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 ABSTRACT

This paper is devoted to study the non-linear oscillation along the stable position of 
equilibrium where the system oscillates about the position of equilibrium like a dumb-bell 
satellite with constant amplitude and phase varying with true anomaly. B.K.M. method has 
been exploited to get the general solution valid at and near the main resonance n = 1.

KEYWORDS : Okhotsimsky, non-linear, Equilibrium, Resonance, Oscillatory, Orbit, Solar radiation, 
gravitational.

INTRODUCTION

The Russian Mathematician Okhotsimsky and Saricher (1963) made significant studies on the effect 
of different perturbative forces on a cable connected satellites system. Similar problems have also 
been studied in details by Singh; R.B. (1972).

1.	 Linear Oscillation of the system about the position of equilibrium for small eccentricity.

              The equation of motion of a satellite in the central gravitational field of force of oblate earth 
together with magnetic force and shadow of the earth due to solar pressure in polar form is given by

(1 + ecosv)Ψ” − 2eΨ’ sin v + 3 sinΨ cosΨ = 2 e sin v + 5A (1 + ecosv)2 sinΨ  cosΨ + B0P
3 

(cosasinΨ – sinα cosΨ) + C[1 + e cosv) sin Ψ − e sinv cos Ψ] … (1)

Where, 	 A =  -  (const.) oblatness parameter

	 BO = 

	 B = Solar pressure parameter

	 C = Magnetic force parameter

	 P = 

Where e is the eccentricity, p is the focal parameter, v is true anomaly of the centre of mass and das 
has denote differentiation w.r. to v

The equilibrium position is given be

LINEAR OSCILLATION OF THE INTER-CONNECTED SATELLITES 
UNDER THE INFLUENCE OF MAGNETIC FORCE OBLATENESS OF 
THE EARTH AND THE SHADOW OF THE EARTH DUE TO SOLAR RA-
DIATION PRESSURE ABOUT THE POSITION OF EQUILIBRIUM FOR 

SMALL ECCENTRICITY NEAR THE MAIN RESONANCE  =1
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 = 0 = 0 and  = 0 = 

B sin.  sin 


3  5A  C 
B sin cos 



 

  = 
B0 sin 

3  5A  C – B0 cos … …..(3) 

 The equation of small oscillation about the position of equilibrium obtained by putting Ψ = Ψ0 + η 
upto first order infinitesimal is given by
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… (4) 

 

Where,
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 Now let us construct the general solution of the oscillatory system based on B.K.M. method which 
will be valid at and near the main resonance n = 1. Assuming 'e' to be a small parameter, the solution 
in the first approximation of the equation (4) at the main resonance n = 1 can be sought in the form :

η = a cos k

Where, k = v + θ …(6)

Where amplitude 'a' and phase 'θ' must satisfy the system of ordinary differential equations −





da
dv = e A1 (¸ )

d
dv = n  1 + eB1 (a¸ )

 … (7) 

 Where amplitude 'a' and phase must satisfy the system of ordinary differential equations

Here A1(a, θ) and B1(a, θ) are periodic solutions periodic with respect to θ of the system of partial 
differential equations:

Where ƒo(v, η, η′, η") = 2 sin v + an2 coskcosv − 2ansinksinv + 10 A a cosk cosv

(n  1) 
A1

   2anB1 = 
1
 

2

o  o(v, , ′, ") coskdk 

and a(n  1) 
B1

  + 2nA1 = 
1
 

2

o  o(v, , ′, ") sinkdk … (8) 

 

(n  1) 
A1

   2anB1 = 
1
 

2

o  o(v, , ′, ") coskdk 

and a(n  1) 
B1

  + 2nA1 = 
1
 

2

o  o(v, , ′, ") sinkdk … (8) 
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Substituting the value of f0(v, η, η',η") from (9) on the R.H. side of (8) and then integrating, we get 
from (8)
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Where  = 2 – c 

and  = 3Bosin  (                                     
) …. (11) 

 Now, the periodic solution with respect to θ of the system of equation (10) can be easily obtained 
as

and 
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Using (12) in (7), we obtain, 
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 e
(n + 1) (m cos  v sin )

and 
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dv = (n  1)  

e
(n + 1) ( sin + v cos)

 …….(13) 

 The system of equations (13) can be written as
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Where  = 
e

n + 1  (cos – sin) – 
2

)1( 2an 
 

Clearly, 0  is the first integral 
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In order to examine the stability, the integral curve (14) have been blotted in phase plane (a, v) in 
the form

 (n2 – 1) a2 – 2a e(νcosθ – sinθ) +Co = C  ……      (15)

Where Co = 2 (n = 1) 0φ = constant

Integral curves have been plotted in fig 1 and fig 2 for n=.95 and n=1.2 respectively for different 
values of a,e,ν,µ and Co. Since both curves are closed so we get the stability.
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