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Abstract: Behaviour of the Dirac particle in Coulomb like field in FLRW space is investigated. Firstly, the Maxwell 

equations, in terms of the vector potentials are solved to identify the Lorentz and Coulomb like gauges.  The radial Coulomb 

like potential is solved in terms of Legendre functions. Then the Dirac equation is generalized to include this potential and 

the angular part is separated and solved. The radial and temporal parts of the massless case is also separated and solved. 

But the massive case remains coupled. This is still reduced to the case where the Dirac particle can be represented as being 

in a combined gravitational and electric potential. This effective potential is found to develop an attractive well, which may 

require a revisit to the recombination era.  
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INTRODUCTION 

All matter being ultimately fermions, study of Dirac field is 

very important to understand the nature and behaviour of 

the constituents of the universe and its evolutions. Such 

study becomes much more convenient to formulate in the 

powerful Newman–Penrose (NP) formalism1 compared to 

the conventional tensor method2,3. Although NP formalism 

was primarily used to study quantum fields in black hole 

space times, we extended its application to write and solve 

Maxwell, Dirac4,5 and gravitational perturbation equations6 

in FLRW space-time.  

In this work, we use the same formalism and notations as in 

Chandrasekhar7 to study the behaviour of the Dirac 

particles in Coulomb like gauge field in FLRW spacetime. 

In the first part of the next section, we set up the 

preliminaries to write the Maxwell's equations in terms of 

the gauge potentials to identify the Lorentz and Coulomb 

like gauges, and solve for the potential due to a point 

charge. In the remaining part of that section, the Dirac equa- 

 

 

tions have been solved to obtain the Coulomb like potenti 

als and force fields. In the third section, some discussions 

along with concluding remarks have been made.  

LORENTZ LIKE GAUGE AND DIRAC FIELD IN 

COULOMB LIKE POTENTIAL 

Lorentz like gauge 

In our chosen tetrad frame1,4,7 for the FLRW spacetime 𝑙ఓ =

[1, −1, 0, 0], 𝑛ఓ =
௔మ

ଶ
[1, 1, 0, 0], 𝑚ఓ =

−
௔ௌ

√ଶ
[0, 0, 1, 𝑖 sin 𝜃] and the complex conjugate 𝑚ഥఓ, the 

electromagnetic 4–vector potentials are given by 𝐴௟ =

𝐴ఓ𝑙ఓ =
ଵ

௔మ ൫𝐴ఎ +  𝐴௥൯, 𝐴௡ =
ଵ

ଶ
൫𝐴ఎ– 𝐴௥൯, 𝐴௠ =

ଵ

√ଶ௔ௌ
ቀ𝐴ఏ +

௜

ୱ୧୬ ఏ
 𝐴థቁ and 𝐴௠ഥ , where 

𝑆 =
√௞௥

√௞
= ቐ

sin 𝑟 ,       𝑘 = 1  𝑓𝑜𝑟 𝑐𝑙𝑜𝑠𝑒𝑑
𝑟,            𝑘 =  0  𝑓𝑜𝑟 𝑓𝑙𝑎𝑡

sinh 𝑟 ,      𝑘 =– 1  𝑓𝑜𝑟 𝑜𝑝𝑒𝑛
 …(1) 

The Maxwell scalar representing the field strengths are 

then, 

𝐹ఓఔ𝑙ఓ𝑚ఔ = 𝜑଴ =
ଵ

௔యௌ
𝒟–𝑎𝑆𝐴௠ +

ଵ

√ଶ௔ௌ
ℒ଴

–𝐴௟ …(2) 
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2
𝐹ఓఔ(𝑙ఓ𝑛ఔ + 𝑚ఓ𝑚ഥ ఔ) = 𝜑ଵ 

