure 4: Layers (a) Distance from the road, (b) Proximity to settlement, (c) Slope, (d) 

Elevation, (e) Aspect, (f) Temperature, (g) Precipitation and (h) Wind speed 
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Test for multi-collinearity 

This study employed statistical methods to 

validate the fire risk index and examine 

multi-collinearity (Parajuli et al., 2020). 

Multi-collinearity refers to a strong 

correlation among explanatory variables in 

regression models. Tolerance and VIF are 

diagnostic tools used to assess multi-

collinearity. In this research, land class, land 

surface temperature, slope, distance from 

road, proximity to settlement, precipitation, 

wind speed, aspect, and elevation were the 

independent variables, while VIIRS fire 

archive data served as the dependent variable. 

The results showed no issues with multi-

collinearity as all nine variables had high 

tolerance values (above 0.6) and low VIF 

values (below 1.5) (Davis et al., 2017; 

Parajuli et al., 2020). 

Table 2: Tolerance and VIF test 

Variables Unstandardized 

Coefficients 

Standardized 

Coefficients 

Collinearity 

Statistics 

B Std. Error Beta Tolerance VIF 

 (Constant) 4392.51 146.799    

Land class 70.317 20.017 .047 .689 1.452 

Settlement -.135 .051 -.033 .783 1.278 

Road .136 .021 .077 .851 1.176 

Temperature .044 .012 .043 .916 1.091 

Slope 4.923 .838 .067 .966 1.035 

Wind speed 105.049 21.872 .054 .966 1.035 

Precipitation -.110 .008 -.152 .903 1.107 

Aspect -.036 .242 -.002 .985 1.016 

Elevation -1.453 .057 -.349 .670 1.493 

Dependent Variable: Fire archive points 

Fire risk index  

In the field of forest fire mapping, researchers 

have not reached a consensus on which 

specific variables are essential for creating 

accurate fire risk maps. Instead, numerous 

studies have proposed integrating various 

factors, such as climate data (including 

rainfall, temperature, humidity, and wind), 

topography data (encompassing elevation, 

slope, and aspect), and land use data, into 

comprehensive fire models (Chuvieco & 

Congalton, 1989; Hernandez-Leal et al., 

2006; Jaiswal et al., 2002; Matin et al., 2017; 

Bhusal & Mandal et al., 2020; Singh et al., 

2020; Parajuli et al., 2020; Mohajane et al., 

2021; Parajuli et al., 2023). The integration of 

multiple variables aims to capture the 

complexity of fire behavior and the 

underlying environmental conditions that 

influence fire occurrence and spread. 

However, the specific combination of 

variables and their respective weights in the 

fire risk model may vary across studies, 

leading to a lack of universal agreement on 

the most optimal approach. 

For this study, a total of nine variables were 

carefully selected, following a hierarchical 

fire rating scheme for each variable and its 

components, which aligns with the 

methodology suggested by Chuvieco & 

Congalton (1989). To determine the 

appropriate weights for these variables, 

insights from existing fire risk mapping 

research were employed. Notably, 

geographic relevance played a key role in 

selecting the literature sources used in the 

study. Among the 16 sources referenced, 

seven focused on Nepal (Bhusal & Mandal, 

2020; Faisal et al., 2023; Matin et al., 2017; 

Parajuli et al., 2020, 2023; Qadir et al., 2021; 
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Singh et al., 2020), while the remaining nine 

originated from neighboring countries, such 

as India (Jaiswal et al., 2002; Tiwari et al., 

2021), China (Zhao et al., 2021), and other 

Asian nations (Abedi Gheshlaghi et al., 2020; 

Eskandari, 2017; Ozenen Kavlak et al., 2021; 

Sari, 2021; Sivrikaya et al., 2014). By 

incorporating insights from diverse sources, 

this study developed a comprehensive and 

contextually relevant fire risk map for the 

study area. The overall mean result showed 

that land cover was given the highest 

weightage followed by temperature, distance 

from road, and proximity to settlement and all 

other variables were given very similar 

weightage. 

Furthermore, the variables were reclassified 

into three classes and the classes of each 

dataset were ranked on a scale of 1-3, (1- 

High, 2- Moderate and 3-low) according to 

their influence on fire through fire frequency 

analysis as shown in Figure 8. Table 3 shows 

the assigned weights and ratings for all 

layers. Once all layers were reclassified and 

each assigned a rank, a model was developed 

to overlay this data according to defined 

weights to produce a fire risk map using the 

Spatial analyst (weighted overlay) tool in 

ArcGIS model builder where the input layers 

were given weights that all add up to 100%. 

