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Abstract

This study applies Long Short-Term Memory (LSTM) model to predict earthquake magnitudes in
the frequently earthquake-affected Himalayan country Nepal and the adjoining region. The seismic
data on the mb scale, from September 1964 to August 2024, were taken from the International
Seismological Centre (ISC) catalogue, spanning rectangular boundary of latitudes 26.30°N to 30.50°N
and longitudes 80.00°F to 88.30°E. The methodology involved extensive data preprocessing, feature
engineering, and the implementation of a deep learning model. The LSTM network demonstrated
moderate predictive power, achieving a Mean Absolute Error (MAE) of 0.2789, Root Mean Square
Error (RMSE) of 0.3728, and coefficient of determination (R?) score of 0.4294. The model effectively
captured overall seismic trends and showed consistent performance over time. A limitation of the model
is its tendency to predict magnitudes within the range of 3.5 to 5.0, resulting in the underestimation of
strong earthquakes and slight overestimation of weaker ones.
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1. Introduction

Nepal and the adjoining regions are highly prone to earthquakes. This is because it lies
along the boundary of two major Indian and Eurasian tectonic plates. The collision
between those plates primarily shapes the Himalayan region’s tectonics. The collision
started about 50 million years ago, and it still occurs up to date (Dwivedi & Chamoli,
2022; Ni, 1989; R. K. Tiwari, 2023). The immense pressure from this ongoing collision
causes the Earth’s crust to buckle, fold, and thrust upwards, forming the Himalayan
Mountain range. This tectonic activity also leads to frequent earthquakes as the crust
adjusts to the immense forces at play (Gupta et al., 2021; Thakur, 2004; R. K. Tiwari &
Paudyal, 2023b, 2024b).

Significant tectonic features in the Himalayas are the Main Central Thrust (MCT), Main
Boundary Thrust (MBT), Main Frontal Thrust (MFT), and South Tibetan Detachment
(STD) (L. Bai et al., 2016; R. K. Tiwari, 2023; R. K. Tiwari et al., 2024). The MCT
marks the boundary between the higher Himalaya and lesser Himalaya, the MBT
separates the Lesser Himalaya (Middle Himalaya) from the Siwalik Hills, and the MFT
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lies at the foothills of the Himalayas, demarcating the boundary between the Siwalik
Hills and the Indo-Gangetic Plain (Feng et al., 2017; Mugnier et al., 1994; Sinha-Roy,
1982; R. K. Tiwari & Paudyal, 2020, 2022, 2024a). The STD is a low-angle fault zone
that forms the northern boundary of the Himalayas. These tectonic structures play a
crucial role in the region’s seismicity (Bilham, 2019; Zhang et al., 2020). Historical
data shows that the Himalayas have experienced numerous devastating earthquakes,
including the Gorkha earthquake in 2015 in Nepal (Khan et al., 2016; Thapa et al.,
2023; R. K. Tiwari & Paudyal, 2023a; R. K. Tiwari & Paudyal, 2021)
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Figure 1. Map of Nepal and adjoining regions showing earthquake epicenters from
September 1964 to July 2024, categorized by magnitude: M2-3.9 (dark blue circles), M4-
4.9 (blue circles), M5-5.9 (green circles), M6-6.49 (yellow circles), and M6.5-7.5 (red
stars). Tectonic features include the Main Boundary Thrust (MBT, yellow line), Main
Central Thrust (MCT, red line), Main Frontal Thrust (MFT, brown line), and South Tibetan
Detachment (STD, white line). An inset map provides a regional context.

