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Abstract 

Pandemics have been happening on the planet since the days of yore. It is troublesome in the old 

pandemics however pandemics of the later beginning have passed on certain messages. These 

significant examples ought to be acknowledged sincerely for confronting all the more skillfully in the 

accompanying pandemics. They have raised a ruckus around town since early times. It has been found 

that Nepal did not have connectivity with the pandemics in the past. It is only in the Corona pandemic 

that Nepal has also been a part of the whole globe. Our investigation focuses on historical aspects of 

bio-epidemiological mathematical surveys. Historical background of epidemics, their parallel situation 

in Nepal, and their correlation with mathematical modeling have been provided. Different dynamical 

systems used in epidemiology are mentioned. This study has also emphasized on deterministic 

modeling, and different disease transmission rates applied to the population dynamics of infectious 

diseases. 

Keywords: Compartmental model, transmission rate, nonlinear incidence, effective reproduction 

number. 

Background 

Introduction 

Communicable diseases have been a great challenge to humankind since the beginning of human 

history. At present, we still have a deal with communicable diseases like measles, AIDS, Plague, 

Malaria, T.B., Dengue, SARI, and COVID-19. Millions of people die annually from these diseases and 

billions of others are infected. These diseases would be soon eliminated with the improvement in 

medical science care and awareness process. Communicable diseases caused by various microbes, 

pathogens or microorganisms have been a threat to public health (Martcheva, 2015). They are caused 

by pathogens and can be easily transmitted from one infected person to another non-infected person. 

The most common examples are influenza or flu, measles, rubella, HIV, mumps, malaria, and smallpox 

(Brauer et al., 2012; Waltman, 2013). The emergence and reemergence of infectious diseases have 

become a significant worldwide problem. So, a Proper understanding of disease transmission dynamics 

caused by existing and new pathogens facilitates devising prevention tools (Foppa, 2016; Dym, 2004). 

Prevention tools against the transmission of disease need to be developed. Implementation and proper 

use of these sophisticated tools against the microbes is another challenge. This article addresses some 

theoretical frameworks and intends to provide some basic information about the infection mechanisms 
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of microbes, their orientation, control mechanism and the role of mathematical models in the 

epidemiology (Murray, 2001; Banerjee, 2021). 

Historical Background of Mathematical Modeling in Epidemiology 

Epidemiological mathematical modelling's historical components were first inspired by historians' and 

academics' accounts of events like the Plague of Athens (430–428 BC). The scientific historian 

Thucydides (460–400 BC) gives the most accurate account, detailing the symptoms, transmission 

dynamics, and death toll. In his essay "On the Epidemics," Hippocrates (459–337 BC) outlined the 

variables influencing the spread of diseases at that time and how they propagated. The Bubonic Plague 

claimed the lives of 25 million individuals in Europe in the fourteenth century. During the Antonina 

Plague (165–180 AD), soldiers returning from Near Eastern operations carried either smallpox or 

measles back to the Roman Empire. Two Roman emperors perished in the plague that struck the Roman 

Empire, which also severely reduced its population and economy. 

In the study of epidemiology, the severe effects of pandemic disease in Nepal were noteworthy. The 

Rigveda (c. 8000 BC), the Charaka Sahara (c. 700 BC) and various other Ayurvedic works up to 1600 

AD, the Puranas (c. 200 BC to 750 AD), travelogues from visits to India, and certain British records 

are among the ancient literature that mentions human viruses (Sharma, 1951; Badshah et al., 2013). 

Humanity has always been concerned about infectious diseases from the dawn of time. Certain 

infectious diseases still pose a problem for us today (measles, AIDS, Plague, Malaria, T.B., Dengue, 

SARI, COVID-19). Each year, these illnesses took off the lives of millions of people while infecting 

billions more. Since last time, there has been a conviction that the development of antibiotics will soon 

lead to the elimination of infectious diseases. 

Past Pandemic History and Their Parallel Situation in Nepal 

Since the beginning of time, pandemics have happened all across the world. The ancient pandemics 

were harsh times, but subsequent pandemics have taught us some valuable lessons. In the study of 

epidemiology, the severe effects of pandemic disease in Nepal were noteworthy. Globalization, 

transportation infrastructure, and the influx of new people are the main factors in the spread of any 

infectious disease. There are several pandemics recorded in ancient history. In contrast to now, when 

COVID-19 circled the world, it was contained to a much narrower area because the earth was not as 

globally connected as it is now. Neither the Ramayana nor the Mahabharata make any reference to the 

pandemic (Pokharel, 2020; Sharma, 1951). 

Prehistoric Pandemic in China 

Ironically, the first pandemic is also thought to have occurred in China’s Yuhan province. Such a 

disaster is said to have happened in an archeological site known as Hamin Manga around 3000 BC. 

The finding of the skeletons of all age bunches proposes that it has not saved any individual old or 

youthful. There are a couple of different destinations exhumed which showed mass graves proposing 

that pandemics were the thing to take care of during those early times even. It is difficult to determine 

whether Nepal was inhabited prior to 5000 years. Future archeological exercises will decide it. The 

caves of Mustang, which are located in steep mountains and date back between 2000 and 3000 years, 
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have been the site of the earliest human settlement. Some sort of a pandemic priority prompted its 

relinquishment. The investigation of the inside caves recommends that individuals had progressed 

living. The arrangement of living, beds and different rooms with latrine offices features this reality 

(Pokharel, 2020). 

Plague in Greece 

Sthunko battled against Sovereign Ashok when he came to raise the Lumbini support point in the year 

249 BC. It is said that the Kirat chieftain was badly defeated. In any case, after Ashok returned, Sthunko 

is said to have cut down the pony capital. Wang Huen Tse has composed that he had seen the Pony 

Capital when he came to Lumbini for 656. It doesn’t exist now. An unhinged pursuit was made by the 

creator in Lumbini during the development of the Maya Devi sanctuary yet without any result. This 

may not anyway be valid given that Jitadisti is accepted to be a contemporary of Buddha who lived 

somewhere in the range of 623 and 543 BC. The events of 430BC in Nepal could theoretically be 

observed using a powerful telescope aligned with a planet 2450 light years away from Earth. This is 

because the light is as yet going to those planets from the Earth as of now. Science may one day make 

it a reality (Pokharel, 2020). 

Plague in Rome 

This is also known as the Antonine Plague. It is said to have occurred in the year 27 BC going all the 

way to 180 AD. It is said to be transmitted by the soldiers who had gone to fight in the war against 

Parthia. The Licchavi King Jaya Verma was ruling then in Nepal for 185 AD. We have very little 

information regarding what transpired during Jaya’s regime. 

