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Highlights
•	 Alkaloids extracted from Crotalaria spectabilis stem were used as a green inhibitor
•	 Corrosion inhibition was studied in terms of weight loss & electrochemical method
•	 Weight loss method shows 90.3% inhibition efficiency in 1000 ppm inhibitor solution
•	 The alkaloids showed 92.86% inhibition efficacy via potentiodynamic polarization

Abstract
The study of corrosion inhibition using plant extracts as environmentally friendly inhibitors is an emerging area of research. 
In this work, alkaloids were successfully extracted from the stems of Crotalaria spectabilis by a solvent extraction method. 
Qualitative characterization of extracted alkaloids was performed using chemical test methods and the Fourier Transformed 
Infrared Spectroscopy (FTIR) technique. The alkaloids extracted were tested as corrosion inhibitors on mild steel (MS) exposed 
to 1.0 M H2SO4, and their effectiveness was evaluated using gravimetric and electrochemical techniques. The study used the 
weight loss method to examine how inhibitor concentration, immersion time, and working temperature affect corrosion inhibition 
efficiency. The results showed a maximum inhibition efficiency of 90.38% for mild steel immersed in a 1000 ppm alkaloid solution 
for 6 hours at 25 °C. Similarly, polarization measurements indicated a maximum inhibition efficiency of 92.86%. The alkaloids 
demonstrated effective inhibition efficiency at temperatures up to 45 °C. The studies on adsorption isotherm, activation energy, 
and free energy of adsorption suggested that the alkaloids follow the Langmuir adsorption isotherm through physisorption. 
Overall, the findings indicate that the extracted alkaloids have the potential to serve as environmentally friendly inhibitors for 
mild steel corrosion.
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Introduction
Mild steel (MS) is popular due to its appealing properties and cost but low corrosion resistance in acidic environments. The 
MS is used in petrochemical and chemical plants where acidified solutions are used, and one of the most challenging tasks for 
industries is to protect mild steel from corrosion [1-4]. The most recent practice is using inhibitors to protect mild steel used 
in petrochemical and chemical plants [5, 6]. Synthetic or natural chemicals can be used as corrosion inhibitors, effectively 
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decreasing the corrosion rate when added to an aggressive environment [7]. Large numbers of synthetic inhibitors are enlisted 
in corrosion literature, but interest in synthetic compounds diminishes due to the strict environmental regulations and toxic 
effects on living beings [2, 8]. Natural products such as corrosion inhibitors attract more attention in research works because 
they are environmentally friendly, easily available, and good efficiency [9, 10]. Natural product extracts contain biodegradable 
phytochemicals, and their inhibition performance is linked to phytoconstituents like tannins, flavonoids, alkaloids, etc. [11, 12]. 
These metabolites contain polar functional groups with nitrogen, sulfur, or oxygen atoms, along with conjugated double or triple 
bonds that act as absorption centers [13, 14]. The effectiveness of green inhibitors in reducing corrosion is influenced by several 
factors, including their chemical structure, the presence of functional groups, the electron density at the donating atom, and the 
characteristics of their orbitals. The trend for inhibition performance based on the donating atom is as follows: O < N < S < P 
[14, 15].

The extract of different plants exhibits inhibitive properties for mild steel in acidic solutions. The methanol extracts of plants such 
as Lantana camara [4], Artemisia vulgaris [2], Euphorbia royleana [14], Bamboo [16], Ficus hispida [17], Ginkgo [18], Shorea 
robusta [19], Murrya koegnii [20] are reported with promising inhibition efficiency. Similarly, alkaloid extract from Aniba 
rosaeodora [21], Annona squamosa [22], Solanum tuberosum &Artemesia vulgaris [23], Rhynchostylis retusa [24], Acacia 
catechu [25], Coriaira nepalensis [26], Solanum xanthocarpum [15], Alnus nepalensis [27], Ageratina adenophora [28] are also 
reported to have good inhibition efficiency.

