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CONCLUSION 
In this work, N substeps of a Superstep cover a time 
interval N times longer than N explicit steps when ν → 0. 
Therefore, Supersteping is N times faster than the 
Standard Explicit Scheme at the same cost. 
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Abstract: Numerical methods form an important part of the pricing of financial derivatives where there is no closed 
form analytical formula. Black-Scholes equation is a well known partial differential equation in financial mathematics. 
In this paper, we have studied the numerical solutions of the Black-Scholes equation for European options (Call and 
Put) as well as American options with dividends. We have used different approximate to discretize the partial 
differential equation in space and explicit (Forward Euler’s), fully implicit with projected Successive Over-Relaxation 
(SOR) algorithm and Crank-Nicolson scheme for time stepping. We have implemented and tested the methods in 
MATLAB. Finally, some numerical results have been presented and the effects of dividend payments on option pricing 
have also been considered. 
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INTRODUCTION 
The famous Black-Scholes equation is an effective model 
for option pricing. It was named after the pioneers Black, 
Scholes and Merton who suggested it 19731,3 and received 
in 1997 the Nobel Prize in Economics for their 
discovery2. Mathematically, it is a final value problem for 
a second order parabolic equation. A concise derivation of 
the Black-Scholes equation can be found in5. 

Black and Scholes (1973) proposed a valuation model for 
an European option, a contract that allows the holder of 
the option to exercise the right to buy or sell stocks at the 
expiration date. Unlike European options, where the 
payoff is determined by the price of the underlying asset 
at the exercise date, another primary type of options 
called American options give the holder the right to early 
exercise the options at any time before the expiration date. 
The American option valuation problem can be viewed as 
a free-boundary problem, that is, there exists an unknown 
boundary dependent on time, that sets the line between 
early exercising and holding the option. Since an 
American option offers the holder greater rights than an 
European option, it usually has a larger value. The explicit 
formula for European options no longer works for 
American options. Our approach to obtain the result of the 
American option valuation problem is to rewrite the 
problem in a linear complementarity form. We then solve 
it using finite difference methods and the projected 
Successive Over-Relaxation (SOR) algorithm. The use of 
the linear complementarity form has a great advantage in 
that the free boundary points are implicitly included in a 
single constraint. Those points no longer need to be 
explicitly mentioned, which facilitates the computation of 
the option values. 

The Black-Scholes Equation  
We consider only American and European call option. 
Similar treatment can be done for the American and 
European put option. The value of a option is denoted 

by V and depends on the current market price of the 
underlying asset, S, and the remaining time t until the 
option expires: V = V (S,t). The Black-Scholes equation 
is a backward-in-time parabolic equation and posed on 
a time dependent domain. 

With dividend payments: 

 
for 

0 < S < Sf(t), 0 ≤ t < T, 
With no dividend payments: 

  (2) 
for 

0 < S, 0 ≤ t < T, 

where σ denotes the annual volatility of the asset price, r 
the risk-free interest rate and T is the expiry date (t = 0 
means today). We assume that dividends are paid with a 
continuous yields of constant level D0 > 0. Note that we 
have to include the payment of dividends. Otherwise,  
for D0 = 0 early exercise does not make sense and  
the American call would be equivalent to the European 
one3. 

European Option  
A European call (put) option gives the holder the right but 
not the obligation to buy (sell) the underlying asset with 
an initial price S; at a given maturity date T and for a fixed 
price E; called the strike price. Let the price of European 
call (put) option be denoted by C(P): These notations will 
be used throughout our work to denote the European call 
and put option. The payoff of a European call at maturity 
time T is, 
 C = max(ST − E,0). (3) 

If ST < E, the call will be worthless and the holder will not 
exercise the right. The payoff of a European put is, 
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 P = max(E − ST,0). (4) 

If ST > E, the put will be worthless and the holder will not 
exercise the right. The call - put parity is the relationship 
between a European call and put, given by, 
 C + Ee−rt = P + S. (5) 

where r denotes the risk free interest rate and S the initial 
stock price. 