Plague of Cyprian in Rome 

In Rome, another plague struck, killing 5,000 people in a single day. It is believed that this incident 

occurred between 250 and 271 AD. Nepal is in the post-Jaya Verma era at this point. The famous  

leader of the Licchavi time frame Man Dev governed from the fifth hundred years. The first inscription, 

which is dated 464 AD, clearly identifies his rule. The period going before this time is obfuscated 

simply by stories and fantasies. Along these lines, we don’t have a record of what happened most 

definitely. 

Plague of Justinin 

Sovereign Justinian was a renowned ruler. During his rule, the popular church of St Hagia was 

constructed. It is wonderful to the point that he is said to have gloated by saying that he had 

outperformed Solomon, the incredible Ruler. During his system, a plague shook Rome right from its 

spine in a 542 Promotion. Despite being sickened by the plague, the Emperor was able to recover. This 

plague is said to have ended the existence of 10% of the number of inhabitants on the planet in general. 

Vamana Dev, a Licchavi ruler, ruled Nepal at the time. This is portrayed in a stone spout in Sankhu 

known as Dagu Hiti. There is no reference to pandemics during this period in Nepal. 
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Black Death of 1343 

There was a gap of precisely 800 years when the pandemic broke after quite a while. It is said that the 

West lost two-thirds of its population to this pandemic. It is hard to let whether know this pandemic 

went to Nepal. Be that as it may, individuals passed on in huge numbers in Nepal too. Nepal experienced 

several catastrophes during this time. A quake emitted around Barpak in the Gorkha region killing the 

supreme Ruler Ari Malla Dev a day later. Muslim ruler Shamshiddun went after Kathmandu Valley in 

a 1349 Promotion focusing on well-known strict places like Pim Bahal, Swoyambhu and Pashupati 

Nath. As a result, Pashupati Nath’s Linga was split into three pieces. During this time, the Khash rulers 

also attacked the valley. In the year 1255, there was also a huge earthquake. Nepal was ruled by Abhya 

Malla at this time. He tragically passed away during the earthquake. His rule was likewise hit by 

starvation and pandemics. The general public then was exceptionally eccentric. Individuals accepted 

that transgression would be committed someplace other by individuals on account of affection and 

desire and God would answer it as infections. These could be the plague, smallpox, starvation and such. 

As a result, the epidemics were a blessing to the gods. At the point when horrendous starvation of the 

year 1231 struck Kathmandu, 33% to one-6th of the populace died. Lord Abhyaya Malla performed 

Laksahome and Mahasnana to pay tribute to God Pashupati to avoid the underhanded impacts of 

starvation and pandemics. 

American Plague 

It is believed that 90% of the native Intec and Aztec populations perished as a result of Europeans 

spreading the disease from their homelands. Due to the epidemic, the local population was unable to 

fight, so the 1519 million Spanish army led by Hernan Cortes and the 1532 million Spanish army led 

by Francisco Pizarro benefited. Ratna Malla was administered during this time in Kantipur. There is no 

reference to any plague happening in Nepal during this time. 

Cocolitzli Epidemic 

In Mexico and Central America, this epidemic started at 1545 and lasted until 1548. High fever brought 

about the passing of a few groups. This plague didn’t come as far. In Nepal, Prana Malla was 

administered in Bhaktapur along with Jit Malla. Narendra Malla was in control in Kantipur. Festivals, 

songs, and dances are said to be favourites of his. He started numerous celebrations and moves in 

Kantipur. In Lalitpur, Vishnu Singh was the Ruler. Vishnu Singh is said to have developed the 

sanctuary of Bhringareswore. Nepal does not appear to have experienced any epidemics during this 

time. During this time, pandemics didn’t happen in every one of the three realms in Nepal. 

Great Plague of London, 1665 − 1666 

In London, this plague is said to have killed 100000 individuals. The plague is said to have spread from 

bugs after interacting with plague-ridden rodents. This plague hit London twice: first, a baker’s shop in 

London caught fire, destroying the building for four days. One average person had drawn in the 

consideration of the City hall leader towards this. However, the Mayor was rather caring to be sure 

when he trained to demand an old woman to pee in the fire to quench. Ruler Pratap Malla was controlled 
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in Nepal during this time. Kathmandu has not been the site of any epidemics. In any case, in Bhaktapur 

smallpox emitted and Jagat Prakash Malla passed on because of this pandemic in the year 1762. There 

is a whip demonstrating the far-reaching of cholera in the year 1761. 

Great Plague of Marsellie 

This plague was conveyed by a boat from the Mediterranean which came to Marseille. It lasted for a 

year from 1722. It ended the existence of nearly 100000 persons. On account of the London plague, 

bugs after interacting with plague-ridden rodents sent the sickness. 

In Nepal, there was a plague in 1722 when Bhaskar Malla was administering in Kantipur. This is 

portrayed in the records of Father Frayer, a Christian Preacher. According to legend, the King allowed 

Dashain to be observed, which was prohibited in Bhaktapur and Lalitpur due to the leap year. A severe 

hunger struck the Kingdom. What’s more, a bizarre illness was pervasive which would bring about 

enlarging throughout the long-term prompting passing. Lord Bhaskar Malla with his sovereigns and a 

few workers was made to remain in Kindol Bahal sort of isolation now. Meanwhile, one holy person 

said that the infection bend would level if individuals were welcomed for a banquet. The Lord 

acknowledged and the pandemic seemed to defrost a little. The Lord turned out to be exceptionally 

cheerful and went to the royal residence subsequent to leaving from a window. But the King contracted 

the disease and passed away quickly. 

Russian Plague 

Over the course of two years, and starting at 1770, this plague claimed the lives of nearly 100000 

people. Individuals had been isolated on a huge scale. They revolted and emerged. They also killed 

Archbishop Ambrosius, who had asked people not to gather in the church for fear of contracting more 

diseases. 

Nepal was ruled by Prithvi Narayan Shaha at the time. There is no mention of a serious epidemic during 

this time period in Nepal’s history. 

Philadelphia Yellow Fever 

This scourge was spread by mosquitoes in Philapheldia that ended the existence of 5000 individuals in 

the year 1793. When the mosquitoes became inactive and instinctive after the winter, they vanished. 

Numerous people have been killed by smallpox in Nepal on a regular and unwelcome basis. Until a 

vaccine led to its complete abolition in Nepal, devotees fervently worshipped the Sitala Mai temple, 

which is now mostly deserted. A fairly unusual Lord Rana Bahadur Shaha, gave proper respect to a few 

sanctuaries and gave a lot of cash to the Brahmins wanting for the expedient recuperation of his 

contaminated sovereign. He obliterated a few such sanctuaries as well as grabbed the gift back from 

the ministers after his heartbreaker Kantimati kicked the bucket directly following the 1799 Smallpox 

plague. 

Flu Epidemic 
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One million people were killed in Russia in the year 1889 in the city of St. Petersburg. By then, 

individuals were moving from one country to another through the ocean on a huge scale and it was 

liable for its spread in Europe and the remainder of the world. 