=–
ଵ

ଶ௔
ቀ𝒟ା𝑎ଶ ஺೗

ଶ
+ 𝒟–𝐴௡ቁ +

ଵ

ଶ√ଶ௔ௌ
(ℒଵ

–𝐴௠ഥ – ℒଵ
ା𝐴௠) …(3) 

 

and, 

𝐹ఓఔ𝑚ഥఓ𝑛ఔ = 𝜑ଶ =
ଵ

ଶ௔ௌ
𝒟ା𝑎𝑆𝐴௠ഥ −

ଵ

√ଶ௔ௌ
ℒ଴

–𝐴௡ …(4) 

We will be using the operator 𝒟௡
± = ቀ

డ

డ௥
∓

డ

డఎ
+ 𝑛

ௌᇱ

ௌ
ቁ and 

ℒ௡
± = ቀ

డ

డఏ
∓

ଵ

ୱ୧୬ ఏ

డ

డఝ
+ 𝑛 cot 𝜃ቁ. The number of factors of 𝑙ఓ  

minus those of 𝑛ఓ  is the boost weight and that of 𝑚ఓ  minus 

𝑚ഥఓ  is spin weight. So, 𝜑଴ is a field of helicity +1, 𝜑ଶ of –

1 and 𝜑ଵ of zero. Substituting these expressions for 𝜑's in 

the Maxwell equations leads to 

 

𝒟ି ቈ𝑆ଶ ቆ𝒟ା
𝑎ଶ

2
𝐴௟ + 𝒟ି𝐴௡ቇ −

𝑎𝑆

√2
(ℒଵ

ି𝐴௠ഥ + ℒଵ
ା𝐴௠)቉ 

+2ℒଵ
ାℒ଴

ି ௔మ

ଶ
𝐴௟ = −𝑎ସ𝑆ଶ𝐽௟   …(5a) 

 

𝒟ା ቈ𝑆ଶ ቆ𝒟ା
𝑎ଶ

2
𝐴௟ + 𝒟ି𝐴௡ቇ +

𝑎𝑆

√2
(ℒଵ

ି𝐴௠ഥ + ℒଵ
ା𝐴௠)቉ 

+2ℒଵ
–ℒ଴

ି𝐴௡ = −2𝑎ଶ𝑆ଶ𝐽௡  …(5b) 

 

𝑆ଶ𝒟±𝒟∓𝑎𝑆 ቀ஺೘
஺೘തതത

ቁ +  

ℒ଴
∓

√2
ቈ𝑆ଶ ቆ𝒟ି𝐴௡ − 𝒟ା

𝑎ଶ

2
𝐴௟ቇ ∓

𝑎𝑆

√2
(ℒଵ

ି𝐴௠ഥ − ℒଵ
ା𝐴௠)቉ 

= −𝑎ଷ𝑆ଷ ቀ௃೘
௃೘തതത

ቁ   …(5c) 

 

A Lorentz like gauge can immediately be identified as 

𝑆ଶ ቀ−𝒟ି𝐴௡ + 𝒟ା ௔మ

ଶ
𝐴௟ቁ +

௔ௌ

√ଶ
(ℒଵ

ି𝐴௠ഥ + ℒଵ
ା𝐴௠) = 0    …(6) 

 

Whence the Maxwell Eqs. (5a, b, c) become 

 

ൣ𝒟±𝑆ଶ𝒟∓ + ℒ଴
∓ℒଵ

±൧ ቆ
𝑎ଶ𝐴௟

𝐴௡

ቇ = −𝑎ଶ𝑆ଶ ൬
𝐽௟

𝐽௡

൰ 

and 

 

ൣ𝑆ଶ𝒟∓𝒟± + ℒ଴
∓ℒଵ

±൧𝑎𝑆 ቀ஺೘
஺೘തതത

ቁ = −𝑎ଷ𝑆ଷ ቀ௃೘
௃೘തതത

ቁ …(7) 

 

We call (6) Lorentz like condition. It is the vanishing of the 

4–divergence of 
஺ഋ

(ୟୗ)మ  rather than that of 𝐴ఓ. 

