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Abstract: The present paper uses the LCAO MO theory formalism. The structure of the first order electronic density 

function is decomposed in two kinds of quantum polyhedra to discuss the behavior of quantum atomic populations. 

Among the many aspects one can consider about atomic populations here, the quantum mechanical structure of the 

density function is taken as the most important characteristic to think about. Apart of the usual one-electron basis set, 

centered in the molecular atoms, there is also discussed the possibility that the three-dimensional space where the 

molecular structures are described can be also the site of basis functions centered in points non-coincident with atomic 

positions.  
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INTRODUCTION  

Since the work of Mulliken1-4, first-order density is the 

standard tool to develop the concept of charge distribution 

in molecular structures from the quantum mechanical 

perspective. A more than a decade published paper5 which 

is a study about the chemical adequacy of Mulliken1 and 

Hirschfeld6 atomic charges might be taken as another 

effort to elucidate some nuances of this subject. Atomic 

populations and charges of different origin and submitted 

to several computational schemes have been used in many 

aspects of theoretical chemistry. See for example an 

assorted set of references related with such a wide 

interest7-15 along time. Atomic populations still deserve the 

attention of these quantum chemists like these of 

reference5 who try to connect quantum and theoretical 

molecular information with the experimental chemistry 

lore. 

One can start with the task to show that atomic 

populations and charges might be a way to associate the 

experimental ideas about molecular reactivity and 

behavior with computational chemistry. Thus, trying to 

inquire about the meaning of atomic populations constitute 

not a useless endeavor. 

Some related work with the atomic populations by the 

present author might be useful to show the interest which 

has been present along with his research16-20. 

In Mulliken’s population description, one can feel he has 

considered the partition of the total number of molecular 

electrons, which is the sum of every atomic charge in a 

molecule when the LCAO MO wave function, and thus 

the density function has been calculated and known. In 

Mulliken’s times, accurate wavefunctions for large 

molecular structures were not popular (in fact, they were 

barely available) enough as to test the result of his 

viewpoint on atomic populations, and thus he has 

described what he considered logical with the knowledge 

he could have at the moment of writing the series of 

papers1-4 on this subject.This paper will try to provide 

more information on atomic populations, via the 

description of a dual set of quantum molecular polyhedra, 
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which can be obtained from the knowledge of the density 

function. Once described such geometrical constructions, 

which can be associated with any molecular structure, 

some considerations about atomic populations will be 

finally supplied. 

QUANTUM MOLECULAR POLYHEDRA OVER 

MO’S 

Writing the density function as a superposition of squared 

modules of Molecular Orbitals (MO), as: 

    2

I I
I

  r r                            (1) 

Where: 

  1,I I el
I

I N N                              (2) 

are the occupation numbers of the MO. Here, they have 

been chosen with well-defined values in a set bearing an 

indefinite cardinality number N . They can be associated to 

integer values in the set  0,1,2I  . Or more 

generally they can be considered a set of positive real 

numbers, however all the manipulated scalar numbers and 

function values are to be practically considered rational. 

Then, one can also suppose alternatively that: ⩝ 𝞈I ⋴ Q
. 

In any case the occupation numbers shall be submitted to 

the constraint (2). 

The MO:   1,I I N rM =  in turn can be expressed 

as linear combinations (LC) of an Atomic1 Orbital (AO) 

basis set: 

  1,M  rX = ,                            (3) 

then each MO can be expressed in the usual way, as linear 

combinations of the chosen functions X:  

                                                             
1In modern times, since the massive introduction of Gaussian basis 
functions, the Atomic Orbitals (AO), which were employed to construct 
Molecular Orbitals (MO), have been substituted by optimized sets of 
functions. Here it is kept the old denomination name of AO but meaning 
a general description of atomic basis function sets. 
 

   : I II c 


  r r ,                          (4)

constituting the approach Mulliken called LCAO MO. 

Now one can take the set of coefficients 

 1, ; 1,Ic M I N   C =  as the coordinates of the 

MO in M concerning the AO basis set X. 