Ruler Prithvi Beera Bikram was administered in Nepal during this time. Beer Shamsher was the State 

leader. He developed a water supply network which was known as Bir Dhara. This assisted with having 

unadulterated water instead of tainted one. Additionally, he established Bir Hospital, which provided 

individuals with limited opportunities. Cholera and smallpox were customary executioners then, at that 

point. However, the cholera flare-up of the year 1821 has been recorded as the principal occasion of its 

sort ever, it is right around a yearly peculiarity in Nepal. In 2009, 500 individuals lost their lives in 

Jajarkot and just in 2014, 500 individuals were impacted in Rautahat region. 

Spanish Flu 

This flu showed up in the outcome of WWII in the year 1918 and went on for a long time till 1920. 

This flu caused the deaths of many soldiers. It impacted 500 million individuals and one-fifth of this is 

said to have passed on. 15000 Nepali troopers had likewise participated in WWI and a considerable lot 

of them kicked the bucket. Some returned and went to their home. Be that as it may, there is no record 

of this influenza to have impacted anyone in Nepal. Tribhuvan was the Ruler and Chandra Shamsher 

was the Priminister of Nepal during this period. 

Asian Flu 

This influenza again began in China in the year 1957. It then spilled into Singapore prompting 

Hongkong lastly showing up in the US in the mid-year of 1957. Some 1.1 million individuals were 

dead with 1, 16, 000 ends in the US alone. 

Nepal was a multiparty a majority rules system after People groups’ Upheaval in 1950. Nepal was 

simply open to the rest of the world subsequent to staying shut to it for quite a while. Thus, this influenza 

doesn’t appear to have gone into Nepal. Nonetheless, smallpox and cholera proceeded to destruction 

Nepal. 

AIDS Pandemic and Epidemic 

An estimated 35 million individuals died from AIDS in 1981. West Africa is intended to be its 

launchpad. With 40 million people living with HIV in Sub-Saharan Africa, it is widespread. Nepal was 

also impacted by this virus. It was widespread throughout the country, however it was particularly 

severe in western Nepal. It is thought to have been transmitted by Indian Nepali laborers. 

H1N1 Swine Flu Pandemic 

A novel H1N1 strain is what prompted this flu to begin in Mexico. Triple-reassortant H1N1 influenza 

with swine origins in April 2009, the first influenza pandemic of the twenty-first century was caused 

by a virus discovered to be a distant descendant of the 1918 "Spanish flu" virus. Half a million people 

died as a result of the 1.4 billion infections it caused. An intriguing feature of this flu was that, compared 

to all other pandemics where elderly individuals were prime targets, those under 65 were more 
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susceptible. Corona is likewise in this situation. Fortunately, Nepal was spared this flu. There isn't a 

single instance of this flu reported in Nepal. 

 

West African Ebola Epidemic 

The greatest Ebola outbreak since the virus's discovery in 1976 took place in West Africa between 2014 

and 2016. There have been seven Ebola infection episodes since the disease's discovery. This episode 

had more cases and fatalities than any other. It began in Guinea and swiftly extended to the neighboring 

countries of Sierra Leone and Liberia. By July 2014, it had made its way to all three of these nations' 

capital cities, and in August of that same year, the World Health Organization had deemed the epidemic 

a Global Health Emergency. Specifically, the Ebola pandemic devastated West Africa, with an 

estimated 30,000 cases and 10,000 fatalities reported. It originated in Guiana. 

Zika Virus 

It is mosquitoes that spread the Zika virus. In 1947, a Rhesus macaque monkey in Uganda was the first 

known to have it. Human cases of pollution and disease were documented in several African nations 

throughout the 1950s. In Africa and Asia, various human diseases were discovered in the 1960s and 

1980s. However, starting about 2007, cases of Zika virus have been documented throughout Africa, the 

Americas, Asia, and the Pacific. There have been Zika virus outbreaks during the past ten years, and 

these have been connected to a rise in the incidence of Guillain-Barre syndrome. During the 2015 severe 

pandemic in Brazil, an association was found between Zika infection sickness and microcephaly, a 

condition characterized by a smaller-than-average head size. 

COVID-19 

COVID − 19, caused by the novel coronavirus SARS − CoV − 2, emerged in late 2019 in Wuhan, 

China. It rapidly spread worldwide, leading to a global pandemic declared by the World Health 

Organization (WHO) on March 11, 2020. This disease spreads through respiratory droplets and has a 

wide range of symptoms, from mild respiratory issues to severe pneumonia and death. Its exact origin 

is still under investigation, but the virus is believed to have zoonotic origins, possibly linked to a seafood 

market in Wuhan where live animals were sold. It spreads mainly through close contact with an infected 

person via respiratory droplets when they cough, sneeze, or talk. It can also spread by touching surfaces 

contaminated with the virus and then touching the face. Symptoms can appear 2 − 14 days after 

exposure and vary widely with common symptoms: fever, cough, and shortness of breath and other 

symptoms: Fatigue, muscle or body aches, headache, new loss of taste or smell, sore throat, congestion, 

nausea, and diarrhoea (Hao et al., 2022). 

The pandemic overpowered medical care frameworks around the world, causing deficiencies of clinical 

supplies, medical clinic beds, and medical services laborers. It prompted worldwide monetary 

interruption, with numerous organizations shutting, joblessness rates increasing, and critical effects on 

worldwide exchange and travel. The pandemic provoked lockdowns, social removing measures, remote 

work, and changes in day to day existence and social communications. 
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Quick turn of events and organization of immunizations have been basic in dealing with the pandemic. 

Antibodies like those created by Pfizer-BioNTech, Moderna, and Johnson and Johnson have been 

approved for crisis use, essentially lessening the seriousness of disease and transmission rates. While 

the pandemic’s intense stage has died down because of inoculation endeavors and general wellbeing 

measures, Coronavirus keeps on flowing with occasional flare-ups and the rise of new variations. 

Endeavors are progressing to accomplish higher inoculation inclusion, foster medicines, and screen for 

new variations to oversee and in the end the pandemic. 

 

Figure 1: Six worst history 

Learning for Nepal 

One can finish up from the over that pandemics have pained the world from days of yore. Coronavirus 

has demonstrated the way that it can’t be wished out of the present even in present day times that have 

been set apart by extraordinary advancements in science and innovation. Race is on for the advancement 

of the antibody however the possibilities seem remote soon. Over a year might be a sitting tight time 

for the achievement of a reasonable immunization. Nepal has been impacted by Smallpox and cholera 

since early times. It is likewise said to have been desolated by plague in 1347 when plague consumed 

66% of the populace in the west. Be that as it may, whether this plague made a passage into Nepal or it 

was a neighbourhood still needs not be set in stone. In any case, smallpox and Cholera have been normal 

undesirable guests in Nepal. 