The model can be summed up as  

FRI = 35% LC +15% LST + 10%DR + 

10% PS +  10%S +5%P+ 5%W+ 5% A 

+ 5% E 

 

Where, LC is land class, DR represents the 

distance from the road, PS means proximity 

to the settlement, LST is the land surface 

temperature, S is the slope, P is the 

precipitation, W is wind speed, A is the 

aspect and E is the elevation.

 

Figure 5: Boxplots of the weightage given in the literature to the various variables 

converted to percentage
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Table 3: Variables used with their weightage, value and ratings assigned to them 

Variable Weight 

(%) 

Class Value 

assigned 

Fire rating 

class 

Land Class 35 Broad-leaved closed/ open forest 

Shrubland/Grassland 

Needle leaved closed/open forest 

1 

2 

3 

High 

Moderate 

Low 

Land surface 

temperature (˚C) 

15 >29 

23-29 

<23 

1 

2 

3 

High 

Moderate 

Low  

Distance to road 

(m) 

10 <1000 

1000-2000 

2000-3000 

1 

2 

3 

High 

Moderate 

Low  

Proximity to 

settlement (m) 

10 <1000 

1000-2000 

2000-3000 

1 

2 

3 

High 

Moderate 

Low  

Slope (˚) 10 0-15 

15-35 

>35 

1 

2 

3 

High 

Moderate 

Low 

Aspect 5 South/South-west/South-east 

West/East 

North/ North-west/North-east 

1 

2 

3 

High 

Moderate 

Low 

Elevation (m) 5 <1500 

1500-2500 

>2500 

1 

2 

3 

High 

Moderate 

Low  

Precipitation 

(mm/month) 

5 44-55 

55-65 

65-75 

1 

2 

3 

High 

Moderate 

Low  

Wind speed (m/s) 5 >3 

1-3 

<1 

1 

2 

3 

High 

Moderate 

Low  

Model validation 

The accuracy of the model was evaluated 

through two methods. Firstly, the model's 

performance was assessed by overlaying the 

archived fire counts from VIIRS to compare 

the predicted fire risk with the actual fire 

occurrences. Secondly, the receiver operating 

characteristic (ROC) curve and area under the 

curve (AUC) method were employed to 

quantitatively measure the efficiency of the 

prepared risk map. The ROC curve depicts 

the relationship between sensitivity (true 

positive rate) and specificity (true negative 

rate) (Flach, 2010). On the other hand, the 

AUC provides a single scalar value that 

indicates the performance of the classified 

image. A higher AUC value, ranging from 

0.9 to a maximum of 1, indicates outstanding 

performance, while values between 0.8 and 

0.9 represent excellent performance, and 

values between 0.7 and 0.8 indicate 

acceptable results (Hosmer Jr et al., 2013). 

The ROC-AUC curve was calculated using 

the ArcSDM tool in ArcGIS, utilizing the fire 

points from the year 2022 for this analysis. 

The decision to use only the 2022 fire points 

was due to the high number of fire points 

detected by VIIRS during the study period, 

which resulted in frequent errors and crashes 

while calculating the ROC curve with the 

ArcSDM tool. 

RESULTS 

Trends of forest fire in Doti district 

Out of the total study period spanning from 

2012 to 2022, the VIIRS satellite recorded a 
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substantial number of 9365 fire incidents in 

the district. Among these, 671 fire hotspots 

were detected at a low confidence level and 

were subsequently excluded from the 

analysis. Additionally, fires identified in 

agricultural areas were also removed from the 

dataset. After careful filtering, a total of 6810 

forest fire incidents were observed in the 

region.  

The analysis of annual fire occurrence 

revealed a noticeable upward trend in forest 

fires within the district, as indicated by the 

positive values of the Mann-Kendall trend 

test (tau = 0.127, Sens slope = 14.85). This 

positive trend signifies an increase in the 

frequency of forest fires over time. However, 

the statistical significance of the trend was 

deemed insignificant (p < 0.05) due to the 

presence of exceptionally high fire counts in 

the years 2016 and 2021, followed by 

relatively lower fire incidents in the 

subsequent years. Notably, the year 2021 

recorded the highest incidence of forest fires, 

followed closely by 2016, together 

accounting for a substantial 51.9% of the total 

forest fires detected during the entire study 

period. 