We have already used the s–spin weighted spherical 

harmonics  ௦𝑌௟
௠ that obey the spin lowering (raising) 

operations ℒ௦
± ±௦𝑌௟

௠ = ±𝐿௦ିଵ ±(௦ିଵ)𝑌௟
௠ where 𝐿௦

ଶ = (𝑙 −

𝑠)(𝑙 + 𝑠 + 1) and the s–boost weight functions  ௦𝑍௞
ఠ 

obeying 𝑆𝒟ି௦
±  ±௦𝑍௞

ఠ = ±𝑖𝐾௦ିଵ ±(௦ିଵ)𝑍௞
ఠ where 𝐾௦

ଶ = (𝑘 −

𝑠)(𝑘 + 𝑠 + 1). 

 

We also identified  ௣𝑌௟
௠ =

ேభ

√ଶగ
𝑒௜௠ఝ(1 − cos 𝜃)

೘శ೛

మ (1 +

cos 𝜃)
೘–೛

మ 𝑃௟–௠
(௠ା௣,௠–௣ )(cos 𝜃) as spherical harmonics 

formed with Jacobi polynomials8 𝑃௡
(ఈ,ఉ ), and  ௣𝑍௞

ఠ =

ேమ

√ଶగ
𝑒ି௜௠ఎ(1 − 𝑖 cot 𝑟)ି

ഘశ೛

మ (1 +

𝑖 cot 𝑟)ି
ഘష೛

మ 𝑃ఠ–௞ିଵ
(ିఠି௣,ିఠା௣ )(𝑖 cot 𝑟). So, we can just read off 

the solutions of (7) as 

 

ቀ௔మ஺೗
஺೙

ቁ ~
ଵ

ௌ
 ±ଵ𝑍௞

ఠ  ଴𝑌௟
௠  and  𝑎𝑆 ቀ஺೘

஺೘തതത
ቁ ~ ଴𝑍௞

ఠ ±ଵ𝑌௟
௠ . 

For solutions of homogenous equations it is just the 

condition 𝑘 = 𝑙. 

 

For Coulomb like gauge we add the equations (5a) and (5b) 

and find that the condition  

డ

డ௥
𝑆ଶ ቀ

௔మ

ଶ
𝐴௟ − 𝐴௡ቁ +

௔ௌ

√ଶ
(ℒଵ

ି𝐴௠ഥ + ℒଵ
ା𝐴௠) = 0 …(8) 

gives 

 ቂ
డ

డ௥
𝑆ଶ డ

డ௥
+ ℒଵ

ାℒ଴
–ቃ 𝐴ఎ = −𝑛𝑎ଷ𝑆ଶ = −𝑛଴𝑎଴

ଷ𝑆ଶ…(9) 

 

The potential of a point charge q located at the origin is 

found to be  

𝐴ఎ =  
𝑞

4𝜋

𝑆′

𝑆
==

𝑞

4𝜋
൞

cot 𝑟 ,        𝑘 = 1   
1

𝑟
,          𝑘 = 0          

coth 𝑟 ,         𝑘 = −1  

 

 

We may proceed to solve the general equation (9) for the 

Green's function by standard techniques9 to find (for the 

closed Universe with 𝑘 = 1) 

𝐺(𝑟, 𝑟′) =

 
గ

ଶ

ଵ

√ୱ୧୬ ௥ ୱ୧୬ ௥ᇱ
∑

(ି௟)(ଶ௟ାଵ)