American Options  
American call (put) option gives to its holder the right but 
not the obligation to buy (sell) the underlying asset at any 
time t (0 < t < T), up to maturity date T, for a strike price 
E. Let the price of the American call (put) option be 
denoted by C(P). These notations will be used throughout 
our work to denote the American call and put option. The 
payoff of an American call at maturity time T is, 
 C = max(ST − E,0) (6) 

The payoff of an American put is,  
 P = max(E − ST,0) (7) 

The price boundary and put-call parity for the American 
option is given by, 
 S − E ≤ C − P ≤ S − Ee−rt (8) 

Free Boundary Problem  
At S = 0 the option is worthless. Note that we need two 
conditions at the free boundary S = Sf(t). One condition 
is necessary for the solution of (1) and other is needed 
for determining the position of the free boundary Sf(t) 
itself. The condition in V (Sf(t),t) = Sf(t) − E for 0 ≤ t ≤ 
T and VS(Sf(t),t) = 1 for 0 ≤ t ≤ T (’value matching’ 
condition) is the continuity of the mapping S  V (S,t) 
since V (S,t) = (S − E)+ = S − E, in the exercise region S 
≥ Sf(t). At S = Sf(t) one requires additionally that V(S, t) 
touches the payoff function tangentially (’high contact 
condition’), i.e. the function S  ∂V (S,t)/∂S should be 
continuous at S = Sf(t). The conditions V (Sf(t),t) = 
Sf(t)−E for 0 ≤ t ≤ T and VS(Sf(t),t) = 1 for 0 ≤ t ≤ T are 
jointly referred as the ’smooth-pasting conditions’. 
Note that the later condition can be derived from an 
arbitrage argument4,5.  

Since American options can be exercised at any time, 
we have the a priori bound 
 V (S,t) ≥ (S − E)+, S ≥ 0, 0 ≤ t ≤ T. 

If V (S,t) < (S − E)+ for one value S > E and t ≤ T then 
the purchase of a call for V and the immediate exercise 
of this option to buy the underlying asset for E 
(although its value is S) would lead to an instantaneous 
risk-free profit of S − V − E > 0, in violation to the no-
arbitrage principle. Of course, this reasoning ignores 
transaction costs. For American options, when V > S − 
E, meaning it is optimal to hold the option, the Black-
Scholes equation holds. Otherwise, V = S − E; it is 
optimal to exercise the option. The two relationships 
can be combined into one inequality for the Black-
Scholes equation. 

 

where V(S, t) is the value of a call option, t ∈ [0,T]. 
Another two constraints coming from no arbitrage 
assumption are that the option value has to be 
continuous since holders can profit from exercising 
when the asset price reaches the value of the 
discontinuity and that the change of the option value 
should also be continuous. 

Let x = ±1 be the end points of the string; u(x) be the 
string displacement; f(x) be the height of the obstacle. We 
do not have knowledge on the exact region of contact 
between the string and the obstacle. We only know the 
string must either be above or on the obstacle, and the 
string and the slope of the string have to be continuous. 
The free boundary is the set of points P(x = xp) and  
Q(x = xQ), the points that define the contact region. Since 
the contact region concaves down, u = f and u < 0, while 
u > f and u = 0 when the string is above the obstacle. We 
also assume that 

     f(±1) < 0,f(x) > 0 for some −1 < x < 1, f < 0 (10) 

to ensure there exists only one contact region.  
The obstacle problem is then equivalent to finding u(x) 
and the points P,Q such that 

u(−1) = 0,u(1) = 0  
u = 0,−1 < x < xP,xQ < x < 1  
u(xP) = f(xP),u (xP) = f (xP) (11) 
u(xQ) = f(xQ),u (xQ) = f (xQ)  
u(x) = f(x),xP < x < xQ. 

One approach to solve this problem is to first write it in 
the following linear complementarity form 

 u.(u − f) = 0,−u  ≥ 0,(u − f) ≥ 0, (12) 

where u(−1) = u(1) = 0, and u, u  are continuous. This 
transformation does not explicitly include the free 
boundary points. Instead, the free boundary problem is 
implicitly incorporated in the constraint u ≥ f. We can 
then use numerical techniques such as iterative methods 
to solve (12). 

