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Abstract: We solve the Black - Scholes equation for option pricing numerically using an Explicit finite difference
method. To overcome the stability restriction of the explicit scheme for parabolic partial differential equations in the
time step size Courant-Friedrichs-Lewy (CFL) condition, we employ a Super Time Stepping (STS) strategy based on
modified Chebyshev polynomial. The numerical results show that the STS scheme boasts of large efficiency gains

compared to the standard explicit Euler method.
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INTRODUCTION

Options have been considered to be the most dynamic
segments of the security markets since the inception of
the Chicago Board Options Exchange (CBOE) in April
1973. With one million contracts per day, CBOE is the
largest option exchange in the world. After that, several
other options exchanges described in *.

The Black Scholes Model is one of the most important
concepts in modern financial theory. It was developed in
1973 by Fisher Black, Robert Merton and Myron Scholes?
and is still widely used till today. It is regarded as one of
the best ways of determining fair prices of options based
on six variables such as volatility, type of option,
underlying stock price, time, strike price, and risk-free
rate 2.

Explicit methods are simple and accurate to implement,
and are convenient for parallelization but suffer severely
with stability restriction on the time step size. To
overcome the stability restriction of the explicit method,
we apply first - order Super Time Stepping (STS) scheme
based on modified Chebyshev polynomial'. STS is a
technique which can be used to accelerate explicit scheme
for parabolic problems.

Our main objectives in this paper are: (a) to solve the
Black- Scholes Equation for option pricing numerically
using an Explicit finite difference method, and (b) to
overcome the stability restriction of the Explicit scheme
in order to meet these objectives, we employ a STS
strategy based on modified Chebyshev polynomial.

The Model Equation

The Linear Black-Scholes Equation (LBS)?, as developed
by Fisher Black and Myron Scholes in 1973 is,

v 1, .3V v B

E—f‘EJS 852—}—75%—?1/—0, (1)
where, V' =V (S,f), the pay of function, S = S(¢), the stock
price, ¢ = time with ¢ € (0,7] , T is the time of maturity,
7 > 0 is a constant riskless interest rate, o is constant
volatility for the asset. To solve the equation (1), we need
to state the initial and boundary conditions for both the
European Call and Put option.

European Call Option

The solution to the Black-Scholes Equation (1) is the
value V (S,1) of the European Call option? on 0<S<oo;

0 <¢<T. The boundary and terminal conditions are:
V(©,)=0for0<¢<T,

V(S)=S—Ee"™as S — oo, (2)
V(SH=(ES—-E)"
European Put Option

The terminal and boundary conditions for European Put
option are:

V(0,0)=Ee" ™ for0<t<T,
V(St)=0asS— o, 3)
V(St)=(E-9S"

It is difficult to find the analytic solutions to (1) for
European option. Therefore, we need to use a numerical
approximation. To find an approximation of the option
value, one can compute a solution to the Black-Scholes
Equation (1) using a finite difference method.

Finite Difference Method

The finite difference methods® attempt to solve Black
Scholes partial differential equation by approximating the
differential equation over the area of integration by a
system of algebraic equations. The most common finite
difference methods for solving the Black Scholes partial
differential equation are the Explicit method, the fully
Implicit method and the Crank-Nicolson method. These
are closely related but differ in stability, accuracy and
execution speed®. In this paper, we use Explicit method to
solve the equation (1).

Transformation

The Black Scholes Equation (1) is of backward type, so
considering the Black Scholes Equation and applying the
change of variables,

t=T—t

to transform the parabolic backward equation into a
forward equation'?. The equation becomes,
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The Explicit Method

We use a forward difference approximation for the time
derivative, a central difference approximation for the first
order S derivative and a symmetric central difference
approximation of the second order S derivative

9 (nAs,mAt) = W=V 4 O(A).
.

9 (nAs,mAt) = FHVEEL L O((As)?).
Y (nhs,mAt) = 202V L 0((As)?),

We get the following discretized form of equation (4)
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forn=12,.. . N—landm=0,1,2,...M— 1.
In this case , the error is of order O(At + (As?)).
From (5), we get
1
A= 5(0271.2 —rn)AtV"
+(1 = (r + a*n?) AtV (6)
+%(r-n +a?n?) ALV
forn=12,,. N—landm=0,1,2,...M— 1.
We denote
a=c*At
S =rAt.
We get
ymtl = %(cvm2 = An)V,"
+(1— (an® + B)V;" )

1
+5(an® + BV,

forn=12,..,N—landm=0,1,2,...M— 1.
Again, we denote
a=1—-on*=p)n=12,.,N-1
1
by = E(a(n—1)2—|—B(n—1)),n:2,3,...
1
Cn = 5(a(n+1)2 - B(n+1),n=0,1,2,...,N — 2.
Vnm+1 = CnVnﬂll + anVTzn + b"V'rﬁ-l (8)
the equation (8) holds for n = 1,2,...,N — 1. Since V"™ and
V{'p1 are not defined, so there are N — 1 equations for

N + 1 unknowns. The remaining two equations come
from the two boundary conditions on n» =0 and n = N.