Understanding and predicting seismic events in this region is crucial for minimizing
loss of life and property damage. Researchers have extensively studied the spatial and
temporal patterns of earthquake occurrences in the Himalayas. Bilham (2004) provided
a comprehensive overview of seismic activity in the Himalayan arc, emphasizing the
role of large thrust earthquakes in shaping regional tectonics. Earthquake magnitude
estimation has been a critical area of research, with studies like Pandey et al. (1995),
investigating the relationship between body wave magnitude (mb) and moment
magnitude (Mw) for Himalayan earthquakes has been instrumental in establishing
standardized approaches to magnitude determination. Pandey et al. (1999) focused on



M. Aryal et al. ' BMCJoSR, 7, 12-26 (Dec. 2024) 14

specific segments of the Himalayas, analyzing recurrence intervals and seismic gaps.
Avouac et al. (2006) combined GPS data with historical earthquake records to model
strain accumulation and release along fault lines, offering valuable insights into the
complex nature of Himalayan tectonics.

Recent advancements in machine learning techniques, particularly Long Short-Term
Memory (LSTM) networks, have opened new avenues for earthquake prediction. LSTM
networks, a type of recurrent neural network (RNN), are designed to handle sequential
data and capture long-term dependencies, making them well-suited for time series
prediction tasks (Graves, 2012). Several studies have applied LSTM models to predict
seismic activities, highlighting their advantages in capturing temporal dependencies
(Gonzalez et al., 2019; K et al., 2019). Berhich et al. (2023) advanced the field by
incorporating attention-based LSTM models for large earthquake prediction, while Hsu
& Pratomo (2022) explored LSTM networks for predicting ground acceleration.
Wang et al. (2020) contributed significantly to spatio-temporal data mining using
LSTM networks, emphasizing the importance of capturing complex seismic patterns.
Hasan Al Banna et al. ( 2021) applied LSTM models in the context of Bangladesh,
highlighting regional challenges in data quality and availability. Recent studies have
also focused on enhancing LSTM models through advanced data preprocessing and
feature engineering techniques (T. Bai & Tahmasebi, 2022).

This study aims to develop a robust LSTM-based model for earthquake prediction in
the Himalayan region, focusing on Nepal and its adjoining areas. The research utilizes
historical seismic data from September 1964 to August 2024, employing the mb
magnitude scale. The primary objectives are to build and evaluate an LSTM model
for earthquake prediction, assess its performance using metrics such as R* MAE,
RMSE, MSE, and accuracy, and identify patterns or trends in predicted seismic activity
(Monterrubio-Velasco et al., 2024).

2. Data and methodology

Earthquake data for Nepal and the adjoining regions (Latitude range from 26.30°N
to 30.50°N and Longitude range from 80.00°E to 88.30°E) from September 1964 to
August 2024 was taken from the International Seismological Centre (ISC) catalogue
(Di Giacomo et al., 2015, 2018). We have made every effort to use uniform procedures
of magnitude determination throughout the entire period of the catalogue. The re-
computation of the surface wave MS and short-period body-wave mb values benefitted
from new hypocentres. The ISC provides a comprehensive and standardized dataset of
earthquake occurrences worldwide. The raw data from the ISC catalogue underwent
several preprocessing steps to ensure its suitability for the LSTM model. The raw
data from the ISC catalogue contains additional metadata, such as event identification
numbers, author's names, station codes, and phase data, which are not required for this
study.
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Figure 2. Raw ISC data preprocessing pipeline

Data cleaning involved handling missing values, outliers, and inconsistencies.
Additionally, temporal and spatial filtering will be applied to focus on significant events
and reduce noise in the data. The final dataset retained key attributes, which are crucial
for training the LSTM model, as outlined in Table 1.