Temporal analysis of the VIIRS fire Research 

showed that most fire was seen during the 

pre-monsoon period of March-May. During 

these three months total of 6295 fire counts 

were detected which is 92.43% of the total 

fire detected by VIIRS (Figure 7). 

 

Figure 6: Annual fire counts in Doti district. 

 

Figure 7: Fire occurrence per month 
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Fire patterns across various variables 

 

Note: The abbreviation in the Figure 8a are Needle leaved closed forest (NLC), Needle leaved 

open forest (NLO), Broad leaved closed forest (BLC), Broad leaved open forest (BLO). 

Figure 8: Forest fire incidence in (a) land-cover (b) settlement, (c) roads, (d) slope, (e) 

aspect, (f) elevation, (g) temperature, (h) precipitation and (i) wind speed 

The spatial analysis of the fire archive data 

revealed that the major contributors to forest 

fires in the district were Broadleaved closed 

forest and Broadleaved open forest, 

accounting for approximately 78% of the 

total fire incidences. The needle-leaved forest 

also experienced a significant number of 

fires. The analysis of fire points showed that 

fire counts increased substantially near 

anthropogenic factors, with about 82% of 

fires detected within 1000m of human 

settlements and 47% within 1000m of roads. 

Additionally, 77% of fires occurred within a 

2000m radius of the major road network. 

The frequency of fires was concentrated in 

areas with slopes between 15-40 degrees, 

with higher slopes contributing to the 

majority (91%) of detected fires, particularly 

those above 15 degree slope. South-facing 

areas exhibited the highest fire incidence, 

followed by east, west, and then north-facing 

areas. In terms of elevation, the majority of 

fires were detected in the 500 to 2000 meters 

above sea level range, showing a negative 

relationship between fire occurrences and 

increasing elevation. Higher temperatures 

were associated with a higher frequency of 

fires, with about 61% of fires occurring in 

temperatures above 29˚C. Moreover, areas 

with lower precipitation rates (below 65 

mm/month) had a higher concentration 

(79.6%) of total fires. Finally, the majority of 

fires (63.9%) were detected in areas with 

wind speeds ranging from 1-3 m/s. 
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Forest fire risk map 

The risk map was created with High, 

Moderate and Low risk area category, each 

occupying 42.9%, 46.03% and 11.07% of 

forest area (Figure 9). Furthermore, using the 

risk map risk ranking was also done for each 

local administration of the district by 

calculating percentage of high risk zone in 

each local unit and further verified through 

VIIRS fire archive data (Table 4). Badikedar 

was the highest ranked forest fire susceptible 

local administration with 23.04% of risk zone 

while Khaptad ranked lowest with absence of 

high risk area. The high risk Municipality 

Badikedar, Bogtan and Jorayal covered 

65.89% of high risk area and recorded 77.5% 

(5049) of total forest fire. The higher risk 

wards from each municipality were ranked on 

the basis of high risk zones concentration in 

them. 

 

Figure 9: Forest fire risk map of Doti

Table 4: Risk ranking of local units 

Rank Municipality 

Name 

Type High-

Risk 

zone (%) 

Fire 

Count 

(VIIRS) 

High-Risk 

Ward (No.) 

Remarks 

1.  Badikedar Rural 

municipality 

23.04 1216 1,2,3  

High Risk 

2.  Bogtan Rural 

municipality 

22.44 1572 1,2,3,7 

3.  Jorayal Rural 

Municipality 

20.41 2472 2,3,4,6 

4.  Sikhar Municipality 11.68 658 4,5,11   

 

Moderate 

Risk 

5.  Dipayal silgadhi Municipality 7.57 283 1,7,8 

6.  K I Sin Rural 

municipality 

4.78 161 3,4,5 

7.  Adarsha Rural 

municipality 

4.77 154 5,2 

8.  Purbichauki Rural 

municipality 

3.48 114 1,7  

 

Low Risk 9.  Sayal Rural 

municipality 

1.89 113 1,2 

10.   Khaptad National Park 0 67 - 

TOTAL 100% 6810  
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Model validation 

Validation of the output fire map is necessary 

for a complete and accurate depiction of the 

fire hazard. We overplayed the VIIRS fire 

archive data in the fire risk map and found 

that the high-risk areas were found to be the 

most fire-prone as they recorded the highest 

incidence of fire points and highest density 

count per Km2 (5.9) followed by moderate 

(3.7) and low-risk areas (1.3) (Table 5). 