It is interesting to represent the squares (of the modules if 

necessary) of the MO’s, which can be written like 

considered real, but in fact, from the usual computational 

practice, all the numerically manipulated scalar numbers, 

like occupation numbers beforehand, and the function 

values are rational, then one can describe the positive 

definite functions derived from MO as: 

     

 

2
:

                   

I I I

I I

I c c   
 

   



r r r

c X r c

                         (5) 

where  
Ic  and 

Ic  are N-dimensional column and row 

vectors respectively, containing every MO coordinates 

with respect the AO basis set, while the  M M

symmetric matrix  X r  is easily defined as: 

        , 1,X M       X r r r r .     (6) 

Then, the density function might be easily rewritten in a 

compact form like: 

   

           

I I I
I

I I I
I

 





     
 





r c X r c

c c X r D X r

           (7) 

Where the matrix D contains now the coordinates of the 

density function with respect of the elements of the matrix 

 X r , which acts in turn as a tensor function basis set. 

The expression (7) can be considered as a scalar product 

between both involved matrices. Just considering in 

expression (7) the product * as an inward one, see for 

more details reference21, and taking the sum of all the 

elements of the resultant matrix. A note about the matrix 

D  is due now. The matrix D is usually named as the 

density matrix in the literature, some reflections on what 
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may be considered the correct name for such a matrix 

were published not long ago22 in an attempt to correct this 

misleading denomination. 

Also, in several publications, see reference23 for instance, 

it has been discussed the possibility to consider the density 

function as a sum of MO bound densities, as one can 

write: 

: I I I I I
I

I    D c c D D        (8) 

and then define the MO density functions as: 

       : I I I I II      r c c X r D X r    (9) 

therefore, it is simple to see that: 

   I
I

 r r .                         (10) 

The set of MO density functions:  

  1,I I N rP =                           (11) 

can be considered as a quantum polyhedron, see 

references24-33 for more details. Every MO density 

function acts as a vertex of the quantum polyhedron P. The 

Minkowski norms of the vertices of the quantum 

polyhedron (11), produce the occupation number of the 

attached MO: 

 :  dI I ID
I      r r      (12) 

and the sum of the Minkowski norms yield the number of 

molecular electrons as shown in equation (2), according to 

the Minkowski norm of the molecular electronic density: 

  d elD
N   r r       (13) 

which also yields the number of electrons 
elN .    

Such an obvious manipulation of the first-order density 

function in an LCAO MO framework permits to obtain 

information from the quantum environment of any 

molecular structure. In some manner, the quantum 

polyhedron framework associated with the first-order 

density function has been described in previous papers24-33. 

Although it might be interesting to use a similar formalism 

to study atomic populations. 

QUANTUM MOLECULAR POLYHEDRA OVER 

ATOMIC CENTERS 

Additionally, one can define another partition of the 

density function in terms of atomic densities. The AO 

basis set is constructed by the union of function subsets, 

belonging to an atom entering the molecular structure (or a 

point in three-dimensional Cartesian space suitably chosen 

in the molecular surroundings, not necessarily coincident 

with an atomic site) whose density function has to be 

computed. 

The basis set X defined in the equation (3), considering the 

centers where the AO are associated, can be rewritten in 

this way: 

              1, ; 1,

K
K

K
K KM K C 



  r

X = X

X

  (14) 

Where the index K runs over the number of centers 

chosen, C , where the AO functions are placed, and 
KM  is 

the number of functions settled at each center K. 

Therefore, the matrix  X r  can be expressed over the 

submatrices associated to the AO centers as: 

    , 1,KL K L C X r X r ,     (15) 

a similar partition of the matrix of the coordinates of the 

density matrix can be also performed, so it can be written: 

 
:

             1, ; 1, ; 1,

KL K L
I I I

L L
I I L

K

c M I N L C 

 

    

D c c

c

 (16) 

and in this manner one can construct another quantum 

polyhedron, which will be structured by vertices made via 

partial density functions associated with each center, 

which can be written in turn as: 

   

 

:

                  

K K L KL
I I I

L I

KL KL

L

K   
   

 

 

 



r c c X r

D X r

              (17) 
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with the final result allowing to express the density 

function alternatively as: 

   K

K

 r r
.      (18) 

One can see now that the set of density functions, centered 

at each position around the molecule, also corresponds to 

an alternative quantum polyhedron vertex set: 

  1,K K C rQ = .      (19) 

The vertices of the quantum polyhedron (19) might be 

used to produce the atomic populations (one can admit the 

possibility that basis set function centers could be placed 

somewhere in the 3-dimensional space around the 

molecule, so one can talk about center populations).  