Transformed Linear Black-Scholes Equation  
Here we transform (1) problem from the original (S,t) 
variables to (x,τ) into a pure diffusion equation, where x 
and τ refer to the following transformation. Let  

 
and 

 
and 

 
Now 

, 
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and 

 
and 

 
Now 

, 
 
 
 

and 

, 
Substituting these all derivatives in (1) we have 

 
and a final multiplication by  then gives 

  (13) 
Let and  can be written as 

  (14) 
Now consider  to 
get β = −α2 − K, and then  

v(x,τ) = eαx+βτu(x,τ) 

, 
and 

 , 
Substituting these into equation (14) and dividing by eαx+βτ 

we get 

 
implies 

 
(α2 − β2 + α(K − 1) − K)u 

and finally we get, 
 uτ = uxx,−∞ < x < ∞,τ > 0, (15) 
which is a diffusion equation with initial condition 

 
Observe that with the transformation above, the dividend 
term does not appear explicitly in equation (15). 

 

 
Figure. American Options 

For European Call  

The boundary condition for the European call option 

 
where 

 
 

Linear Complementarity Form for American Option  
The obstacle problem for American call options with 
dividends is equivalent to finding u(x,τ) and the unknown 
optimal exercise boundary xf(τ) such that 

uτ = uxx, for x ≤ xf(τ)  

u(x,τ) = g(x,τ) for x > xf(τ),  (18) 
with boundary conditions 

where 

 
We also have the constraint 

u = (x, τ) ≥ g(x, τ) (21) 

Since we will be focusing on numerical solutions using 
finite difference methods, we will restrict the problem to a 
finite interval. Therefore, we consider the problem only 
for x in the interval [x–, x+], where x– is a large negative 
number and x+ is a large positive number. Hence, the 
boundary conditions are 

u(x−,τ) = 0, u(x+,τ) = g(x+,τ). (22) 

Now, rewriting in a linear complementarity form, we 
obtain 

 . (23) 

with two constraints 

 , (24) 

with the initial condition v(x,0) = g(x,0) and the boundary 
conditions 
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u(x−,τ) = g(x−,τ) = 0, 
 u(x+,τ) = g(x+,τ). (25) 

The above transformation is helpful because the diffusion 
equation is more straightforward and less cluttered than 
the Black-Scholes equation. It is much easier to find 
numerical solutions of the diffusion equation and then to 
convert these into numerical solutions of the Black-
Scholes equation through a change of variables than to 
numerically solve the Black-Scholes equation directly. 
Thus to obtain the numerical result of American option 
value, our approach is to solve 

  (26) 

and make sure 
 u(x,τ) – g(x,τ) ≥ 0 (27) 

 

Finite Difference Methods  
The finite difference methods attempt to solve Black 
Scholes Partial differential equation by approximating the 
differential equation over the area of integration by a 
system of algebraic equations. They are a means of 
obtaining numerical solutions to Partial differential 
equations.They also constitute a very powerful and 
therefore flexible technique that is capable of generating 
accurate numerical solutions to PDEs arising in financial 
and other physical sciences. The most common finite 
difference methods for solving the Black Scholes Partial 
differential equation are the Explicit method, the Fully 
Implicit method and the Crank-Nicolson method. These 
are closely related but differ in stability, accuracy and 
execution speed. 

 
 

 

 

 
Figure 2: Finite Difference 

 

Discretization of the Equation  
We divide the (x,τ) plane into a regular finite mesh, and 
take finite-difference approximations of the linear 
complementarity form problem. We approximate the 
terms ∂u/∂τ − ∂2u/∂2x by the finite differences on a regular 
mesh with step sizes δτand δx, and we truncate so that x 
lies between M−δx and M+δx, where M− is a large negative 
number and M+ is a large positive number. We divide the 
non-dimensional time to expiry of the option, , into 
N equal time-steps so that . 