Table 5: Merging VIIRS Fire archive 

data with fire risk map 

SN Risk zone Area (Km2) 

Fire 

counts 

(no) 

Fire 

counts 

(%) 

Density 

(per 

km2) 

1 High 632.7369 3712 56.98 5.9 

2 Moderate 678.7134 2586 39.69 3.7 

3 Low 163.137 216 3.33 1.3 

The validation was further done through the 

AUC and ROC curve. The ROC curve 

calculated is shown in Figure 10. The 

calculated area under the curve value was 

found to be 0.787, which shows that the 

prepared risk map is accurate in terms of 

prediction capability. 

 

Figure 10: ROC curve for the created fire 

risk map 

DISCUSSION 

In this study, we conducted an analysis of fire 

trends and patterns in one of the high-risk-

prone districts of Nepal, utilizing satellite 

imageries and VIIRS data from 2012 to 2022. 

Additionally, we developed a fire index 

based on spatial analysis for risk mapping in 

the Doti district. The discussion of our 

findings is presented in the following 

subtopics. 

Temporal distribution of fire 

Our study revealed an increasing trend of fire 

in the district, with a notable concentration of 

fire incidents in 2016 and 2022. This rising 

trend is consistent with reports from other 

studies conducted throughout Nepal, such as 

Bhujel et al. (2017) and NASA (2021) which 

also recorded high fire incidence during those 

years. The major fire months in the district 

were identified to be from March to May, 

coinciding with the prolonged summer 

season and limited rainfall, as previously 

reported in studies conducted in the country 

(Bajracharya, 2002; Parajuli et al., 2015, 

2020; Singh et al., 2020). Furthermore, the 

pre-monsoon months in Nepal, which 

coincide with shedding season for many tree 

species (Bajracharya, 2002; Bhujel et al., 

2017), contribute to an increase in fire 

incidents during this period. The escalating 

number of forest fire cases indicates that 

current management strategies in the area are 

insufficient to prevent fires, warranting 

significant reform. 

Fire activity across various variables 

The intensity and spread of fires are 

influenced by numerous factors, and our 

study focused on various variables, including 

land class, distance to roads, proximity to 

settlements, land surface temperature, 

precipitation, wind speed, slope, aspect, and 

elevation. The spatial analysis for fire 

frequency was conducted separately for each 

factor. Our results indicated that the majority 

of fires occurred in broad-leaved forests, 

consistent with findings from other 

researchers in the country (Matin et al., 2017; 

Parajuli et al., 2020). This high fire incidence 

in broad-leaved forests can be attributed to 

the presence of species like Shorea robusta, 

which accumulates substantial dry biomass 
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during dry seasons (Verma et al., 2013; 

Nhongo et al., 2020). We also observed a 

higher fire incidence in areas closer to 

settlements and roads, contrary to various 

previous fire mapping studies (Kolanek et al., 

2021; Thapa et al., 2021; Parajuli et al., 2020; 

Matin et al., 2017). Human activities, such as 

cigarette disposal, poaching, agricultural 

burning, and accidental causes, are major 

contributors to fires in forest areas near roads 

and settlements (Kunwar & Khaling, 2006). 

In our analysis, we found that fire incidents 

were significantly higher in areas with a slope 

of 15-35 degrees, consistent with findings by 

Bhusal & Mandal (2020). This can be 

attributed to the preheating effect of flames 

uphill, which increases the rate of fire spread 

with an increase in slope (Pyne et al., 1996). 

The south, southwest, and southeast regions 

showed the highest fire incidence, influenced 

by higher solar radiation, resulting in reduced 

humidity, increased fuel and soil 

temperature, and exposure to flowing winds 

(Lin and Rinaldi 2009). Additionally, most 

fire incidents were observed at elevations 

below 1500m, in line with studies by Parajuli 

et al. (2020) and Matin et al. (2017), which 

reported high fire incidence at lower 

elevations, while Lutz et al. (2011) observed 

a negative relationship between elevation and 

fire frequency and burn severity. 