Table 1. Attributes of Earthquake Dataset into LSTM model

Attribute Description Unit

. YYYY-MM-DD
DATE & TIME Date and Time of earthquake occurrence HEH-MM:SS
LON Longitude of epicenter Degrees
LAT Latitude of epicenter Degrees
DEPTH Depth of hypocenter Kilometers
MAG Earthquake magnitude mb scale

To prepare the data for input into the LSTM model, it is structured as a time series
with multiple features. The feature engineering process involved creating the following
features:

Table 2. Features Used for Data Structuring into LSTM Model

Feature Type Usage
Temporal Days since the last earthquake, Day of the year, Month
Spatial Latitude, Longitude, Depth
Magnitude Current earthquake Magnitude, Average magnitude of last 5
earthquakes

The data was organized into sequences, with each sequence representing a window
of past events used to predict the magnitude of the next event. The final feature set
for the LSTM model included the following: latitude (LAT), longitude (LON), depth
(DEPTH), days since the last event (Days Since Last), day of the year (Day of Year),
month (Month), and the rolling mean of the magnitudes (MAG_Rolling Mean).

After feature engineering, the data underwent further preparation steps to optimize it
for the LSTM model. These steps included feature scaling using a MinMaxScaler to
normalize all features to a range between 0 and 1, ensuring equal contribution of features
and improving model convergence. 80% of the dataset was provided for training and
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the remaining 20% for testing, allowing for proper model evaluation on unseen data.
Finally, the provided dataset was reshaped to meet the LSTM model's requirements,
resulting in a training data shape of (2268, 1, 7) and a test data shape of (568, 1, 7),
representing the number of samples, time steps, and features respectively.

Table 3. Data Shapes After Preprocessing

Dataset Shape Description
Training (2268, 1,7) 2268 samples, 1-time step, 7 features
Testing (568, 1,7) 568 samples, 1-time step, 7 features
Raw Data
\
Preprocessing
Training Set Testing Set

The LSTM model with optimal parameters

Prediction of the Testing set

Figure 3. Flowchart of LSTM
The model was compiled with the following specifications:
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Table 4. Testing Parameters Metrics

Hyper-parameter Value
Learning Rate 0.001
Batch size 32
Epochs 100
Optimizer Adam
Loss Function MSE
Validation split 20% of training data

A 5-fold cross-validation strategy was employed to ensure robust performance
evaluation and to reduce the likelihood of overfitting, ensuring the model generalizes
well to unseen data. 80% of the dataset was provided for testing and the remaining
20% for testing with the training set further divided for cross-validation. The following
measures were used to assess the model's performance:

1 n
Mean Absolute Error (MAE): MAE = —Z| Y=y
n

i=1

n 2
Root Mean Square Error (RMSE): RMSE = \/%2( : —yij

i=1

Z?: 1(%' _y’)z
S

True values are denoted by y,, predicted values by ¥;, and mean of the true values by ¥.

Coefficient of determination (R?) Score: R%*=1-

3. Results and discussion

The presence of overlapping data in Figure 4 indicates that both training and test data
capture the overall distribution of the original dataset, ensuring that the model is trained
and tested on a realistic representation of seismic activity in Nepal. This alignment is
critical in the LSTM model’s ability to generalize and predict earthquake magnitudes
accurately. The graph also suggests that the model was exposed to a broad range
of magnitudes, including moderate to strong earthquakes, allowing for a balanced
evaluation of predictive accuracy across varying magnitudes.
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Figure 5. Train and Test Magnitude over time

Figure 5 presents the seismic activity recorded over several decades, showcasing both
the training and test datasets used in our LSTM-based prediction model. The blue
line represents the training data, encompassing a longer historical period, while the
orange line indicates the more recent test data. Throughout the timeline, we observe
significant fluctuations in earthquake magnitudes, ranging primarily from 3.0 to 7.0
on the scale. Notable spikes in the graph correspond to major seismic events that have
impacted the region. A striking feature of this visualization is the apparent increase in
data density over time, particularly evident from the 1990s onward. This trend likely
reflects advancements in seismic monitoring technology and more comprehensive data
collection practices, rather than necessarily indicating an increase in seismic activity
itself. The graph effectively captures the complex and variable nature of Nepal's
seismic history, highlighting periods of relative quiescence interspersed with instances
of intense activity.
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Figure 6. Actual vs Predicted Earthquake Magnitude Scatter plot
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In Figure 6, a positive correlation between actual and predicted magnitudes is evident,
indicating that the model captures the general trend of earthquake intensities. However,
the model's predictions tend to fall within a narrower range compared to actual
observations, particularly for extreme events. For earthquakes with magnitudes below
4.0, the model shows a tendency to slightly overestimate, while it often underestimates

magnitudes for events above 5.0.