The idea of finite difference methods is to replace the 
partial derivatives in the equation by their difference-
quotient approximations based on Taylor series 
expansions of functions near the points of interest, and 
then let the computer solve the resulting differential 
equation. We divide the x- axis into equally spaced nodes 
a distance δx apart, and the τ-axis into equally spaced 
nodes a distance δt apart. This divides the (x,τ) plane into 
a mesh, where the mesh points have the form (mδx,nδτ), 
M– ≤ x ≤ M+ and 0 < n ≤ N. We write 

 as the value of u(x,τ) at the mesh 
point (mδx,nδτ), and gm

n = g(mδx,nδτ). 

Explicit Method  
Given that we know the value of an option at the maturity 
time, it is possible to give an expression that gives us the 
next value  Explicit in terms of the given values 

. 
Using a forward difference to approximate ∂u/∂τ, and a 
second-order central difference for ∂2u/∂x2, we can rewrite 
the diffusion equation (26) as 

 
If we ignore terms of O(δx) and , we can rearrange 
(28) to give the difference equation 

  (29) 
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. 
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If we ignore terms of O(δx) and , we can rearrange 
(28) to give the difference equation 

  (29) 

where α = δτ/(δx)2. At time step n + 1, we already know 
the values of  for all n so we can explicitly calculate 

. After we calculate  using (29), we also need 
the equation to satisfy the constraint u(x,τ) − g(x,τ) ≥ 0. 
Thus the scheme for this explicit method can be expressed 
as: 

; 

  (30) 

With this approach, the stability question arises. The 
system (29) is stable if 0 < α ≤ 1/2 and unstable if α > 
1/26, which puts severe constraints on the size of time 
steps. Hence there is need to consider a more stable 
method, such as the fully-implicit method. The implicit 
finite-difference method is stable for any α > 0, which 
suggests that we can solve the diffusion equation with 
larger time-steps using an implicit algorithm than we can 
using an explicit algorithm. 
 

Fully-Implicit Method  
Given that we know the value of an option at the maturity 
time, it is possible to give an expression that gives us the 
next value  implicit in terms of the given values 

. 

Using a backward difference to approximate ∂u/∂τ, and a 
second-order central difference for ∂2u/∂x2, we can rewrite 
the diffusion equation (26) as 

 
If we ignore terms of O(δx) and , we can 
rearrange (31) to give the difference equation 

          (32) 

The new values cannot be separated out immediately and 
solved for explicitly in terms of the old values. This is the 
reason it is called the implicit scheme. The linear 
complementarity problem (23) is then approximated by 

  (33) 

at time step n + 1. 
Let 

  (34) 

 

and the coefficient matrix 

 
We want to solve the following constrained matrix 
problem 
 Cun+1 = bn+1 (37) 

and check if the u ≥ g constraint is satisfied. To solve 
equation (37), observe that C is an invertible matrix due 
to the Gerschgorin theorem. Therefore, equation (37) has 
a solution. 

Theorem (GERSCHGORIN) 
Let A = (ai,j)be an arbitrary m × m complex matrix, and let 

  (38) 
Then, all the eigenvalues λ of A lie in the union of the 
disks 

 |z − ai,j| ≤ Λi, 1 ≤ i ≤ m. (39) 
Observe that the matrix C is symmetric so all of the 
eigenvalues are real. Then, let ai,j = 1 + 2α. For i = 1 and 
m, Λi = α.. Then z ≥ ai,j − Λi = 1 + α so for α ≥ 0, z is 
always positive. For 2 ≤ i ≤ m−1,Λ1 = (α)+(α) = 2α. Then 
z ≥ ai,j − Λi = 1. Thus, for α ≥ 0, all the eigenvalues of C 
are positive real numbers, suggesting C is invertible and 
we can rewrite equation (37) as 

 un+1 = C−1bn+1. (40) 
We can first form bn+1 from un and the boundary 
conditions. Using the known initial condition u0, we can 
obtain un+1 sequentially using an iterative method such as 
Projected SOR. 
 

Projected SOR Algorithm  
Projected SOR is a minor modification of the SOR 
method, Successive Over-Relaxation. The SOR method is 
used to speed up convergence of iterations. The projected 
SOR algorithm involves five steps. The first step is to 
rewrite equation (32) as: 

 , (41) 

where M− + 1 ≤ m ≤ M+ − 1. 