Atomic or center populations are computed using their 

Minkowski norms: 

  :  dK K
K D

K Q      r r      (20) 

forming a scalar set:  

 1,K K el
K

Q Q K C Q N          (21) 

whose sum is the number of electrons elN , in accord 

with the property of the Minkowski norm of the density 

function as discussed beforehand in the equation (13). 

OUT-OF-ATOM MULTICENTER POPULATIONS 

An interpretative problem appears when centers which do 

not coincide with molecular atoms are used to locate basis 

set functions2. Then some of the calculated populations’ 

will bear, as a counterpart of the atomic centers, some 

fraction of the number of molecular electrons, which will 

be present whenever at some center A there are located 

some functions, say:  1,A
AM    of the basis set. In 

this manner giving rise to a vertex of the quantum 

                                                             
2This is an option the usual quantum chemistry programs apparently 
ignore, or it is included as an option but the users don’t choose this 
possibility anymore. Such forgotten feature can explain why it seems that 
the problem, associated to this out-of-atoms centering of basis set 
functions, doesn’t exist. 

polyhedron:  A r , and therefore to a non-null center 

population: A
AQ  .  

This possible occurrence seems counterintuitive, using the 

wording employed in reference5. Moreover: which 

interpretation can be associated with such an electron 

fractionation outside the atomic molecular centers?  

Except in some exceptional cases, where the extra-atomic 

center is chosen for some experimental connected purpose, 

it seems that not a plausible interpretation can be 

established to out-of-atom populations, except in 

describing lone pair regions or similar electronic 

distributions, if any.  

The reason can be found in the space structure, where 

molecules are located. Note also that the number of non-

atomic centers, where basis functions can be placed, might 

be arbitrarily large. Thus, the molecular electrons will 

appear fractionated arbitrarily, depending on the extra 

centers used. 

Moreover, the nature of the functional Hilbert space where 

the basis set functions are described is also flexible enough 

to admit freedom about the functions to use. There is an 

infinite number of functions that can be chosen as building 

blocks to construct MO, and therefore the molecular 

polyelectronic wave function. 

To grasp this possibility one can peruse the papers34-39 on 

Gaussian space enfolding, where a function, in the most 

simple of cases, is centered at all the points of some 

chosen space, which although arbitrary in structure, it can 

be the usual three-dimensional Cartesian space holding the 

atomic positions of the molecular structures.  

One can imagine that there could potentially be an infinite 

set of vertices in the quantum molecular polyhedron(19), 

as the number of centers underwent a trend like: C   

in a space enfolding. Thus, one can suppose that the 

population set can be seen in the same way and that the 

scalar population set defined in (21) might be composed in 

this case by an infinite number of elements. Such a new 

structure of the populations one can envisage forms an 
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infinite-dimensional vector that could be transformed into 

the property: 

Q∞={Q(K)|K⋴Q }⟶⨜D Q(K) dk= Nel        (22) 

BASIS SET UNBALANCE AND HYDROGEN ATOM 

POPULATIONS 

Such a molecular environment space, the feature out-of-

atom centers, has not been discussed in the paper5, nor as 

far as the present author knows in many other papers. The 

signers of reference5 conclude, however, that in Mulliken 

treatment it is present a systematic behavior of the 

Hydrogen populations not conforming to the chemical 

intuition. It is nice to have noted such a feature because it 

might be perhaps easily explained. 

Even in large basis sets, which are featured in HF, DFT or 

whatever procedure which is used to obtain occupation 

numbers and MO’s, while heavy atoms are associated to a 

large number of basis set functions, the number of 

functions attached to Hydrogen atoms is systematically 

kept lower than the rest, much less than Carbon, Nitrogen 

or Oxygen, for instance, to do not speak of Bromine or 

Iodine or heavier atoms. This can be summarized by the 

relation of the function numbers: MH<< M heavy metals . 

The unbalanced number of functions creates unbalanced 

vertices of the quantum polyhedron (19), constructed as in 

equation (17). This could be the origin of this 

characteristic behavior of Hydrogen Mulliken populations, 

and possibly it can be found among other population 

definitions. Albeit the authors of reference5 indicate that 

the Hydrogen charges are stable along with changes in 

basis sets. The stability found in5 with changing basis sets 

could be attributed to the fact that the unbalance between 

Hydrogen and heavier atoms continues to be similar or 

constant, whenever the basis set changes. The Hydrogen 

number of functions also has an incidence in the absolute 

value of the coefficients of each MO connected with these 

atoms, and this produces at the end, a set of not so rational 

(from chemistry lore) values of their populations.   

