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Abstract: We solve the Black - Scholes equation for option pricing numerically using an Explicit finite difference 
method. To overcome the stability restriction of the explicit scheme for parabolic partial differential equations in the 
time step size Courant-Friedrichs-Lewy (CFL) condition, we employ a Super Time Stepping (STS) strategy based on 
modified Chebyshev polynomial. The numerical results show that the STS scheme boasts of large efficiency gains 
compared to the standard explicit Euler method. 
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INTRODUCTION 
Options have been considered to be the most dynamic 
segments of the security markets since the inception of 
the Chicago Board Options Exchange (CBOE) in April 
1973. With one million contracts per day, CBOE is the 
largest option exchange in the world. After that, several 
other options exchanges described in 4. 
The Black Scholes Model is one of the most important 
concepts in modern financial theory. It was developed in 
1973 by Fisher Black, Robert Merton and Myron Scholes2 
and is still widely used till today. It is regarded as one of 
the best ways of determining fair prices of options based 
on six variables such as volatility, type of option, 
underlying stock price, time, strike price, and risk-free 
rate 2. 
Explicit methods are simple and accurate to implement, 
and are convenient for parallelization but suffer severely 
with stability restriction on the time step size. To 
overcome the stability restriction of the explicit method, 
we apply first - order Super Time Stepping (STS) scheme 
based on modified Chebyshev polynomial1. STS is a 
technique which can be used to accelerate explicit scheme 
for parabolic problems. 
Our main objectives in this paper are: (a) to solve the 
Black- Scholes Equation for option pricing numerically 
using an Explicit finite difference method, and (b) to 
overcome the stability restriction of the Explicit scheme 
in order to meet these objectives, we employ a STS 
strategy based on modified Chebyshev polynomial. 
 

The Model Equation  
The Linear Black-Scholes Equation (LBS)2, as developed 
by Fisher Black and Myron Scholes in 1973 is, 

 , (1) 
where, V = V (S,t), the pay of function, S = S(t), the stock 
price, t = time with t ∈ (0,T] , T is the time of maturity,  
r > 0 is a constant riskless interest rate, σ is constant 
volatility for the asset. To solve the equation (1), we need 
to state the initial and boundary conditions for both the 
European Call and Put option. 

European Call Option 
The solution to the Black-Scholes Equation (1) is the 
value V (S,t) of the European Call option2 on 0≤S<∞; 
0 ≤ t ≤ T. The boundary and terminal conditions are: 
V (0,t) = 0 for 0 ≤ t ≤ T, 
V (S,t) = S − Ee−r(T−t) as S → ∞, (2) 
V (S,t) = (S − E)+. 
European Put Option 
The terminal and boundary conditions for European Put 
option are: 

V (0,t) = Ee−r(T−t) for 0 ≤ t ≤ T, 
 V (S,t) = 0 as S → ∞, (3) 
V (S,t) = (E − S)+. 

It is difficult to find the analytic solutions to (1) for 
European option. Therefore, we need to use a numerical 
approximation. To find an approximation of the option 
value, one can compute a solution to the Black-Scholes 
Equation (1) using a finite difference method. 

 
Finite Difference Method  
The finite difference methods3 attempt to solve Black 
Scholes partial differential equation by approximating the 
differential equation over the area of integration by a 
system of algebraic equations. The most common finite 
difference methods for solving the Black Scholes partial 
differential equation are the Explicit method, the fully 
Implicit method and the Crank-Nicolson method. These 
are closely related but differ in stability, accuracy and 
execution speed6. In this paper, we use Explicit method to 
solve the equation (1). 

Transformation 
The Black Scholes Equation (1) is of backward type, so 
considering the Black Scholes Equation and applying the 
change of variables, 

τ = T − t 
to transform the parabolic backward equation into a 
forward equation12. The equation becomes, 
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                (4) 
The Explicit Method 
We use a forward difference approximation for the time 
derivative, a central difference approximation for the first 
order S derivative and a symmetric central difference 
approximation of the second order S derivative 

 
We get the following discretized form of equation (4) 

  (5) 
for n = 1,2,...,N − 1 and m = 0,1,2,...,M − 1. 
In this case , the error is of order O(∆t + (∆s2)). 
From (5), we get 

  (6) 

                                   
for n = 1,2,...,N − 1 and m = 0,1,2,...,M − 1. 
We denote 
                            α = σ2∆t 
                            β = r∆t. 
We get 

  (7) 

                                    
for n = 1,2,...,N − 1 and m = 0,1,2,...,M − 1. 
Again, we denote 

an = (1 − αn2 − β),n = 1,2,...,N – 1 

 
the equation (8) holds for n = 1,2,...,N − 1. Since  and 

 are not defined, so there are N − 1 equations for  
N + 1 unknowns. The remaining two equations come 
from the two boundary conditions on n = 0 and n = N. 
For call option  

 for all m 

VNm = N∆s − Ee−rm∆t 
For put option 

for all m       

VN
m = 0 

The equation (8) can be written as in the matrix equation 

 

 
The matrix equation (9) can be written as 

V m+1 = (I − B∆t)V m + Xm 
where B = tridiag(−cn,en,−bn), 
en = r + σ2n2,n = 1,2,...,N − 1. 
Example 1. [5] If the parameters are 0 ≤ S ≤ 20,E =10,r = 
0.20,T = 1yr,σ = 0.25 for a European call option value and 
noting the effect of CFL condition ∆tσ2n2 = α1 ≤ 1. 