Fig 1. Flowering twig of Crotalaria spectabilis

The Crotalaria spectabilis is an erect, branched annual to perennial legume plant as shown in Figure 1, also known as rattle pods 
in English [29]. The stem and leaf of Crotalaria spectabilis contain pyrrolizidine alkaloids, flavonols, tannins, unsaturated sterols, 
and organic acids in methanolic, ethanolic, chloroform, and hexane extract [30-32]. The presence of pyrrolizidine alkaloids like 
Retronecanol, Platynecine, Retronecine (Scheme 1), etc. in the leaf, stem, and seed extract of Crotalaria spectabilis species have 
been reported [33, 34]. The retronecanol is the major pyrrolizidine alkaloid found in this species [33]. 
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Scheme 1: Pyrrolizidine alkaloids of Crotalaria spectabilis stem, leaf, and seed extract (1) Retronecanol, (2) Platynecine, and (3) 
Retronecine [33].

Alkaloids are aromatic organic compounds with nitrogen as a heteroatom in the ring [35]. It contains at least nitrogen as a 
heteroatom on its aromatic ring structure (Scheme 1) as well as oxygen as the functional group. Such atoms are assumed to 
get adsorbed either by a physical or chemical bond with the MS surface and hence protect the MS surface from an aggressive 
environment [36-38]. This work explores the effectiveness of the alkaloid extract of Crotalaria spectabilis stem as a green 
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corrosion inhibitor in an acid-cleaning solution. Gravimetric and electrochemical methods have been used to monitor the efficacy 
of the alkaloids in terms of inhibitors. The nature of adsorption and energy of adsorption has been studied in terms of adsorption 
isotherms and thermodynamics of corrosion. 

Experimental methods

Preparation of Mild steel (MS) surface
MS sheets were collected and cut into coupons of dimension 4×4×0.5 cm3. Before each experiment, MS coupons were polished 
with emery papers (100-2000 grits), washed with distilled water followed by hexane, sonicated in ethanol for 10 minutes, dried 
in the air, and stored in moisture-free desiccators. The dimensions of each coupon were measured before each experiment using 
a vernier caliper. 

Extraction and Characterization of Alkaloids
Crotalaria spectabilis stems were collected from Kirtipur, (Latitude: 27.65, Longitude: 85.25) Kathmandu, Nepal. The collected 
stems were washed with distilled water, shade-dried, and ground into a fine powder. A total of 100 g of the dried powder was 
soaked in 500 mL of hexane for 24 hours to remove unsaturated organic compounds, after which the mixture was filtered. The 
filtrate was discarded, and the remaining residue was then macerated in 800 mL of methanol. This mixture was allowed to stand 
for 7 days at room temperature. The mixture was then filtered, and the pH of the filtrate was made acidic by adding tartaric acid 
solution (pH<3) where almost all alkaloids form water-soluble salt. It was filtered and made alkaline (pH>10) adding an ammonia 
solution. The alkaline solution was treated with CHCl3 solution, and the organic layer was separated. The organic layer contains 
an alkaloid fraction. The alkaloid fraction was collected in a beaker, dried in a water bath at 40 °C up to dryness, and stored in a 
moisture-free desiccator before use. Extracted alkaloids were characterized using FTIR, Mayer’s, and Dragendorff’s tests. 

Inhibitor Medium Preparation
A stock solution of inhibitor was prepared by dissolving 1.0 g of alkaloid in 1.0 M H₂SO₄ in a 1000 mL volumetric flask. The 
solution was filtered to remove any undissolved impurities, resulting in a stock solution with a concentration of 1000 ppm. 
Inhibitor solutions of 200, 400, 600, and 800 ppm were prepared by serial diluting the stock solution.