The model demonstrates its best performance for earthquakes in the 4.0 to 5.0 magnitude
range, where predictions cluster more closely around the ideal prediction line. These
observations highlight the model's strengths in predicting moderate earthquakes while
also revealing areas for potential improvement in capturing the full spectrum of seismic

event intensities.
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Figure 7. Line graph comparing actual versus predicted magnitudes for a 600 sample
index. The green line represents the actual magnitudes, while the orange line represents the

magnitudes predicted by the model.
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Figure 7 presents a line graph comparing actual and predicted earthquake magnitudes
across a sample index. This visualization allows for a direct comparison between
observed and predicted values over a sequence of earthquake events. The graph reveals
that the model generally captures the overall trend of magnitude fluctuations, with
predictions closely following the actual values for many instances. However, there are
notable discrepancies, particularly for higher magnitude events where the model tends
to underestimate the peak values.
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Figure 8. Line graph comparing actual versus predicted magnitudes of Entire Test Size

Figure 8 expands the view to display the model's performance specifically for the
entire test dataset. This broader perspective offers a comprehensive view of the model's
predictive capabilities across a range of seismic events on unseen data. The graph spans
the full test set, providing a clearer picture of how well the model generalizes to new
data points. It becomes evident that while the model maintains its ability to follow
general trends, its struggle with higher-magnitude earthquakes persists across the larger
dataset.
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Figure 9. Line graph comparing actual versus predicted magnitudes from January
2020 to January 2024.
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Figure 9 narrows the focus to a recent period, showing actual and predicted earthquake
magnitudes from January 2020 to January 2024. This timeframe is particularly valuable
for assessing the model's performance on more current seismic data trends and its
potential reliability for future predictions. The graph demonstrates that the model's
ability to capture general trends remains consistent even with recent data. However, it
also confirms the limitation in accurately predicting higher magnitude events observed
in the previous figures. The model's predictions tend to fall within a narrower range in
all the observed periods (approximately 3.5 to 5.0) compared to the actual magnitudes,
which exhibit more extreme values. This leads to an underestimation of larger
earthquakes (above 5.5 magnitude) and a slight overestimation of very low magnitude
events (below 3.5). The model's performance appears consistent across time, without
significant degradation or improvement over time.

Notably, there's clear evidence of the variation between actual magnitude and predicted
magnitude which may be due to insufficient training data or an imbalance caused by a
higher prevalence of lower-magnitude events.

Performance evaluation

—— Training Loss
—— Validation Loss
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Figure 10. Fitting curves of LSTM training process showing Model Loss over Epochs

Initial epochs showed the training and validation loss of the model decreased and then
stabilized later, indicating successful learning. It seems that the model did not over fit
the training set based on the close alignment of the validation and training loss curves.
The Mean Absolute Error of 0.2789 indicates that, on average, the model's predictions
deviate from the testing earthquake magnitudes by approximately 0.28 units on the mb
scale. RMSE of 0.3728 provides a measure of the standard deviation of the residuals.
The R? score of 0.4294 suggests that the model explains about 42.94% of the variability
in earthquake magnitudes.
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To ensure model robustness and to account for potential data variability, a 5-fold cross-
validation approach was implemented. The cross-validation results are consistent
with the performance on the test set, indicating that the performance of the model
remains consistent across various data subsets. The slightly higher R-squared value in
cross-validation (0.4468) compared to the test set (0.4294) suggests that the model's
predictive power might be slightly better when evaluated across multiple data splits.
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Figure 11. Histogram of Prediction Errors