There have been three-pronged methodologies embraced for the anticipation of such pandemics in 

Nepal. The first is customary. It comprises revering divine beings and goddesses. Sitala Mai goddess 

was venerated intensely for fixing smallpox till the antibody was created to counter the smallpox. The 

sanctuary of Sitala Mai used to be exceptionally packed however it seems abandoned now because of 

the immunization that has been viable to counter it. For the fix from cholera, Bagala Mai was adored 

hotly. Presently, the cholera has likewise died down because of the ac- cessibility of an immunization 
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and the Goddess is loved as a Goddess of Want. The subsequent one is semi-customary. It is about the 

utilization of Ayurvedic natural medication. This is more on account of cholera. The third one is the 

cutting-edge one which is set apart by the utilization of antibodies and medication. There was 

additionally the arrangement of isolation in the past in Nepal. Individuals experiencing such illnesses 

used to be put independently as was above all else Bhaskar Malla in the mid-eighteenth hundred years. 

The way of life of washing hands now and again after crap, when food additionally added to the 

anticipation of the spread of the infection. Also, Yoga would be a superior counteraction measure. 

These days individuals have been rehearsing Yoga and Yoga mindfulness as referenced by (Bhatta, 

2024). 

System in Epidemiology 

Epidemic dynamics is an important method of studying the spread of infectious diseases. It is based on 

the specific property of population growth, the spread rule of infectious disease, and the related social 

factors etc. Dynamic systems in epidemiology are used to construct mathematical models reflecting the 

dynamic properties of infectious disease, to analyze the dynamical behaviour of the model so formed 

and to do some simulations. The research result helps predict the growth of infectious diseases, 

determine the key factors of the spread of infectious diseases and seek the optimum strategies for 

preventing and controlling the spread of infectious diseases. 

Compartmental Models in Epidemiology 

Most infectious disease dynamic models are based on the compartment structure of the diseases. First 

provided by Kermack and Mckendrick in 1927, the compartment structures for dynamic models are 

developed by numerous other biomathematicians in 1932. Those who recover from viral diseases such 

as influenza, measles, swine flu, and chikungunya develop immunity to the same virus. The SIR model 

can be used to describe these illnesses. Furthermore, those who recover from bacterial illnesses such as 

gonorrhea, the bubonic plague, tuberculosis, syphilis, etc. do not develop immunity and are susceptible 

to re-infection. The SIS model can be used to investigate the dynamics of these illnesses. 

Fundamental Forms of Compartmental Models 

Models without Latent Periods 

In these models the infected individuals becomes infectious immediately (Martcheva, 2015). These 

models are as follows: 

1. SI Model: In this model, the infectives cannot be recovered from infection. It is represented 

diagram 2. The model equations are: 

 

Figure 2: SI model 
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𝑑𝑆

𝑑𝑡
= −𝛽𝑆𝐼, and 

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 

2.  SIS Model: In this model, the infectives individuals are recovered, but gain no immunity from 

infection. It is represented diagram. 3 The model equations are: 

 

Figure 3: SIS model 

𝑑𝑆

𝑑𝑡
= −𝛽𝑆𝐼 + 𝛾𝐼, and 

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − 𝛾𝐼. 

3. SIR Model: In this model, the infectives obtain permanent immunity to the disease after recovered 

from infection. It is represented by diagram 4. 

 

Figure 4: SIR model 

𝑑𝑆

𝑑𝑡
= −𝛽𝑆𝐼, 

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − 𝛾𝐼 

= 𝐵𝐼(𝑆 − 𝜌) where 𝜌 =
𝛾

𝛽
 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 

4. SIRS Model: In this model, the recovered individuals may have only temporary immunity after 

they recovered from infection. Diagram 5 represents this model. 

 The model equations are: 

 

Figure 5: SIRS model 

𝑑𝑆

𝑑𝑡
= −𝛽𝑆𝐼 + 𝛿𝑅, 
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𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − 𝛾𝐼 

𝛽𝐼(𝑆 − 𝜌), where 𝜌 =
𝛾

𝛽
 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 − 𝛿𝑅. 

5. SIRI Model: In this model, the infectives individuals cannot obtain permanent immunity to the 

disease when they recovered from infection. Diagram 6 represent in model: The model 

 

Figure 6: SIRI model 

 equations are: 

𝑑𝑆

𝑑𝑡
= −𝛽𝑆𝐼 ,

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − 𝛾𝐼 + 𝛿𝑅 = 𝛽𝐼(𝑆 − 𝜌) + 𝛿𝑅, where 𝜌 =

𝛾

𝛽
, and 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 − 𝛿𝑅. 

6. MSIR Model: Babies are not born into the susceptible compartment for many illnesses, such as 

measles, but are instead immune to the illness for the first several months of their lives because of 

maternal antibodies (either through the placenta or through colostrum).  This can be shown by 

including an M class (for maternally derived immunity) at the beginning of the model. It is 

represented by diagram 7. 

 

Figure 7: MSIR model 

Models with Latent Periods 

There is often a considerable period of time during which the affected person is infected but not yet 

contagious for many serious infections. In the course of this latent time, the person is in the exposed 

compartment (E) Martcheva (2015). The following are these models: 

1. SEI Model: This model is represented by diagram 8 

 

Figure 8: SEI model 

2. SEIR Model: In this model the population is broken into four compartments: susceptible, exposed, 

infec- tious and recovered. This model is represented by diagram 9. 
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Figure 9: SEIR model 

3. SEIS Model: In this model the population is broken into four compartments: susceptible, exposed, 

and infectious again susceptible. Diagram 10 represents this model. 

 

Figure 10: SEIS model 

4. SEIRS Model: The population is divided into five compartments in this model: susceptible, 

exposed, infectious, recovered, and susceptible again. The representation of this model is diagram 

11 

5. MSEIR Model: The MSEIR model is used for epidemiological classes in cases of disease where 

the factors of latency period and passive immunity are present. Diagram 12 serves as a 

representation of this model. 

 where M is births and passive immunity. 

 

Figure 11: SEIRS model 

 

Figure 12: SEIRS model 

Basic Concepts of Dynamical System in Epidemiology 

Terms such as contact rate, adequate contact rate, infection rate, simple mass action incidence, standard 

incidence, saturation incidence, nonlinear incidence, monotonic incidence, basic reproduction number, 

threshold numbers, etc. are frequently encountered in an epidemiological dynamic system and are 

defined as follows: 

Disease Transmission Rate 

Infectious diseases can transmit by direct contact. The contact rate of infection, represented by P(N), is 

the number of people contacted by an infectious per unit of time. Depending on the population as a 

whole, N. The persons may become infected if they come into contact with an infectious susceptible. 

Assume that there is a β0 probability of infection for every contact. Subsequently, the function β0N is 
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referred to as an adequate contact rate, denoting the degree of infection caused by the infectious agents 

and typically reliant on the bacterial or viral toxicity and environmental conditions.  