Weight Loss Measurement Method
Mild steel coupons were weighed before and after the immersion in acid and inhibitor solution using a four-digit weighing 
machine (Ohaus Corporation USA, Model: E1RR80). The inhibitor concentration effect was studied by weight loss measurement 
in inhibitor solutions of 200 ppm, 400 ppm, 600 ppm, 800 ppm, and 1000 ppm.  The immersion time effect was studied in 0.5, 
3, 6, 9, and 24 h. Similarly, the effect of temperature in corrosion inhibition was recorded at 25, 35, 45, 55, and 65 ºC after 6 h 
of immersion time. The inhibition efficiency (IE%) and corrosion rate (C.R.) of the extracted alkaloids were calculated using the 
following formula [20, 39]:
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Potentiodynamic Polarization 
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Potentiodynamic Polarization
Potentiodynamic polarization measurements were conducted using a three-electrode cell system with a Hokuto Denko 
Potentiostat (HA-151, Japan) [24, 28, 39]. During measurement, MS was used as a working electrode, a graphite rod as a counter 
electrode and a saturated calomel electrode (SCE) as a reference electrode. The open circuit potential (OCP) was observed for 
30 min for each MS sample before polarization measurements. The polarization measurements were performed at a scan rate of 
1 mV/s from the cathodic to the anodic range (± 0.3 V Vs OCP). Corrosion current density of each measurement was obtained 
by extrapolating Tafel curves. Inhibition efficacy and fraction of surface covered (θ) by inhibitor molecules were calculated by 
using the formula [28, 40], 

curves. Inhibition efficacy and fraction of surface covered () by inhibitor molecules were 

calculatedby using the formula[28, 40],  
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�����

× 100  … (4) 

Fraction of surface coverage () = �������
∗����

�����
 … (5) 

Where, 𝐼𝐼���� and 𝐼𝐼∗���� are corrosion currents in the absence and presence of inhibitors, respectively.  
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Scheme 2: Possible chemical reactions involved in chemical test of alkaloids, taking Retronecanol as a model 

alkaloid[24, 41]. 

 

Scheme 2: Possible chemical reactions involved in chemical test of alkaloids, taking Retronecanol as a model alkaloid [24, 41].

FTIR spectroscopic analysis was performed to identify the types of bonding, π-bond conjugate systems, functional groups, 
and the presence of aromatic and aliphatic structures in alkaloids. The strong peak observed at 3400-3200 cm⁻¹ (Figure 2) is 
attributed to the N-H stretching vibrations of primary and secondary ammonium ions, as well as the stretching vibrations of 
the O-H functional group, which involves intermolecular hydrogen bonding. A peak at 2328 cm⁻¹ indicates the presence of 
secondary amine multiple bonds, while the peak at 1624 cm⁻¹ is associated with the N-H bending vibrations of the amide group. 
Additionally, multiple peaks in the range of 1250-1020 cm⁻¹ are due to the C-N stretching of primary, secondary, and tertiary 
amines [44]. 
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Fig 2. FTIR spectra of alkaloids

Weight loss measurements
The weight loss measurement of MS coupon was studied in terms of immersion time effect, concentration effect, and temperature 
effect. 

Effect of Immersion Time
The weight loss method was employed to study the effect of immersion time on the corrosion rate and inhibition performance 
of alkaloids. The inhibition efficiency of alkaloids extracted from C. spectabilis was examined and calculated at various time 
intervals, as illustrated in Figures 3a and 3b, respectively. The weight loss of mild steel when treated with inhibitors showed a 
significant decrease. However, extended exposure of the metal to the acidic medium may lead to desorption, resulting in slight 
weight loss even in the presence of an inhibitor [24, 40].
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Fig 3. a) Weight loss of mild steel samples immersed in 
acid and inhibitor solution with respect to time.