The errors exhibit a central tendency around zero, indicating that the model doesn't
display a strong bias towards over- or under-prediction. This balanced performance is
further supported by the roughly symmetric distribution, suggesting an equal likelihood
of overestimation and underestimation. This error is consistent with the reported Mean
Absolute Error (MAE) of 0.2789, with most errors falling within the range of -0.5 to
0.5 magnitude units. While there are instances of larger errors beyond +1.0 magnitude
units, these occurrences are relatively infrequent. This error distribution pattern
demonstrates the model's overall reliability in predicting earthquake magnitudes, while
also highlighting areas for potential improvement in reducing the frequency of larger
errors.

Table 5. LSTM Model Summary consisting of the type of each layer, their output
shapes, and the number of parameters

Layer (type) Output Shape Param #
Istm (LSTM) (None, 64) 18,432
dropout (Dropout) (None, 64) 0

dense (Dense) (None, 32) 2080

dense 1 (Dense) (None, 1) 33
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The model followed a sequential structure, beginning with an LSTM layer that outputs
64 units. This layer contains 18,432 parameters and was crucial for capturing the
temporal patterns and long-term relationships in the earthquake time-series data. After
the LSTM, a dropout layer was added to avoid over fitting, which did not introduce
any additional parameters but helped improve the model’s generalization ability by
randomly disabling certain neurons during training. The model was further refined
with a dense layer comprising 32 units and 2,080 parameters. This fully connected
layer transforms the features learned by the LSTM layer, contributing model predicting
the target variable more accurately. Future earthquake magnitude predictions were
made using a dense layer with a single unit in the final output layer. This layer had 33
parameters and was the model’s output for regression tasks.

Overall, the model consisted of 20,545 trainable parameters and employed an optimizer
with 41,092 parameters to adjust the weights during training. The total parameter count
was 61,637. The structure and parameter count were optimized for handling the time-
series nature of earthquake data, demonstrating an efficient approach to predicting
seismic activity in Nepal and the adjoining regions. In recent past study, smaller
magnitude earthquakes, magnitude between 5 to 5.5, were forecast more accurately for
the Himalayan region by neural networks models (Prakke & Pradeep Kumar, 2024).

4. Conclusion

This study developed and evaluated an LSTM neural network model for predicting
earthquake magnitudes in the Himalayan region of Nepal, utilizing seismic data from
the ISC catalogue. The model demonstrated potential success, achieving a coefficient
of determination (R?) score of 0.4294, indicating its ability to capture overall seismic
trends. While the model maintained consistent performance and successfully identified
general patterns, it struggled with predicting extreme events, particularly high-
magnitude earthquakes. The model's tendency to predict within a narrower range (3.5
to 5.0) led to the underestimation of high-magnitude events and a slight overestimation
of low-magnitude ones. The model's ability to explain about 42.94% of the variability in
earthquake magnitudes is significant, given the complex and chaotic nature of seismic
events. This performance suggests that machine learning approaches have considerable
potential in advancing our understanding of seismic patterns, even if they cannot
predict individual events with high accuracy. LSTMs can be integrated with geological
and geophysical data, including GPS measurements, stress-strain analysis, and tectonic
plate velocities, to enhance the understanding of seismicity in the Himalayas.

Software resources

The experimental setup for this study involved using Python 3.12.5 as the programming
language. The study utilized several libraries and packages, including TensorFlow
2.17, Keras 3.5.0, Pandas 2.2.2, NumPy 2.0.1, scikit-learn 1.5.1, Matplotlib 3.9.2, and
PyGMT 0.12.0. JupyterLab Desktop 4.2.1 was used as the development environment.



M. Aryal et al. ' BMCJoSR, 7, 12-26 (Dec. 2024) 24

In particular, PyGMT was used for plotting earthquake data on the map of Nepal,
digitally adding a base map for enhanced visualization.
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