ସగ
𝑃భ

మ

ିቀ௟ା
భ

మ
ቁ
(cos 𝑟′)ஶ

௟ୀ଴ 𝑃భ

మ

ቀ௟ା
భ

మ
ቁ
(cos 𝑟)𝑃௟ cos 𝛽  …(10) 
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for 𝑟 >  𝑟′ and 𝑟𝑟′ for 𝑟 <  𝑟′. We expect that an addition 

formula for Associated Legendre functions 

𝑃భ

మ

±ቀ௟ା
భ

మ
ቁ
(cos 𝑟) give 

𝐺(𝒓, 𝒓ᇱ) = −
ଵ

ସగ
cot 𝜌   …(11) 

where 𝑐𝑜𝑠 𝜌 =   𝑐𝑜𝑠 𝑟 𝑐𝑜𝑠 𝑟’ +  𝑠𝑖𝑛 𝑟 𝑠𝑖𝑛 𝑟’ 𝑐𝑜𝑠 𝛽 

 

(a) 

 

(b) 

 

(c) 

Figure 1: Plot of  |𝑹ା|𝟐 + |𝑹ି|𝟐  representing the relative probability 

against 𝒓 for αz = 1. (a) for n = 2 & 𝒍 =  𝟏/𝟐, (b) for n = 2 & 𝒍 =  𝟑/𝟐, 

(c) for n = 4 & 𝒍 =  𝟗/𝟐. 

 

Dirac field in a Coulomb-like potential 

Next we use the previous result to look at the analogue of 

the hydrogen like atom in an expanding universe. We have 

dealt with the Dirac equation in another work4 and the radial 

part is given by the equation 

𝒟±Φ± =  − ቀ
ఒ

ௌ
± 𝑖𝑀𝑎ቁ Φ∓    …(12) 

where 𝜆 = 𝑙 +
ଵ

ଶ
  and  𝑙 =  

ଵ

ଶ
,

ଷ

ଶ
,

ହ

ଶ
, … … ….    

 

We have just changed the sign of the eigenvalue 𝜆 of 

eigenfunction ℒభ

మ

± 𝑌௟
௠ = ± ቀ𝑙 +

ଵ

ଶ
ቁ

±
భ

మ

𝑌௟
௠

∓
భ

మ

  to be consistent 

with other  𝑌௟
௠

௦  . 

We just make the minimal substitution, 𝜕ఓ → 𝜕ఓ + 𝑖𝑒𝐴ఓ . 

With only a point charge  𝑧𝑒  at the origin and a Dirac field 

of negative charge (-e), we have 

ቂ
డ

డ௥
∓ ቀ

డ

డఎ
− 𝑖𝑧𝛼

ௌᇱ

ௌ
ቁቃ Φ± =  − ቀ

ఒ

ௌ
± 𝑖𝑀𝑎ቁ Φ∓   …(13) 

where   𝛼 =  
௘మ

ℏ௖
  is the fine structure constant and the minus 

sign is to represent attractive potential. The massless case 

M = 0 is easily solved with time dependence  𝑒ି௜ఠఎ  to give 

the radial part as 

𝑅±(𝑟) ~ (1 − 𝑖 cot 𝑟)ିቀ௕ି
భ

మ
ቁ(1 + 𝑖 cot 𝑟)ିቀ௖ି

భ

మ
ቁ𝑃௡

(ି௕,   ି௖)(𝑖 cot 𝑟)  …(14) 

Where 𝜔 = 𝑛 +
ଵ

ଶ
+ ටቀ𝑙 +

ଵ

ଶ
ቁ

ଶ
− 𝛼ଶ𝑧ଶ, 𝑏 = 𝜔 − 𝑖𝛼𝑧 ±

ଵ

ଶ
,  

and 𝑐 = 𝜔 + 𝑖𝛼𝑧 ∓
ଵ

ଶ
. 

Plot of |𝑅ା|ଶ + |𝑅ି|ଶ  representing the relative probability, 

for some typical  values of az, l and n are shown in Fig. (1). 