    Fig 3. b) Inhibition efficiency of alkaloid                
solution at different intervals of time

The inhibition efficiency of alkaloids gradually increases from an initial 88.57% to 90.38% after 6 hours of immersion, and then 
the efficiency remains nearly constant, as shown in Figure 3b. The increase in IE reflects the dissolution of air-formed oxide and 
an increase in surface roughness followed by enhanced adsorption of the alkaloids on the MS surface. These adsorbed alkaloids 
protect MS from corrosion. Nearly constant inhibition efficiency after 6 h of immersion indicated that the system got dynamic 
adsorption-desorption equilibrium as well as the formation of the chelate complex by alkaloids with the dissolved Fe3+ or Fe2+ 
species [45-47].  
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Effect of Concentration
The effect of inhibitor concentration has been studied by immersing MS samples in alkaloid solutions of different concentrations 
for 6 h. The observation showed that at low inhibitor concentrations, weight loss is high, indicating a high corrosion rate. On 
increasing inhibitor concentration, weight loss gradually decreases and remains almost constant as shown in Figure 4a.
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Fig 4 a) Variation of weight loss in the mild steel samples in 
different concentrations of inhibitor.

          Fig 4 b) Variation of inhibition efficiency in the mild steel 
samples in different concentrations of inhibitor.

The effect of inhibitor concentration is studied for 200 to 1000 ppm inhibitor concentration for 6 h immersion time. The inhibition 
efficiency (IE) is high as the concentration is increased, and the maximum efficiency observed is 90.38% in 1000 ppm solution as 
shown in Figure 4b. This change could be due to the availability of a large number of alkaloids in a highly concentrated solution 
which adsorbed on the surface of MS and enhanced the corrosion inhibition.

Effect of Temperature
To study the effect of working temperature on the corrosion inhibition of alkaloids, a weight loss method was employed in which 
metal samples were immersed in acid only and in acid containing a 1000 ppm inhibitor solution separately. Alkaloids reflected 
good inhibition performance up to 45 °C then decreased as shown in Figure 5a.  The inhibition efficiency remained nearly 
constant at about 90% from 25 °C to 45 °C, but it began to decrease afterward, as shown in Figure 5b. At higher temperatures, 
the alkaloid present in the solution may lose its adsorptive properties or form a chelate complex with ferrous/ferric ions resulting 
in a decrease in inhibition efficiency [24, 40, 48].
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Adsorption Isotherm and Free energy of adsorption
To understand the fundamentals of the adsorptive properties of inhibitor molecules on the mild steel surface, adsorption isotherm 
models are examined [28, 38]. Fraction of surface covered (θ) by inhibitors obtained from the gravimetric method and inhibitor 
concentration (Cinh) in the reference of Retronecacol molecule were used to evaluate the adsorption isotherms. Figure 6(a) 
represents the plot Cinh/θ versus Cinh (mol/L) from equation (6) was used to evaluate Langmuir adsorption isotherm. A straight 
line with a regression coefficient (R2) value of unity was obtained. This suggests that complete monolayers of alkaloids formed 
on the steel surface before the formation of multilayers on the equivalent adsorption sites [25, 28].
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Figure 5b) Variation of inhibition efficiency of inhibitor 
in mild steel sample with temperature  
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Where Cinh is the alkaloid concentration expressed in mol L−1 and θ denotes the surface of MS covered by alkaloid molecules. The 
kads signifies the equilibrium constant for the Langmuir isotherm. Gibbs free energy (∆Gads) of adsorption was determined using 
equation (7), where Kads was obtained from the intercept of Langmuir adsorption isotherm. 
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The free energy of adsorption obtained using ideal gas constant value (R = 8.314 J mol−1 K−1) and adsorption equilibrium constant 
(kads = 3484.3 L mol−1) is -30.13 kJ mol−1at 298 K. The obtained value of ∆Gads is intermediate between physisorption and 
chemisorption. This suggests that there is a weak electrostatic interaction between the alkaloid molecules and the steel surface. 
A chemical interaction occurs as the lone pair of electrons from the electronegative sites of the alkaloid molecules interacts with 
the steel, forming a thin protective layer on the surface of the mild steel [19, 28].
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The interacting nature of alkaloid molecules with surface and among themselves, and the spontaneity of adsorption were studied 
by Freundlich and Temkin isotherms. The plot of ln θ versus ln C obtained from Freundlich equation (8) gave a straight line with 
slope (1/n = 0.07) and R2 coefficient 0.96 as shown in Figure 6(b). This suggests that the adsorption process is spontaneous as the 
value of 1/n lies between 0 and 1 [25, 28].
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Where a is an interaction parameter. The interacting parameters a and k from the intercept and 

slope of Temkin plot (versus ln C, Equation 9) as in Figure 6(c) were found to be -8.33 and 

