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ABSTRACT 

Thomas Malthus, an 18th century English scholar, observed an essay 
written in 1798 that the growth of the human population is fundamentally 
different from the growth of the food supply to feed that population. He wrote that 
the human population was growing geometrically [i.e. exponentially] while the 
food supply was growing arithmetically [i.e. linearly]. He concluded that left 
unchecked, it would only be a matter of time before the world's population would 
be too large to feed itself. The first growth model we examine in this module is the 
one Thomas Malthus referred to in his famous essay. Malthus' model is 
considered a more sophisticated model for the special case of world population. 
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INTRODUCTION 

Malthus' model is commonly called the natural growth model or 
exponential growth model. For this we assume that the population grows at a rate 
that is proportional to itself (Banks, 1999, p.138). If P represents such population, 
then the assumption of natural growth can be written symbolically as;  

dP/dt = k P 
Where, k is a positive constant.  
This model has many applications besides population growth. For 

example; the balance in a savings account with interest compounded continuously 
(and no withdrawals) exhibits natural growth. In this case, the constant k is called 
the annual rate of interest. Also, large animal populations whose size is not 
constrained by environmental factors grow exponentially. In this setting, k is 
called the productivity rate of the population. 
NAÏVE MODEL: EXPONENTIAL GROWTH 

It is possible to explain the various growth phenomena with 
mathematical model, some of them are simple and some are complicated. The 
most famous example is the familiar Malthusian or exponential growth model; in 
differential equation form it has the equation 

dt
dP =KP      

Where, P is the magnitude of growing quantity, t is the time and k is the 
growth coefficient (Banks, 1999, p.139). The solution to this equation is  

P=P0e-at           
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Where, P0 is the value of P when time t = 0. This can be written in 
standard form as 

P
1

dt
dP = K (t) 

While the exponential model is useful for short term forecast, it gives 
unrealistic estimates for long time period. After just a few decades, population 
will rapidly grow toward infinity in this model. A more realistic model should 
capture the idea that population does not grow forever, but instead of level off 
around some long-term level. This leads us to our second model. 
DERIVING THE LOGISTIC POPULATION GROWTH MODEL 

About two hundred years ago, an English clergyman- economist named 
Thomas Malthus published a series of essays (1798, reprinted 1970) in which he 
contended that population grow according to the law of geometric progression. In 
other word, if a population of a country has a certain magnitude at a particular 
moment, then that population will double itself at the end of a specified time 
period and this periodic doubling of population will continue indefinitely.   

Let us begin with a simple example. An educational institute has 10,000 
people. At time zero, one person has a joke or a nice item suitable for gossip. The 
person tells the joke or gossip item to another person, so now two people know. 
These two each tell two more people and hence now there are four knowledgeable 
people. It is coming to our geometric progression. At any given moment people 
have heard the joke or gossip and are spreading it, these are the "infective" 
(Banks, 2001, p.29). At the same moment P* - P people have not heard the joke 
or gossip; these are "susceptible” (Banks, 2001, p.29). The quantity P* is the total 
number of people in the community, in this case P* =10,000. 

After a certain period of time, infective start telling the joke to those who 
are also infective. They are already heard the joke and are also spreading it 
around. After an additional period of time, susceptible are increasingly hard to 
find. That is everyone has heard the joke. If we were to carry out a so-called 
stochastic analysis of this problem we would obtain a "difference equation" that 
would tell us how many infective are at any time t. However if the assumption is 
made that the total population P* is very large we can replace the stochastic 
analysis with a deterministic analysis and acquire a "differential equation". In this 
case we obtain the relationship   

dt
dP =KP-bP2.... ……………………………(1) 

This is the equation for logistic growth                           
Here P is the number of infective (those who have already heard the 

joke), k is the growth coefficient, b is the crowding coefficient and bP2 is the 
"breaking term" that prevents unlimited growth (Kreyszig, 1999, p.13). The 
number of susceptible (those who have not yet heard) is of course P* - P. 
Defining the crowding coefficient as b=k/ P* equation (1) becomes 

dt
dP   =KP (1- P/ P*  ..………………….. (2) 
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This is Verhulst's famous differential equation for logistic growth 
(Banks, 2001, p.30). 