 

(a) 

 

 

(b) 

 

(c) 

Figure 2: The modified vector potentials 𝑨𝜼 with various 

parameters varied. (a) 𝒌 = 0, 𝒂 = 1, 𝜶𝒛 = 1 with 𝒍 varied. Dotted for 

𝒍 = 𝟏/𝟐, dot-dashed for 𝒍 = 𝟑/𝟐, dashed for 𝒍 = 𝟓/𝟐 and solid for 

𝒍 = 𝟏𝟓/𝟐. (b) 𝒌 = 0, 𝒍 = 𝟏/𝟐 with 𝜶𝒛 varied. Dotted for 𝜶𝒛 = 0.5, 

dot-dashed for 𝜶𝒛 = 1, dashed for 𝜶𝒛 = 1.5 and solid for 𝜶𝒛 = 2. (c) 

𝒌 = 1, 𝒍 = 𝟏/𝟐, 𝜶𝒛 = 𝟏 with 𝒂 varied. Dotted for 𝒂 = 𝟎. 𝟏, dot-

dashed for 𝒂 = 𝟎. 𝟖, dashed for a=1 and solid for 𝒂 = 𝟏. 𝟓. 



 

 4 Scientific World Vol. 14, No. 14, February 2021 

For the massive case, although the equations can be 

decoupled for  φା  and  φି, we are unable to separate the 

variables 𝑟 and 𝜂. We can get an insight into the behaviour 

by substituting 
஛

ௌ
± 𝑖𝑀𝑎 =  𝜒𝑒±௜క, where 𝜒ଶ =  

஛మ

ௌమ + 𝑀ଶ𝑎ଶ  

and  tan 𝜉 =
ெ௔ௌ

ఒ
, and ψ± = 𝑒∓

೔഍

మ 𝜑  to give 

 

ቂቀ
డ

డ௥
−

௜

ଶ

డ𝜉

డఎ
ቁ ∓ ቀ

డ

డఎ
− 𝑖𝑧𝛼

ௌᇲ

ௌ
−

௜

ଶ

డ𝜉

డ௥
ቁቃ ψ± = −𝜒ψ∓ …(15) 

 

We can think of derivatives of 𝜉 as adding on to the vector 

potentials as gravitational counter parts. In particular, the 

attractive modified potentials are 

𝐴௥ = −
ଵ

ଶ

డక

డ𝜂
= −

ଵ

ଶ
sin 𝜉 cos 𝜉

ଵ

௔

డ௔

డ𝜂
   …(16) 

𝐴𝜂 = −𝛼𝑧
ௌᇲ

ௌ
−

ଵ

ଶ

డ𝜉

డ௥
− 𝛼𝑧

ௌᇲ

ௌ
𝑟 −

ଵ

ଶ
sin 𝜉 cos 𝜉  

ௌᇱ

ௌ
   …(17)  

These potentials are plotted in Fig. (2) and (3).  

 

  

(a)   (b) 

 

     

 

(c)   (d) 

Figure 3: The modified vector potentials 𝑨𝒓 with various parameters 

varied. (a) 𝒌 = 0, 𝒂 = 1, with 𝒍 varied. Dotted for 𝒍 = 𝟏/𝟐, dot-dashed for 

𝒍 = 𝟑/𝟐, dashed for 𝒍 = 𝟓/𝟐 and solid for 𝒍 = 𝟕/𝟐. (b) 𝒌 = 0, 𝒍 = 𝟏/𝟐 

with 𝒂 varied. Dotted for 𝒂 = 𝟎. 𝟓, dot-dashed for 𝒂 = 𝟏, dashed for 

a=1.5 and solid for 𝒂 = 𝟏. 𝟖. (c) 𝒌 = 0, 𝒍 = 𝟏/𝟐, 𝒂 = 𝟏 with 𝒎 varied. 