5.73 × 108indicating the strong interaction of the alkaloid molecules with the steel surface[28, 
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very close to physisorption indicating thatthe adsorption of alkaloids on the steel surface is 

physisorption-dominant[2, 25, 40]. 
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Where a is an interaction parameter. The interacting parameters a and k from the intercept and slope of Temkin plot (θ versus ln 
C, Equation 9) as in Figure 6(c) were found to be -8.33 and 5.73 × 108 indicating the strong interaction of the alkaloid molecules 
with the steel surface[28, 49].
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Fig 7.  Arrhenius plot for the steel sample immersed in acid and inhibitor solution

Thermodynamics of Corrosion
Enthalpy and entropy of adsorption at the transition state were determined using the transition state equation (11),
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Where h is plank constant (6.62×10−34 Js), N is Avogadro’s number (6.022×1023). Enthalpy of adsorption (∆H°) was determined 
from the slope of the straight line while the entropy of adsorption (∆S°) was determined from the intercept of the line in graph 
(log CR/T versus 1/2.303RT) as shown in Figure 8.
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Fig 8. Transition state plot for the MS sample in acid and inhibitor solution

The enthalpy of the reaction in an acid solution is 36.42 kJ mol−1 and in the presence of an inhibitor is 75.78 kJ mol−1. The 
positive enthalpy values for both reactions indicate that adsorption occurs through an endothermic process, which minimizes 
the corresponding corrosion rate [47]. Likewise, entropies calculated from intercepts are found to be −113.33 J mol−1 K−1 in acid 
and −3.34 J mol−1 K−1 in the presence of inhibitor solution. The presence of inhibitor molecules increases entropy due to greater 
randomness in the transition state, resulting from the formation of an activated complex and the movement of free protons in 
the solution [28]. This occurs because alkaloid molecules replace water molecules on the steel surface during adsorption [26, 
28]. The calculated values of Ea, ∆H°, and ∆S° are presented in Table 2 which suggests that the adsorption of alkaloids on steel 
surfaces is physisorption-dominant [26, 28, 40]. 

Table 2. Activation parameters of steel dissolution in acid and inhibitor solutions 

Medium Ea (kJ mol−1) ∆H° (kJ mol−1) Ea - ∆H° ∆S° (J mol−1 K−1)

Acid                39.05 36.42 2.63 -113.33

Inhibitor     78.42 75.78 2.64 -3.34

Electrochemical Behavior
Before potentiodynamic polarization measurement, the OCP of each cell system was recorded. Generally, all the systems attained 
an equilibrium state after 5 minutes but OCP was recorded for 30 minutes. From Figures 9a and 9b, it can be shown that the OCP 
for the mild steel coupons in the presence of Crotalaria extract is slightly shifted to positive as compared to 1 M H2SO4 solution, 
however, shifting is lower than 85 mV showing the mixed corrosion behavior of inhibitor [40, 48]. 
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Fig 9 a): OCP variation of mild steel sample recorded before 
polarization measurement (as immersed).