SN

For call option
Vi = O forallm

VNm = NAs — Ee ™™
For put option

Vin = Ee~"™Aor all m

V=0
The equation (8) can be written as in the matrix equation
Vm+1 _ Avm +Xm (9)
where
V1m+l
Vm+1
Vm+1 — 2 ;
m+1
v
V™= me ,
Vi
- . -
0
X7TL —
0
| bV ]
m=20,1,2,..., M —1and
(@i b, 0 ... 0 ]
c1 as by
0
A=
0
bn—1
L 0 ... CN—2 OQaN-1 i

The matrix equation (9) can be written as
V= (I — BAOYV ™+ X"

where B = tridiag(—cn,en—bn),

en=r+onin=12,.. ,N—-1

Example 1. BV If the parameters are 0 < S < 20,E =10,r =
0.20,7 = lyr,o = 0.25 for a European call option value and
noting the effect of CFL condition Ate®n*= a1 < 1.
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Figure 1: Call option values at expiry, half year before and one year
before
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The example 1 gives the values of call option for different
expiry. The values of the option are obtained by using
Explicit finite difference method as shown in figure 1.

When stock price increases from the exercise price £ = 10
then the holder of the option will exercise at the maturity
date.

Example 2. If the parameters are 0 < S < 20,E = 10,7 =
0.20,7 = lyr,c = 0.25 for a European call option value
and noting the effect of Ato’n’= o > 1.

European Call Option Value, ¥(S.9) within the Explicit mMethod European Call Option within the Explicit Method
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Figure 2: Call option values at different expiry

Figure 2 shows that the rounding errors are growing in
magnitude at each iteration of the solution. Therefore, the
solution is unstable. The stability problem arises because
we are using the finite precision computer arithmetic to
solve the difference equation'?. This introduces rounding
error into the numerical solution to (8). The system is
stable if these rounding errors are not magnified at each
iteration. If the rounding errors do grow in magnitude at
each iteration of the solution procedure, then the system
(8) is unstable.

It can be shown that the system (8) is'%:

e stableif 0 < o<1
e unstable if a; > 1.

Super-Time-Stepping Scheme!

To overcome the stability restriction of the Explicit
method, we apply first order STS scheme [} based on the
modified Chebyshev polynomial. In order to relax the
CFL condition, we do not require stability at the end of
each time step Az, but rather at the end of a cycle of N
timesteps, thus leading to a Runge - Kutta - like method
with stages N. We introduce a superstep AT consisting of
N timesteps 71,72,73,...,7y. The idea is now to ensure
stability over the superstep A7, while trying to maximize
its duration

AT = 22:1 Tk,

Runge - Kutta Chebychev (RKC) scheme!

In this scheme , we define a super-step AT and divide it
into 7 steps with k= 1,2,...,N, so that the duration of one
super-step AT = 22;1 Th-

Then the Explicit Scheme (8) can be written as,
N
vt = T[d = Bryv™
k=1

(1D
The algorithm is subjected to the restrictive stabilty
condition if

p(I=BAY) <1 = (pp(A)) < 1 YA € [AminsAmax)

(12)

where p(.) denote the spectral radius and
N

v = [[d =7
k=1

and A are the eigenvalues of B. From the modified
Chebyshev polynomial, the partitions 7i,7,73,...,7v are
chosen subject to

M) <K (0<K<1)

, N
and 2O ED I, is maximal.

We can find

% 17 -l

2

T = Ategpl ((1 + v)cos ( ) +1+v

Amin

Where v is damping coefficient and 0 < v < £ We

can show the relation

al N 1 V)2V — (1= )2
G o=
(13)
which gives
AT = N*Aloy (14)

asv— 0.

Here N explicit steps, each of length Aty cover time
NAtey .Thus, N substeps of a superstep cover a time
interval N times longer than N explicit steps when v — 0.
Therefore, supersteping is N times faster than the
Standard Explicit Scheme at the same cost.

Implementation

One determines the explicit time-step Afeyy in the usual
way to satisfy the CFL condition, but instead of executing
steps of length At , one executes supersteps of length
AT as follows: choose N,v and execute the N sub-steps
71,72, 73,...,Tv , Without outputing until end of each super-
step. The only additional expense is trivial computation in
7, while the execution is accelerated by a factor of V.

Superstep v N-steps t-steps
1 0 20480 20480
4 0.20 1024 4096
4 0.15 1088 4352
6 0.10 512 3072
6 0.15 484 2904
8 0.10 288 2304
8 0.15 272 2176

Table 1: Performance of STS

Table 1 shows if the Superstep is one, then the number of
steps in Superstep and At., are same; if the Supersteps
are four, the number of steps in Superstep is four times
the number of steps in At..,; if the Supersteps are six, the
number of steps in Superstep is six times the number of
steps in Aty , and if the Supersteps are 8, the number of
steps in Superstep is 8 times the number of steps in Azey,.
Also, as Tablel shows, the number of steps of Superstep
depends on the damping factor v.
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CONCLUSION

In this work, N substeps of a Superstep cover a time
interval N times longer than N explicit steps when v — 0.
Therefore, Supersteping is N times faster than the
Standard Explicit Scheme at the same cost.
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