Dotted for 𝒎 = 𝟎. 𝟓, dot-dashed for 𝒎 = 𝟏, dashed for 𝒎=5 and solid 

for 𝒎 = 𝟏𝟎. (d) 𝒌 = 1, 𝒍 = 𝟏/𝟐, 𝒂 = 𝟏 with 𝜶𝒛 varied. Dotted for 𝜶𝒛 = 1, 

dot-dashed for 𝜶𝒛 = 10 and solid for 𝜶𝒛 = 100.  

The force field due to these potentials is 

𝐹𝜂𝑟 =
𝜕𝐴𝑟

𝜕ఎ
−

𝜕𝐴ആ

𝜕௥
  

= −
𝛼𝑧

𝑆ଶ
−

1

2
sin 𝜉 cos 𝜉 ൥

𝑎′′

𝑎
+ 𝐾 − 2 sinଶ 𝜉 ൭ቆ

𝑎ᇱ

𝑎
ቇ

ଶ

+ 𝐾 −
1

𝑆ଶ
൱൩ 

= −
𝛼𝑧

𝑆ଶ
−

1

2
sin 𝜉 cos 𝜉 ൤

4𝜋𝐺

3
𝑎ଶ(𝜌 − 3𝑃)

− 2 sinଶ 𝜉 ൬
8𝜋𝐺

3
𝑎ଶ𝜌 −

1

𝑆ଶ
൰൨ 

This force field is also shown in Fig. (4) at different phases 

of expansion and various conditions. 

  

 (a) 

 

 

(b) 

 

(c)  

Figure 4: The force field 𝑭𝜼𝒓 plotted against 𝒓. (a) matter-dominated 

closed (K=1) universe, 𝒂 = 𝟏, 𝜶𝒛 =. 𝟎𝟏. Dotted for 𝒍 = 𝟏/𝟐, dot-dashed 

for 𝒍 = 𝟑/𝟐, dashed for 𝒍 = 𝟓/𝟐 and solid for 𝒍 = 𝟕/𝟐, (b) closed (K=1) 

universe, 𝒍 = 𝟏/𝟐, 𝒂 = 𝟏, 𝜶𝒛 = 𝟏. Dotted for matter-dominated, dot-

dashed for radiation- dominated, and solid for vacuum dominated, (c) 

matter- dominated, and solid for vacuum dominated, (c) matter-

dominated flat (K=0) universe, 𝒍 = 𝟏/𝟐, 𝜶𝒛 = 𝟏. Dotted for 𝒂 = 𝟎. 𝟖, 

dot-dashed for 𝒂 = 𝟏, dashed for 𝒂 =  𝟏. 𝟐 and solid for 𝒂 = 𝟏. 𝟓. 

CONCLUSION AND DISCUSSION 

In this work we have tried to investigate the behaviour of 

the Dirac particle in the FLRW spacetime endowed with 

Maxwell field. To do this, we first derived a representation 

for the Maxwellian vector potential that is analogous to the 

Lorentz and Coulomb gauges. Lorentz like gauge is quite 

evident, just requiring the vanishing of the four divergence 

of  
஺ഋ

(௔ௌ)మ. The solution for the potentials become immediate 
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in terms of the appropriate combinations of boost and spin 

weighted functions.  

We also identify a Coulomb like gauge in which the 

potential reduces to 1/𝑟 in flat space, and solve for the 

appropriate Green function.  

Then we use this condition to write the Dirac equation for 

an electron in the Coulomb like field of a point positive 

charge.  We make the minimal substitution of the potential 

in the covariant derivative. The massless case can be 

completely solved, and the energy levels exhibit a quantized 

structure [Eq. 14]. But, we are not able to separate the radial 

and temporal parts of the equations for massive electron. 

Nonetheless, we are able to reduce the equations to where 

the scale factor and curvature of the FLRW spacetime 

appear as a gravitational counterpart, adding on to the 

Coulomb potential. Fig. 3 shows that this modified potential 

always develops a minimum, allowing bound states. Further 

work is necessary to determine whether this consequence 

will lead to a re-evaluation of the recombination era of the 

Universe.   
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