The average rate at which susceptible individuals come into touch with infected persons per unit of 

time is known as the contact rate, and it is commonly represented by the symbol β. 

β = contact rate × β0. 

For example, if an average individual has 10 contacts per day and the probability of disease transmission 

per contact is 0.2(20%), then β =10 contacts/day × 0.2 transmission/contact = 2 

This means that each susceptible individual is effectively exposed to the infection at a rate of 2 contacts 

per day. 

To determine the unit of β, we need to consider the units of its components: the average number of 

contacts per susceptible individual per unit of time and the probability of disease transmission per 

contact. The unit of β will be a combination of these units. An average number of contacts per 

susceptible individual per unit time has units of ”contacts” per ”unit time” (e.g., contacts per day, 

contacts per week) and the probability of disease transmission per contact is a dimensionless quantity, 

as it represents a probability or a ratio. To obtain the unit of β, we multiply the units of the average 

number of contacts per susceptible individual per unit of time by the dimensionless unit of the 

probability of disease transmission per contact. 

Example 1: 

If the average number of contacts per susceptible individual per day is 10 contacts/day and the 

probability of disease transmission per contact is 0.3 (dimensionless), then β = Average number of 

contacts per susceptible individual × Probability of disease transmission per contact. 

β = (10 contacts/day) × (0.3) = 3 contact per day. 

Unit of β = (contacts / day) × (dimensionless) = contacts / day.  

Example 2: 

Average number of contacts per susceptible individual per week: 50 contacts/week Probability of 

disease transmission per contact: 0.2 (dimensionless) 

β = Average number of contacts per susceptible individual × Probability of disease transmission per 

contact β = 50 contact / week × (0.2) = 10 contact pert week. 

Therefore, unit of β = (contacts / week) × (dimensionless) = contacts / week. In both examples, the unit 

of β is the same as the unit of the average number of contacts per susceptible individual per unit of time. 

This is because the probability of disease transmission per contact is dimensionless, so it does not affect 

the units of β. 
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A higher β indicates a higher likelihood of disease transmission, assuming other factors remain 

constant. Factors such as population density, behaviour, interventions (like masks or social distancing), 

and immunity levels can influence β. 

Time Dependency: β may not remain constant over time, especially during outbreaks or in response to 

interventions. It can change due to changes in behaviour, awareness, and public health measures. 

Incorporation into Models: In infectious disease models, β is often used along with other parameters 

like the infectious period and the number of susceptible individuals to predict the spread of the disease 

over time. Models like the SIR (Susceptible-Infectious-Recovered) model use β as a key parameter to 

simulate disease transmission dynamics. Understanding and estimating the contact rate β is essential 

for assessing the risk of disease spread and for designing effective public health interventions to 

mitigate transmission. 

Since diseases are only transmitted to susceptible by contact with infectives and the fraction of the 

susceptible with the population is 
𝑆

𝑁
, then the mean adequate contact rate is 𝛽0𝑃(𝑁) 𝑆𝐼/𝑁. This rate is 

called an infection rate. Then the total new infectives in the infected compartment are 𝛽0𝑃(𝑁) 
𝑆𝐼

𝑁
 , 

which is called an incidence of the disease. 

Force of Infection 

The force of infection (often denoted by λ is a crucial concept in the mathematical modelling of 

infectious diseases. It quantifies the rate at which susceptible individuals become infected. Essentially, 

it measures the risk of infection for a susceptible person per unit of time, based on the current 

epidemiological conditions. 

Example 3: 

There is a 1,50,000 population. out of which we only took 2000 samples for a survey of disease 

transmission and found that 100 were infected by communicable diseases in a year. How can we 

calculate the disease transmission rate per day? 

To calculate the disease transmission rate per day from a given sample from a larger population, we 

need to use this information to estimate the transmission dynamics in the overall population. Given 

data: 

Total population (N) = 1, 50, 000 

Sample Size (n) = 2000 

Infected Individuals in Sample (Is): 100 Time Frame: 1 year (365 days) 

Steps to Calculate the Transmission Rate Per day are: 

1. To calculate the infection proportion in the sample: 
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 The infection rate within the sample to estimate the prevalence of the disease in the entire 

population is given by 

 Infection Rate in Sample = probability of infection =
𝐼𝑆

𝑆𝑎𝑚𝑝𝑙𝑒𝑠𝑖𝑧𝑒
=

100

2000
= 0.05. This means that 

5% of the sample was infected over the year. 

2. To estimate the total number of infected individuals in the population 

 Assume the infection rate in the sample reflects the infection rate in the entire population. Estimated 

infected individuals in population = 0.05 × 150,000 = 7, 500 

3. To estimate the force of infection 

 It represents the rate at which susceptible individuals become infected per unit time. It can be 

approximated as: 

 Force of infection=
𝑇𝑜𝑡𝑎𝑙 𝐼𝑛𝑓𝑒𝑐𝑡𝑒𝑑 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠

𝑛×𝑇
 where T is time period (1 year = 365 days). 

 Force of infection=
7500

1,50,000×365
= 0.000137/𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛𝑠/𝑝𝑒𝑟𝑠𝑜𝑛/𝑑𝑎𝑦. 

4. To calculate the daily transmission rate 

 We can determine the effective daily transmission rate (β) in the population by 

𝛽 =
𝑓𝑜𝑟𝑐𝑒 𝑜𝑓 𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛

𝑆
𝑁

 

 Assuming the initial number of susceptible individuals S is approximately the total population 

𝑁 (𝑆(𝑡) → 𝑁 ), especially at the beginning of the outbreak: 

 𝛽 =
0.000137

𝑆

𝑁

= 0.000137 𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛𝑠/𝑝𝑒𝑟𝑠𝑜𝑛𝑠/𝑑𝑎𝑦. This represents the transmission rate per 

individual per day. This calculation assumes that the infection rate in the sample is representative 

of the entire population. 

 The transmission rate per year is 0.000137 × 365 = 0.050005 

 If out of 1,50,000 people, 1,00,000 have been infected and only the remaining 50,000 are 

susceptible then the transmission rate is given by 

 𝛽 =
𝑓𝑜𝑟𝑐𝑒 𝑜𝑓 𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛

𝑆

𝑁

=
0.000137

50,000

1,50,000

= 0.000411 infections/person/day=0.150 infection/person/year. 

5.  To determine the basic reproduction Number (R0) 
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 If R0 or the average number of secondary infections produced by one infected individual in a fully 

susceptible population is known or estimated, it can be used to calculate the transmission rate β 

 R0 = β × D where D is the infectious period. If we assume R0 = 2 (for influenza-like disease it is 

assumed to be approximately equal to 2) and an average infectious period of 5 days: 

 𝛽 =
𝑅0

𝐷
=

2

5
= 0.4 This value of β is often derived from epidemiological studies and can be used if 

we have assumptions about R0 and D 

Practical Considerations: 

Homogeneity: The assumption that the infection rate in the sample represents the entire population 

might not hold if there is significant heterogeneity in contact patterns. 