Let  be the k-th iterate for . Let us denote the 
initial guess by . As k ∞, we expect . 
We update the values as soon as they are available and 
add a correction term  to the original 

. We also incorporate an over-correction or over-
relaxation parameter ω, which has optimal values 
between 1 and 2, and finally, we take the maximum 
between the estimated  and the payoff . The 
fully-implicit scheme is thus expressed as, 
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Until the difference between  and is small 
enough to be ignored, we set . 

 

The Crank-Nicolson Method  
The Crank Nicolson finite difference method is the 
average of the implicit and explicit methods and hence 
may improve accuracy. In this method, six neighboring 
option values are interrelated in the following way: 

One improvement the Crank-Nicolson Method has over 
the fully-implicit method is that it increases the temporal 
convergence rate from . The equation 
of the scheme is 

 
There remains the problem of finding the  
and M− < m < M+ from (44). We can write the problem as 
a linear system 

 Cun+1 = b- (45) 
Define a new matrix by 

 
 
The tri-diagonal symmetric matrix C becomes 

 
 
 

and the coefficient matrix 

 
Using Theorem (Gerschgorin), we see that the matrix C is 
invertible. Similar to the fully-implicit method, we adopt 
the projected SOR algorithm and obtain 

 

(49) 

Until the difference between  and is small 
enough to be ignored, we set . 

 

NUMERICAL RESULTS  
The following results are obtained through implementing 
the three finite difference algorithms described in the 
previous sections in MATLAB. Table 1 and Table 3 show 
that the three finite difference methods provide us similar 
result. One limitation for the explicit scheme is stable 
only when the ratio of the time step to the square of the 
space step is not greater than 1/2, which imposes 
restrictions on the number of necessary time steps. 
Though the explicit method is relatively easy to 
implement, the fully-implicit and the Crank Nicolson 
methods have better stability properties. Besides 
comparing the results of the three methods, we are also 
interested in the effects of dividend payments on option 
pricing. Table 2 and Table 4 suggests that as dividend rate 
increases, call option value decreases. A firm’s dividend 
payout policy affects option values because a high 
dividend payment decreases the rate of growth of the asset 
price. Thus there is a lower expected rate of capital gain, 
leading to a lower potential payoff. In addition, since the 
cash dividend is received by whoever owns the stock until 
the ex-dividend date, holders might exercise the option 
just prior to the ex-dividend date. Exercising prior to the 
ex-dividend date is always optimal when the dividend 
payment is large. Early exercise will be likely to happen 
only if the asset is expected to pay a dividend prior the 
expiration date. 

 

European Option  
Table 1 

S Explicit Fully-Implicit Crank-Nicolson 
3 0.0047 0.0048 0.0048 
5 0.1490 0.1486 0.1492 
7 0.7409 0.7389 0.7404 
9 1.8383 1.8362 1.8377 
11 3.2914 3.2902 3.2912 

A comparison of the option values of the three methods at 
E = 8, d=0.08, r = 0.1, σ = 0.4 and T = 1. 
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Until the difference between  and is small 
enough to be ignored, we set . 

 

The Crank-Nicolson Method  
The Crank Nicolson finite difference method is the 
average of the implicit and explicit methods and hence 
may improve accuracy. In this method, six neighboring 
option values are interrelated in the following way: 

One improvement the Crank-Nicolson Method has over 
the fully-implicit method is that it increases the temporal 
convergence rate from . The equation 
of the scheme is 

 
There remains the problem of finding the  
and M− < m < M+ from (44). We can write the problem as 
a linear system 

 Cun+1 = b- (45) 
Define a new matrix by 

 
 
The tri-diagonal symmetric matrix C becomes 

 
 
 

and the coefficient matrix 

 
Using Theorem (Gerschgorin), we see that the matrix C is 
invertible. Similar to the fully-implicit method, we adopt 
the projected SOR algorithm and obtain 

 

(49) 

Until the difference between  and is small 
enough to be ignored, we set . 