Furthermore, higher temperatures were 

associated with drier vegetation, increasing 

the risk of fire, with more than half (51%) of 

fire cases reported at temperatures above 

29˚C, consistent with findings in other 

studies (Khanal et al., 2015; Thapa et al., 

2021; Parajuli et al., 2020; Matin et al., 

2017). Our analysis also revealed that areas 

with precipitation below 55 mm/month 

recorded the most fire counts, highlighting 

the increased fire hazard in dry regions 

(Flannigan et al., 2016). Wind speed is 

another critical factor that affects fire 

magnitude, with fire spread being 50% or 

more fast during wind speeds of 2-6m/s 

(Beer, 1991). However, in our study, almost 

two-thirds (67.59%) of fire incidents were 

reported in the 1-3 m/s wind speed range. 

This could be attributed to relatively few 

areas in our study region with high wind 

speeds. 

Fire risk index and validation 

Based on the spatial analysis, we developed a 

fire risk index (FRI) to create an accurate and 

replicable methodology for fire risk mapping. 

To justify the use of variables and reduce data 

redundancy, we checked VIF>2. The risk 

map derived from the FRI indicated that the 

majority of forest areas fell under the high 

(42.9%) and moderate (46.03%) risk zones, 

indicating that Doti is an overall high-risk 

area, which aligns with previous reports 

(Matin et al., 2017). The produced risk map 

shows it is essential not to overlook mid-hill 

regions while planning fire strategies, as our 

study observed an increasing trend of fire 

incidence, with around 42% of mid-hill 

forests found to be at high risk for fires, in 

line with the findings of Tiwari et al. (2022). 

To validate the produced risk map, we 

employed two methods: overlaying VIIRS 

fire archive points and utilizing ROC and 

AUC analysis (Chhetri & Kayastha, 2015; 

Chuvieco & Congalton, 1989). The high-risk 

areas on the map demonstrated higher fire 

density compared to moderate and low-risk 

regions, validating the accuracy of the map 

using real-time fire points, consistent with 

other studies conducted in Nepal (Parajuli et 

al., 2020; Bhusal & Mandal, 2020; Mishra et 

al., 2023). The AUC value obtained for our 

risk map was 0.78, suggesting its accuracy. 

This value is comparable to those reported in 

other studies, such as Parajuli et al. (2023) in 

the Terai arc landscape of Nepal (AUC=0.83) 

and Nikhil et al. (2021) in Parambikulam 

tiger reserve, India (AUC=0.79). Thus, our 

hierarchical scheme of fire rating, utilizing 

literature and fire archive analysis, can 

produce acceptable and accurate results 

similar to those obtained from AHP and 

Fuzzy AHP methodologies used in other 

studies. However, some studies have reported 

higher AUC values, like Goleiji et al. (2017), 

who reported an AUC value of 0.92 for forest 
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fire risk mapping using an integrated 

approach of AHP and analytical network 

process. The disparity could be attributed to 

the removal of agricultural, river, and urban 

areas from our risk map, as they fall outside 

the scope of our study. To further improve the 

risk map, the incorporation of socio-

economic data along with higher resolution 

satellite or drone images could be considered, 

which, in Nepal, has been limited thus far. 

CONCLUSION 

This study analyzes increasing fire activity in 

one of the high risk mid-hill district of Nepal. 

The findings emphasize the vulnerability of 

broadleaved forests near human activities, 

highlighting the significant human influence 

on fire incidents. Furthermore, south sided 

forests in lower elevated areas with slope 

above 15 degrees, having temperature above 

29 ˚C, precipitation range below 65 

mm/month and wind speed in the range of 1-

3m/s were found to be at high risk of forest 

fire. We found increasing trend of fire 

incidence in the district and about 42% of the 

areas in high risk underscores the urgency of 

addressing fire management strategies and 

including mid-hill regions in fire risk 

policies. Neglecting these areas may lead to 

further damage from recurring forest fires, 

posing severe threats to ecosystems and 

communities. The risk map and ward-level 

information provided here offer valuable 

insights for policymakers to plan effective 

fire risk policies, prioritize essential fire 

infrastructures, and safeguard regions with 

limited financial capabilities and 

infrastructure resources. Future research 

should consider incorporating socio-

economic data and high-resolution imagery 

to improve the accuracy and effectiveness of 

fire risk mapping. By addressing these 

aspects, more robust strategies can be 

developed to prevent and control forest fires, 

safeguarding Nepal's natural resources and 

communities from their devastating impacts. 

With the knowledge gained from this study, 

we anticipate proactive measures will be 

taken to mitigate fire risks and ensure the 

long-term sustainability of Doti District’s 

diverse ecosystems and landscapes. 
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