Temporal Dynamics: The transmission rate can vary over time, especially if interventions are 

implemented. Here, the rate is considered uniform throughout the year. 

Reporting and Bias: Ensure accurate reporting and consider potential biases in the sample. The daily 

transmission rate provides a measure of how rapidly the disease is spreading in the population, crucial 

for modelling the epidemic and planning public health interventions. The entire population is initially 

considered susceptible, which might not hold if there is existing immunity. Types of incidence used in 

disease modelling are: 

Bilinear incidence 

If the contact rate is proportional to the total population size i.e. 𝑃(𝑁) =  𝑘𝑁 then the incidence 𝛽𝐼𝑆, 

where 𝛽 =  𝛽0𝑘, is called the transmission coefficient. This type of incidence is called bilinear 

incidence or simple mass action incidence. the transmission rate β is often assumed to be proportional 

to the product of the susceptible and infectious populations. It is called “bilinear” because it is a product 

of two linear terms: S and I. Bilinear incidence models are used in epidemiology to study the dynamics 

of various infectious diseases, including influenza, HIV/AIDS, and sexually transmitted infections. 

Most of the standard epidemiological models used a bilinear incidence rate. In this incidence rate, it is 

assumed that the population is homogeneously mixed and it is normally used for airborne diseases. 

However, in case of large number of susceptible or population is not homogeneously mixed (i.e. 

heterogeneous mixing), it is not realistic to consider the bilinear incidence rate due to the number of 

susceptible with which every infective contact is limited within a definite time. It allows researchers to 

explore how changes in the size of the susceptible and infectious populations affect the spread of the 

disease over time and to evaluate the potential impact of interventions such as vaccination or behaviour 

change campaigns. 

Standard Incidence 

If the contact rate is constant i.e. 𝑃(𝑁) = 𝑘 then the incidence 𝛽
𝑆𝐼

𝑁
, where, 𝛽 = 𝛽0𝑘 is called the 

standard incidence. If S, I and N are several susceptible, infectious and total populations at time t, 

respectively, then 
𝑆

𝑁
 and 

𝐼

𝑁
 represent the susceptible and infectious fractions, respectively. 
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If β is the average number of adequate contacts of single susceptible with other members of the 

population per unit time, then 
𝛽𝐼

𝑁
𝛽 is the average number of contacts with infectives per unit time of a 

single susceptible and 𝛽
𝐼

𝑁
 𝑆, that is, 

𝛽𝐼𝑆

𝑁
 is the number of new cases per unit of time due to the S 

susceptible. Thus, 
𝛽𝐼𝑆

𝑁
 is the rate at which the susceptible population becomes infected. This form of 

horizontal incidence is called the standard incidence (proportionate mixing incidence) because it is 

formulated from the basic principles. 

The standard incidence rate adjusts the bilinear form by normalizing it for the total population N 

(usually the sum of susceptible, infected, and recovered individuals). This Incidence Rate 𝛽𝑆
𝐼

𝑁
 is useful 

in models where the population size is large and possibly variable. 

 

Comparative Analysis Bilinear and Standard Incidence Rates 

1. Impact of Population Size: Bilinear incidence does not account for total population size. The 

incidence rate increases directly with S and I, potentially leading to unrealistic predictions in large 

populations because it assumes that every individual has the same likelihood of making contact. 

2. Standard incidence accounts for total population size by dividing by N. As N increases, the effective 

contact rate per susceptible individual decreases, leading to more realistic dynamics in large 

populations. 

3. Contact Dynamics: Bilinear incidence assumes a constant contact rate per individual, which can be 

unrealistic in densely populated areas where the contact rate should logically decrease as the 

population grows. 

4. Standard incidence adjusts for the fact that in larger populations, each individual’s chance of 

contact with any specific other person decreases, leading to a more accurate reflection of how 

diseases spread in real-world settings. 

5. Disease Modeling Applicability: Bilinear incidence is more suited for small, isolated populations 

or in situations where contact between individuals is high and relatively unrestricted. Standard 

incidence is better suited for large, heterogeneous populations or for diseases where the probability 

of contact between individuals is diluted by the large population size. 

6. Example Comparison: Let us compare the models using the same parameters: Transmission rate 

(β) = 0.3, recovery rate (γ) = 0.1 Initial populations S(0) = 999, I(0) = 1, R(0) = 0, total population 

N = 1000 For Bilinear Incidence: 

 
𝑑𝐼

𝑑𝑡
=  𝛽𝑆𝐼 −  𝛾𝐼 =  0.3 ×  999 ×  1 −  0.1 ×  1 =  299.6  

 For Standard Incidence: 
𝑑𝐼

𝑑𝑡
  =  𝛽

𝑆𝐼

𝑁
  −  𝛾𝐼 =  0.3 ×  999

1

1000
  −  0.1 ×  1 =  0.1996 
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The initial rate of increase in infections is much higher in the bilinear model compared to the standard 

incidence model, reflecting how bilinear incidence can overestimate infection rates in large populations. 

Bilinear incidence is simpler and effective for small populations but may overestimate infection rates 

in large populations. Standard incidence provides a more accurate reflection of disease dynamics in 

large populations by considering the total population size, which adjusts the effective contact rate. 

Choosing between these incidence rates depends on the size of the population being modelled and the 

specific characteristics of the disease being studied. 

Saturated Incidence Rate 

Saturated incidence rates are used in epidemic models when the transmission rate of the disease does 

not increase indefinitely with the number of infected individuals but instead levels off or saturates as 

infection levels rise. This can reflect real-world constraints such as limitations on the number of 

effective contacts due to behavioural changes, healthcare capacity, or other social factors. 

Saturated incidence rates are often represented using Michaelis-Menten kinetics, also known as Holling 

type II functional response in ecological models. They are used to model scenarios where the incidence 

rate plateaus as the number of infected individuals becomes large, preventing the unrealistic assumption 

of unlimited growth in infection rate. The following are the reasons for saturated incidence rates. 

1. Behavioural Changes: As the number of infected individuals increases, people might change their 

behaviour to reduce contact (e.g., practising social distancing, wearing masks, Yoga). This 

behaviour leads to a saturation effect where the rate of new infections does not continue to increase 

linearly with the number of infected individuals. 

2. Healthcare System Capacity: When the number of infections is low, healthcare systems can 

manage and perhaps reduce transmission through effective isolation and treatment. As the number 

of infections grows, the healthcare system might become overwhelmed, limiting the effective 

contact rate, and leading to a plateau in new infections. 