 

NUMERICAL RESULTS  
The following results are obtained through implementing 
the three finite difference algorithms described in the 
previous sections in MATLAB. Table 1 and Table 3 show 
that the three finite difference methods provide us similar 
result. One limitation for the explicit scheme is stable 
only when the ratio of the time step to the square of the 
space step is not greater than 1/2, which imposes 
restrictions on the number of necessary time steps. 
Though the explicit method is relatively easy to 
implement, the fully-implicit and the Crank Nicolson 
methods have better stability properties. Besides 
comparing the results of the three methods, we are also 
interested in the effects of dividend payments on option 
pricing. Table 2 and Table 4 suggests that as dividend rate 
increases, call option value decreases. A firm’s dividend 
payout policy affects option values because a high 
dividend payment decreases the rate of growth of the asset 
price. Thus there is a lower expected rate of capital gain, 
leading to a lower potential payoff. In addition, since the 
cash dividend is received by whoever owns the stock until 
the ex-dividend date, holders might exercise the option 
just prior to the ex-dividend date. Exercising prior to the 
ex-dividend date is always optimal when the dividend 
payment is large. Early exercise will be likely to happen 
only if the asset is expected to pay a dividend prior the 
expiration date. 

 

European Option  
Table 1 

S Explicit Fully-Implicit Crank-Nicolson 
3 0.0047 0.0048 0.0048 
5 0.1490 0.1486 0.1492 
7 0.7409 0.7389 0.7404 
9 1.8383 1.8362 1.8377 
11 3.2914 3.2902 3.2912 

A comparison of the option values of the three methods at 
E = 8, d=0.08, r = 0.1, σ = 0.4 and T = 1. 

Table 2 

S d=0.03 d=0.05 d=0.08 d=0.11 d=0.13 
3 0.0072 0.0061 0.0.0048 0.0.0034 0.0029 
5 0.1946 0.1749 0.1486 0.1220 0.1089 
7 0.9017 0.8336 0.7389 0.6466 0.5945 
9 2.1458 2.0180 1.8362 1.6606 1.5548 

11 3.7409 3.5562 3.2902 3.0336 2.8737 
A comparison of the option values of the three methods at 

E = 8, d=0.08, r = 0.1, σ = 0.4 and T = 1. 
 

American Option  
Table 3 

S Explicit Fully-Implicit Crank-Nicolson 
3 0.0047 0.0049 0.0048 
5 0.1496 0.1492 0.1492 
7 0.7473 0.7402 0.7404 
9 1.8664 1.8389 1.8378 
11 3.3707 3.2975 3.2923 

A comparison of the option values of the three methods at 
E = 8, d=0.08, r = 0.1, σ = 0.4 and T = 1. 

 

Table 4 

S d=0.03 d=0.05 d=0.08 d=0.11 d=0.13 
3 0.0073 0.0063 0.0047 0.0039 0.0033 
5 0.1956 0.1758 0.1492 0.1263 0.1128 
7 0.9031 0.8348 0.7402 0.6550 0.6048 
9 2.1473 2.0193 1.8389 1.6789 1.5915 

11 3.7425 3.5577 3.2975 3.0911 2.9990 
A comparison of the option values of the three methods at 

E = 8, d=0.08, r = 0.1, σ = 0.4 and T = 1. 
 

CONCLUSION 
Option pricing has been an increasingly popular field to 
study. Options provide investors limited downside in 
speculative trading and enable investors to hedge and to 
minimize risk. The  value of options depends on a number  

of variables such as stock price S, exercise price E, 
Volatility σ, time to expiration T, interest rate r and 
dividend payments D0. The study of European (American) 
call options with dividends with transformations to a 
usual (linear complementarity) form. With three finite 
difference methods to solve the option valuation problem 
of European (American) call with dividends and 
implements the methods in MATLAB to obtain numerical 
results that gauge the potential for computing based on 
the usual (linear complementarity) form. Through the 
numerical simulations of the model problem, we also 
verify that the explicit method suffers from the limitation 
on the  number of  time steps  size and  the both fully- 
implicit and Crank-Nicolson method are unconditionally 
stable and Crank Nicolson method converge faster than 
the explicit and implicit method. We see from the 
numerical values and financial theories that there is a 
negative relationship between dividend payouts and call 
option values. Option holders must take into consideration 
the effect of dividend when deciding if the option should 
be early exercised. 
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