Moreover, placing basis functions out from the atomic 

centers not only provides a possible counterintuitive 

fractioning of the molecular electrons but proves that 

Hilbert space geometry and chemistry could be 

paradoxically unconnected. Indeed, locating an extended 

number of functions in the molecular space environment 

will certainly produce a better wave function from the 

variational theorem perspective, but will possibly yield 

awful electronic population sets as defined in (21) or (22).  

On the other hand, the out-of-atoms basis set location 

might even prevent or reduce the incidence of quasi-

singularity, or computational singularity of the overlap 

matrix S  associated to a chosen basis set, which can be 

obtained by integrating the matrix of the equation (15): 

   , :  d , 1,KL KL KLD
K L K L C    S X r r S S

   
(23) 

The quasi-singularity of the overlap matrix appears when 

the number of basis set functions centered in atomic sites 

grows because the total number of atomic centered 

functions also obviously grows, and some functions 

become linearly dependent at the computational precision 

used. This computational drawback shows in the form of 

the numerical appearance of very small overlap matrix 

eigenvalues, whose absolute values due to the limited 

machine precision are almost null or null. This provokes 

the ill-definition of the overlap matrix inverse, because in 

this case there might appear a quasi-non-number error 

feature in the inverse computation process. It seems that 

this drawback has been arranged with the aid of numerical 

recipes. Albeit, in doing so, the problem doesn’t disappear 

and can provoke computational errors, perhaps of some 

importance, in the posterior computational treatment in 

search of the MO. 

PROMOLECULAR DENSITY FUNCTIONS 

Another problem, which the possibility of using out-of-

atomic centers functions might put in evidence, will 

certainly appear in the construction of the so-called 

promolecular density functions. Promolecular densities 

can be constructed as a superposition of atomic densities, 
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built with the same or taking simplified basis set functions, 

in any case considering the attached molecular atom 

isolated. For more information about promolecular 

densities and its varied uses, see references40-47, for 

example.  

One can suppose for a given molecule exists a set of 

atomic densities, similar to the ones of the quantum 

polyhedron (19), but bearing no interaction whatsoever 

with the rest of the molecular basis set. Let’s define such 

possible approximate quantum polyhedra as: 

  1,Ip I ArA=       (24) 

where A is the number of atoms of the molecule studied. 

Then the promolecular density is constructed like: 

   I
I

p pr r .       (25) 

The atomic promolecular functions are Minkowski 

normalized to the atomic charge of the nuclei: 

   :  dI I ID
I p p Z  r r r ,          (26) 

Thus, the promolecular density functions possess a 

Minkowski norm which is the same as any molecular 

density function: 

     d I I elD
I I

p p p Z N    r r r r .   (27) 

The definitions (24) and (25) do not contain any 

promolecular atomic density centered in a non-atomic 

position. Hence, a comparison of the kind that is used in 

the so-called Hirschfeld charges6 cannot be done when the 

density function possesses centers, which are not located 

at the molecular atoms.  

This is another drawback, which affects this time to the 

calculation of Hirschfeld atomic charges, when additional 

non-atom centered sets of functions are used in the main 

computation of MO’s. 

CONCLUSIONS      
The authors of reference5 in their conclusions have 
focused their analysis on the Hydrogen populations, which 

is an interesting subject indeed. Apparently, no attempt is 

made from their part to deepen on the mathematical 

structure lying in the definition of the density function, 

except for some considerations to ameliorate the results of 

the original descriptions. Thus, the present paper can be 

considered as an addition to their particular findings but 

having a slightly more general purpose.   

Showing, perhaps, that the so-called atomic populations, 

hence the atomic charges, are somehow arbitrarily 

constructed, unless one uses a better background within a 

more correct quantum mechanical point of view, as the 

choice of an operator as it has been tried to show in the 

paper of reference17. There it is shown that Mulliken’s 

atomic populations can be considered as expectation 

values of some well-defined operator. If these population 

values are not coincident with chemical intuition might be 

because perhaps the underlying basis set is not well-

defined to adapt to chemical lore experimental results but 

is well suited to provide with a correct variational 

electronic energy. 

Conceivably, the manipulation of the vertices of the 

quantum molecular polyhedra, which has been largely 

described and used, see references24-33, might be 

considered as an additional general-purpose tool to 

interpret wavefunctions for chemical use instead of 

generally centered populations. 
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