3. Resource Limitations: In the context of a controlled environment like a hospital or a care home, 

the number of new infections might be saturated due to limited interactions beyond a certain 

threshold. 

4. Biological Limits: There can be biological constraints in disease transmission, for example, 

saturation in vector-borne diseases where the number of vectors or hosts is limited. 

5. Real-World Examples: 

 a. During the COVID-19 pandemic, the rate of new infections in many places showed signs of 

saturation as governments-imposed lockdowns, people adhered to social distancing guidelines, 

and healthcare systems reached capacity. 

 b. Seasonal flu often shows saturation effects as public health measures, vaccination, and natural 

immunity reduce transmission rates at high levels of infection. 
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 c. In HIV/AIDS disease, saturation in the incidence rate can occur as behaviour changes (like 

increased use of protection and awareness campaigns) take effect in high-prevalence areas. 

The most commonly used saturated incidence rates are 
𝛽𝑆𝐼

1+𝛼𝑆
 and 

𝛽𝑆𝐼

1+𝛼𝐼
. If too many persons are infected 

in the population, they are not able to affect more susceptibles because of protective actions taken by 

susceptibles or by the crowding effect of infectives. In this kind of situation saturating incidence rate 
𝛽𝑆𝐼

1+𝛼𝑆
 is used which tends to 

𝛽

𝛼
 as S tends to ∞, where α and β are positive constants. Capasso and Serio 

(Capasso & Serio, 1978) investigated another kind of saturated incidence rate g(I)S for epidemic 

models, where 𝑔(𝐼)  =
𝛽𝐼

1+𝛼𝐼
 approaches to saturation level when I becomes large. In this incidence rate, 

the number of effective contacts between susceptibles and infectives may saturate at high infective 

levels due to crowding of the infected population and due to the protective actions taken by the 

susceptible population. These incidence rates are more reasonable and suitable for the real world than 

bilinear and standard incidence rates because of the involvement of behavioural change and crowding 

effect of the infective individuals and control the unboundedness of the contact rate by choosing the 

suitable value of α. 

The saturated incidence rate introduces a nonlinear relationship between the susceptible and infected 

populations through the denominator (1+αI). As the number of infected individuals I increases, the term 

(1+αI) also increases, which slows down the rate of new infections. This creates a nonlinear saturation 

effect that limits the growth of new infections as I become large. Therefore, the saturated incidence rate 

is not bilinear because it involves a non-linear dependency on the number of infected individuals, 

leading to a more complex relationship between S and I than simple multiplication. This captures more 

realistic dynamics at high infection levels, and additional infections do not increase proportionally due 

to factors like reduced contact rates or competition for resources. So, it is nonlinear and captures 

saturation effects, making it different from a bilinear incidence rate, which assumes a direct 

proportionality between the susceptible and infected populations. 

Nonlinear Incidence Rate 

Nonlinear incidence rates in epidemiological models like the SIR and SIS models extend beyond the 

simple bilinear form and capture more complex interactions in disease transmission. These nonlinear 

rates can better represent various real-world scenarios where the rate of new infections does not increase 

proportionally with the number of susceptible and infected individuals. Liu et al. (1986, 1987) 

introduced a non-linear incidence rate of the form 𝛽𝐼𝑝𝑆𝑞 shows a much wider range of dynamical 

behaviours than do those with bilinear incidence rate 𝛽𝐼𝑆. These behaviours are determined mainly by 

p and β, and secondly by q. For these models, there may exist multiple equilibria in the feasible region 

and thus model becomes more general and informative. For more application of this incidence rate one 

can refer to (Dubey et al., 2015; Grigorieva et al., 2016; Wang et al., 2021). 

Different types of nonlinear incidence rates commonly used in SIR and SIS models: 

1. Saturated Incidence Rate: It is of the form 
𝛽𝑆𝐼

1+𝛼𝐼
. This rate accounts for saturation effects α, where 

the infection rate slows as the number of infected individuals increases. It is useful in modelling   
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2. Scenarios where there is a limited capacity for infection spread due to constraints like contact 

opportunities or resources. 

3. Holling Type II Incidence Rate: It is of the form 
𝛽𝑆𝐼

1+𝛼𝑆
. Saturation depends on the susceptible 

population S, meaning that the infection rate slows as the number of susceptibles grows. This can 

occur if susceptible individuals develop some level of selfprotection or avoidance behaviour. 

Models scenarios where an increasing susceptible population leads to a decreasing probability of 

each individual becoming infected. 

4. Beddington-DeAngelis Incidence Rate: It is of the form 
𝛽𝑆𝐼

1+𝛼𝑆+𝛾𝐼
. It is used in models where both 

overcrowding among susceptibles and competition among infected individuals affect the 

transmission dynamics. 

5. Crowding Incidence Rate: It is of the form 
𝛽𝑆𝐼

1+𝛼(𝑆+𝐼)
. It accounts for the crowding effect where the 

total population influences the transmission rate, leading to a more realistic limitation in densely 

populated settings. it is relevant for densely populated regions where both infected and susceptible 

individuals compete for limited space or resources. 

6. Nonlinear Transmission Function: It is of the form 𝛽𝑆𝐼𝑞 where q is a positive constant. The 

exponent q allows for a more flexible modelling of infection rates. When q > 1, the infection rate 

grows super-linearly with the infected population, capturing scenarios with clustering or herd 

behaviour. When q < 1, the rate grows sub-linearly, modelling situations where each additional 

infected individual has a diminishing effect on new infections. It is useful in capturing complex 

interaction patterns that deviate from simple proportionality. 

Nonlinear incidence rates in SIR and SIS models provide a richer framework for modelling disease 

dynamics by incorporating more realistic factors such as saturation effects, population interactions, and 

behavioural responses. They allow for more accurate predictions and better insights into the spread and 

control of infectious diseases compared to simple bilinear models. 

Non-monotonic Incidence Rate 

A non-monotonic incidence rate in epidemiological models like the SIR or SIS models captures the 

complex dynamics where the rate of new infections does not simply increase or decrease with the 

number of susceptible or infected individuals but can also exhibit peaks and troughs. This can model 

phenomena where the infection rate might increase up to a certain point and then decrease, reflecting 

various real-world scenarios such as behavioural changes, resource limitations, or public health 

interventions. Capasso & Serio (1978) proposed a non-monotonic incidence rate 𝑔(𝐼)𝑆 =
𝛽𝐼𝑆

1+𝛼𝐼2 in 

which g(I) is non-monotonic, that is, g(I) increases when I is small and decreases when I gets large. In 

this incidence rate, βI measures the force of infection and 
1

1+𝛼𝐼2 describes the psychological or 

inhibitory effect from the behavioural change of the susceptibles when the number of infectives gets 

large. This is important because the number of effective contacts between infectives and susceptibles 
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decreases at high infective levels due to the quarantine of infectives or due to the protective measures 

by the susceptibles. 