 
Figure 1: Call option values at expiry, half year before and one year 
before 
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The example 1 gives the values of call option for different 
expiry. The values of the option are obtained by using 
Explicit finite difference method as shown in figure 1. 
When stock price increases from the exercise price E = 10 
then the holder of the option will exercise at the maturity 
date. 
Example 2. If the parameters are 0 ≤ S ≤ 20,E = 10,r = 
0.20,T = 1yr,σ = 0.25 for a European call option value 
and noting the effect of ∆tσ2n2 = α1 > 1. 

 
Figure 2: Call option values at different expiry 

Figure 2 shows that the rounding errors are growing in 
magnitude at each iteration of the solution. Therefore, the 
solution is unstable. The stability problem arises because 
we are using the finite precision computer arithmetic to 
solve the difference equation12. This introduces rounding 
error into the numerical solution to (8). The system is 
stable if these rounding errors are not magnified at each 
iteration. If the rounding errors do grow in magnitude at 
each iteration of the solution procedure, then the system 
(8) is unstable. 
It can be shown that the system (8) is12: 

• stable if 0 < α1 ≤ 1 
• unstable if α1 > 1. 

Super-Time-Stepping Scheme1 
To overcome the stability restriction of the Explicit 
method, we apply first order STS scheme [1] based on the 
modified Chebyshev polynomial. In order to relax the 
CFL condition, we do not require stability at the end of 
each time step ∆t, but rather at the end of a cycle of N 
timesteps, thus leading to a Runge - Kutta - like method 
with stages N. We introduce a superstep ∆T consisting of 
N timesteps τ1,τ2,τ3,...,τN. The idea is now to ensure 
stability over the superstep ∆T, while trying to maximize 
its duration 

. 
Runge - Kutta Chebychev (RKC) scheme1 
In this scheme , we define a super-step ∆T and divide it 
into τk steps with k = 1,2,...,N, so that the duration of one 

super-step . 

Then the Explicit Scheme (8) can be written as, 

 
The algorithm is subjected to the restrictive stabilty 
condition if 

ρ(I−B∆t) < 1 ⇒ (pN(λ)) < 1 ∀λ ∈ [λmin,λmax] 
(12) 

where ρ(.) denote the spectral radius and 

 
and λ are the eigenvalues of B. From the modified 
Chebyshev polynomial, the partitions τ1,τ2,τ3,...,τN are 
chosen subject to 

|pN(λ)| ≤ K,(0 < K < 1) 

and  is maximal. 
We can find 

 
Where ν is damping coefficient and . We 
can show the relation 

 
(13) 

which gives  

 ∆T  N2∆texpl. (14) 

as ν  0. 
Here N explicit steps, each of length ∆texpl, cover time 
N∆texpl .Thus, N substeps of a superstep cover a time 
interval N times longer than N explicit steps when ν → 0. 
Therefore, supersteping is N times faster than the 
Standard Explicit Scheme at the same cost. 

Implementation 
One determines the explicit time-step ∆texpl in the usual 
way to satisfy the CFL condition, but instead of executing 
steps of length ∆texpl , one executes supersteps of length 
∆T as follows: choose N,ν and execute the N sub-steps 
τ1,τ2,τ3,...,τN , without outputing until end of each super-
step. The only additional expense is trivial computation in 
τk , while the execution is accelerated by a factor of N. 

Superstep ν N-steps t-steps 
1 0 20480 20480 
4 0.20 1024 4096 
4 0.15 1088 4352 
6 0.10 512 3072 
6 0.15 484 2904 
8 0.10 288 2304 
8 0.15 272 2176 

Table 1: Performance of STS 

Table 1 shows if the Superstep is one, then the number of 
steps in Superstep and ∆texpl are same; if the Supersteps 
are four, the number of steps in Superstep is four times 
the number of steps in ∆texpl; if the Supersteps are six, the 
number of steps in Superstep is six times the number of 
steps in ∆texpl , and if the Supersteps are 8, the number of 
steps in Superstep is 8 times the number of steps in ∆texpl. 
Also, as Table1 shows, the number of steps of Superstep 
depends on the damping factor ν. 
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CONCLUSION 
In this work, N substeps of a Superstep cover a time 
interval N times longer than N explicit steps when ν → 0. 
Therefore, Supersteping is N times faster than the 
Standard Explicit Scheme at the same cost. 
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