Fig 9  b): OCP variation of mild steel sample recorded before 
polarization measurement (after 3 h of immersion).
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Fig 10 a: Potentiodynamic polarization curves for mild steel in 
1M H2SO4 having different concentrations of inhibitor, when 

polarization was done in an immersed condition

Fig 10 b: Potentiodynamic polarization curves for mild steel in 
1M H2SO4 having different concentrations of inhibitor, when 

polarization was done after 3 hours of immersion

The potentiodynamic polarization of the MS sample was performed with different concentrations of alkaloids and without 
alkaloids in 1M H2SO4 solution as shown in Figure 10a.  Figure 10b shows the polarization curve of 3 h of immersed mild steel 
samples with and without alkaloids in 1M H2SO4 solution. The corrosion potential was shifted in both directions indicating a 
mixed type of inhibition [24, 40, 47, 48]. It was seen that the shift in potential was more enunciated when the polarization of MS 
was done for 3 h immersed samples. There is a lowering current density upon the alkaloid addition, which reflects the inhibition 
behavior of the inhibitor. The current density decreased with the increment of inhibitor concentration however the effective 
decrease in current density was found in 3 h immersed samples. Thus, it can be said that the inhibitor acts more effectively after 
3 h immersion. The detailed inhibition efficiency of as immersed and 3 h immersed samples for different inhibitor concentrations 
are tabulated in Table 3.

Table 3: Inhibition efficiency of Crotalaria spectabilis Alkaloid (CSA) for as immersed and immersed condition

Conditions Inhibition efficiency of (200-1000) ppm alkaloids in 1M H2SO4 solution
200 400 600 800 1000

As immersed 53.17 61.73 69.82 76.53 82.82
3 h Immersed 81.60 87.68 89.58 91.38 92.86

Corrosion Inhibition Mechanism
Corrosion inhibition by inhibitor molecules generally occurs through an adsorption process. However, this process is not 
straightforward. Inhibitor molecules adhere to the surface of mild steel, forming a protective layer. This layer reduces the 
corrosion rate by increasing the activation energy of both the anodic and cathodic reactions. The adsorption of alkaloid molecules 
occurs by displacing water molecules in what is known as a quasi-substitution process.

Alk (sol) + xH2O (ads) ↔ Alk (ads) + H2O (sol)

Where, Alk (sol) and Alk (ads) represent the solvated and adsorbed alkaloid molecules, respectively. And, x stoichiometric 
coefficient of H2O (ads) denotes the size ratio, i.e. how many water molecules are replaced by one alkaloid molecule [24, 26, 47].

The metal surface becomes positively charged in the presence of an inhibitor. The positively charged surface interacts with 
sulfate ions (SO4²⁻), resulting in a negative charge on the surface. Then the positively charged protonated alkaloids attract sulfate 
ions through electrostatic forces. After releasing hydrogen molecules (H2), the protonated alkaloids revert to their neutral form 
[27, 40, 47].  In alkaloids, the highest occupied molecular orbital (HOMO) group specifically the lone pair of electrons on the 
nitrogen interacts with the vacant d-orbital of iron to form a coordinate covalent bond. This interaction leads to the gathering of 
an extra negative charge on the metal surface. To neutralize this charge, electrons are transferred back to the lowest unoccupied 
molecular orbital (LUMO), particularly to the antibonding orbital of nitrogen in the alkaloid molecule, creating a process known 
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as back-bonding. This retro-donation not only strengthens the bond but also facilitates the chemical adsorption of inhibitors [24, 
26, 27, 47].  

Conclusions
The extraction of alkaloids from the Crotalaria spectabilis stem was successfully and efficiently carried out and characterized by 
qualitative chemical method and FTIR spectroscopic technique. The maximum inhibition efficiencies of the extracted alkaloids 
are 90.38 % and 92.86 % obtained via weight loss method and polarization method, respectively. As an inhibitor, extracted 
alkaloids are effective up to 45 ºC and for up to 6 hours of immersion. The data are best fitted for Langmuir adsorption isotherm. 
The free energy of adsorption, along with the entropy and enthalpy values determined from weight loss measurements, indicates 
that alkaloids are adsorbed on the steel surface through physisorption. Due to the effective performance demonstrated by the 
extracted alkaloids, they can serve as effective inhibitors to prevent corrosion in industrial cleaning processes.
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