The general incidence rate 𝑔(𝐼). 𝑆 =
𝛽𝐼𝑃

1+𝛼𝐼𝑞 was given by Liu et al. (1986) and used by a number of 

authors (Moghadas & Gumel, 2002; Alexander & Moghadas, 2004; Khan et al., 2015). Here are some 

forms of non-monotonic incidence rates: 

1. Logistic Incidence Rate: It is of the form 𝛽𝑆𝐼(1 −
𝐼

𝐾
). This form incorporates a logistic growth 

factor (1 −
𝐼

𝐾
) where K is carrying capacity for the infected population. Initially, as I increases, the 

infection rate βSI increases, but after reaching a peak, it decreases as I approach K. It is useful for 

modelling diseases where the infection rate is self-limiting due to factors such as resource 

constraints or limited contact opportunities as the infected population grows. 

2. Oscillatory Incidence Rate: It is of the form 𝛽𝑆𝐼𝑠𝑖𝑛(𝜔𝐼) The sinusoidal term 𝑠𝑖𝑛(𝜔𝐼) introduces 

periodicity in the incidence rate, reflecting situations where the infection rate oscillates to the 

number of infected individuals. The parameter ω controls the frequency of oscillations. It is used 

in scenarios where seasonal effects, periodic behavioural changes, or intervention measures cause 

fluctuations in the infection rate.  

3. Threshold-Based Incidence Rate: It is of the form 𝛽 𝑆𝐼
𝐴

𝐵+𝐼2. It is suitable for modelling scenarios 

where public health interventions or behavioural changes significantly impact the infection rate 

when infection levels are high. Suitable for modelling scenarios where public health interventions 

or behavioural changes significantly impact the infection rate when infection levels are high.  

4. Holling Type III Functional Response: It is of the form 
𝛽𝑆𝐼2

1+𝛼𝐼2. This form increases slowly when It 

is small, accelerates to a maximum rate, and then levels off or declines. This is similar to a 

”sigmoidal” curve, indicating a more complex relationship between the susceptible and infected 

populations. It is often used to model predator-prey interactions but is applicable here to represent 

diseases where the rate of new infections accelerates with I up to a certain point before levelling 

off.  

5. General Polynomial Form: It is of the form 𝛽𝑆𝐼 (1 −
𝐼

𝐾
)

𝑛
. This is a generalization where n controls 

the shape of the incidence curve. For 𝑛 = 1, it reduces to a logistic form. Higher values of n can 

model more complex non-monotonic behaviours. It is useful in exploring various shapes of non-

monotonic incidence functions in disease modelling. 

Non-monotonic incidence rates in SIR and SIS models offer a powerful tool for capturing the complex 

dynamics of disease spread. They reflect realistic scenarios where infection rates can increase up to a 

point and then decrease, exhibiting peaks and troughs due to various internal and external factors. These 

models are crucial for accurately predicting and managing epidemic behaviours in complex 

environments. 



  

22 

AMC JOURNAL (DHANGADHI) Year 7; August, 2024; Vol. 5; Issue 1; pp, 1-24 

DOI: https://doi.org/10.3126/amcjd.v5i1.69086 

ISSN 2661-6114 PEER-REVIEWED JOURNAL  

Apart from the above-discussed incidence rates, several incident rates are investigated by researchers 

and provided detailed qualitative analysis of the models. in the case of the Yoga awareness model 

disease transmission rate can be considered as 𝛽𝑒 − 𝑐𝑀 𝑆𝐼, where M is Yoga awareness infected mass 

and c is constant (Bhatta, 2024). 

Reproduction Number 

Basic Reproduction 

The number of secondary cases that a single infectious person causes in a susceptible community during 

the infection is known as the basic reproduction number. It is denoted by R0 and is a key 

epidemiological metric used to describe the contagiousness or transmissibility of infectious agents. 

If R0 < 1 the infection will likely decline and eventually die out in the population. R0 = 1 the infection 

will remain stable within the population, neither increasing nor decreasing significantly. 

R0 > 1, the infection will likely spread and cause an epidemic or pandemic if other conditions are 

favorable.  For example, during the early stages of the COVID−19 pandemic, estimates of R0 for the 

SARS −CoV−2 virus varied, but a common estimate was around 2.5−3. This means that, on average, 

one person infected with COVID−19 could be expected to infect about 2.5−3 other people in a 

population with no prior immunity or interventions (like social distancing, masks, or vaccines). It is 

given by 

Reproduction Number (R0) = (transmission rate per contact (β0)) ×(average number of contacts per unit 

time (k))×(duration of infectiousness (D)) 

Let us use a hypothetical disease with the parameters 

Transmission rate (β = 0.02 (2% chance of transmission per contact). Average number of contacts per 

day (k) = 10. 

Duration of infectiousness (D) = 5 days. 

We get R0 = 0.02 × 10 × 5 = 1. In this example, R0 = 1 means each infected individual, on average, 

would infect one other person, indicating the disease would remain stable in the population without 

growing or declining. It helps public health officials and policymakers to assess the potential for an 

outbreak, implement appropriate control measures, and allocate resources effectively to prevent or 

contain the spread of infectious diseases. 

Effective Reproduction 

The effective reproduction number is the average number of secondary infections produced by one 

infected individual in a population where some individuals may be immune, and intervention measures 

might be in place. It reflects the actual disease transmission at a specific time in the current state of the 

population, accounting for factors such as immunity, behavioural changes, and public health 
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interventions. It is denoted by Re and given by R0 = R0 × St, where St is the fraction of the population 

that is still susceptible at time t 

Suppose the basic reproduction number for a disease is 3, and due to vaccination and previous 

infections, 60% of the population is immune. This means 40% of the population is still susceptible. 

Therefore, Re = 3 × 0.40 = 1.2 indicating that the disease is still spreading, but at a slower rate than it 

would in a fully susceptible population. In summary, Re is a dynamic and more realistic measure of an 

infectious disease’s transmissibility in a given population at a specific time, considering the effects of 

immunity, interventions, and behaviour changes. It helps to evaluate Interventions, to predict trends, 

and to inform strategies. Monitoring Re is crucial for effective disease control and prevention strategies. 

Conclusion 

This study emphasizes an understanding of historical aspects of epidemic diseases and deterministic 

modelling applied in epidemiology. Pandemic history and the situation in Nepal have been described 

and learning from them to improve our health system has also been discussed. Various compartmental 

epidemic models have been studied. Mathematical modellings of different infectious diseases are 

mentioned. The historical characteristics of the bio epidemiological mathematical survey are the main 

subject of this work. This work also highlights the important relationship between the dynamic features 

of particular epidemic diseases and mathematical modelling. It provides examples of each to illustrate 

the concepts of reproduction number and various disease transmission rates. There have also been 

descriptions of nonlinear, monotonic, and saturated incidence rates.  
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