It can also be obtained by multiplying the exponential model by a factor (1- 
P/ P*). Here P* is   assumed a maximum long-term population a city can sustain. This 
is also known as so called equilibrium value or carrying capacity (Banks, 2001, p.25). 
In this model, the population starts out growing exponentially. But as P approaches 
the maximum level P*, the term (1- P/ P*) approaches zero and slowing down the 
growth rate.  This is known as "logistic model".  
GEOMETRICAL INTERPRETATION OF LOGISTIC GROWTH FUNCTION 

The graph of 
dt
dP  against P, where 

dt
dP  is given by equation (2) gives the 

graph of logistic growth function, which is a parabola with intercepts at (0, 0) and 
(P*, 0) and with vertex at 
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(a) When 0< P< P*, 
dt
dP >0, therefore P increases towards P*. 

(b) When P> P*, 
dt
dP <0, therefore P decreases towards P*. 

Hence, we conclude that the population level P (t) always 
approaches P* which can be expressed as;  

t
lim P (t) = P*, provided P0>0. 

(c) If P=0 or P= P*, then 
dt
dP =0 and P (t) does not change. The constant 

solution P=0 and P= P* are known as equilibrium solution (Pundir, 
2006, p.71). Corresponding to equilibrium solutions, the points P=0 and 
P= P* are called equilibrium points or critical points. 

SOLUTION OF LOGISTIC EQUATION 

Let us consider the equation (2), 

dt
dP  =KP (1- P/ P*)   
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With initial condition, P (0) = P0 …………………………………(3) 
Equation (2) can be written as 

P* 
dt
dP =kPP* -kP2=kP (P*-P)               

On separating the variables, we have     

)*(
*

PPP

dPP


=K dt     

Which can also be written as  
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*

!1 = K dt . …………………….... (4) 

On integrating (4), we get 
logP-log (P*-P) = kt+c, c being constant of integration. 
  log 

PP
P
*

= kt +c………………………………………..... (5) 

Using (3), we get, C=log
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Hence, P (t) =
ktec

P
 1

*

1
..………………………………………(6)                                                          

Where, c1=
0

0*

P
PP  , a constant (Pundir, 2006, p.72). 

GEOMETRICAL INTERPRETATION 

 Equation (6) represents   the size of the population at any time t. From (6) it 
is also clear that P (t) P* as t. Therefore, a population that satisfies the logistic 
equation is not like a naturally growing population, it does not grow without bound, 
but approaches the finite limiting population P* as t. But in this case since 

dt
dp >0   

therefore, population is steadily increasing (Pundir, 2006, p.73). 
Now, differentiating (2) w.r.t. t, we have, 
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Now we shall discuss the following cases: 

(a) If P* -2P>0, we get P*  -P > P > 0.Then,
dt
d







dt
dP >0, therefore, the rate 

of increase 
dt
dP  increases with time. Hence there is an accelerated 

growth of the population in the range 0 < P < P*/2. 
(b) If P*/2 < P < P*, then P*- 2P<0 and P* -P > 0, therefore, 

dt
dP is a 

decreasing function of time. Hence, there is a retarded growth of the 
population in range P*/2<P<P* (Pundir, 2006, p.73). 

 
BEHAVIOUR OF LOGISTIC CURVE 

Let b be the birth rate and d be the death rate with the population size p. 
Let us assume that b decreases and d increases with P. Then we can write  

b = b1-b2p, d=d1-d2p, b1,b2,d1,d2  0 
Now, 

dt
dp  =     pdbdb 2211   = p  bpa  ,    a 0, b 0  Where, 

b-d =a ...… (8) 
Separating the variables, we get 
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From   (8), we have, bpa
dt

pd 22
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We can conclude that, 
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GRAPHICAL REPRESENTATION 

 

CONCLUSION 

(a) If p (0) <
b

a
2

, p (t) increases at an increasing rate till p (t) reaches
b

a
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, 

and then it increases at a decreasing rate and approaches 
b
a

at t, 

Hence, in this case, the growth curve is convex if p<
b
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 and concave if 
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 and it has point of inflexion at p=
b
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(b) If 
b

a
2

<p (0)< 
b
a

, p (t) increases at a decreasing rate and approaches 
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as at t, 

(c) If p (0) =
b
a

, then p (t) is always equal to
b
a

. 

(d) If p (0) >
b
a

, p (t) decreases at a decreasing rate and approaches 
b
a

 as 

at t. 
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