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Abstract  
In an open shop scheduling problem (OSSP) one of the major tasks is to minimize the makespan over the sequences. 
It has practical values, for instance, in manufacturing, service industries, communication, and facility assignments. 
The concept of irreducibility has proven one of the most important and fertile research topics as the set of all 
irreducible sequences attains optimality independent of processing times. We present the recent complexity status of 
irreducibility of OS sequences. The recent works give encouraging results. The results obtained in past several years 
are viewed with useful hints for the developments of exact or heuristic algorithms and generalize the idea to general 
regular objectives. 
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Introduction 
We consider the strongly NP-hard OSSP O||Cmax 
(Gonzalez & Sahni 1976), which has been mostly 
considered (see, Andresen et al. 2008). In the scheme 
α|β|γ, α, β and γ, respectively, represent the machine 
environment, job characteristics and optimality 
criterion. In a preemptive schedule, a job can 
interrupt its processing and complete the remaining 
part in later time on the same machine. Each job i, 
with i ∈ I = {1, . . . , n} has to be processed on each 
machine j, with j ∈ J = {1, . . . , m} exactly once 
without preemption for the positive time such that, at 
a time, each machine can process at most one job and 
each job can be processed on at most one machine. 
The problem O2||Cmax is solvable in linear time 
(Gonzalez & Sahni 1976, Braesel & Kleinau 1996). 
 
 
The order in which a job is processed on machines is 
called machine order and the order in which a 
machine processes jobs is called job order. It is an OS 
if all processing orders are arbitrarily. An optimizer 
seeks to find a sequence (feasible combination of all 
job orders and machine orders) which minimizes the 
makespan. A schedule is the corresponding timetable. 
A sequence is optimal if it yields a schedule with 
minimum objective  value  from the  feasible  set. Let  
 
 

 
 
SIJ = I × J, P = [pij ]n×m and C = [cij]n×m be the sets 
of all operations oij, and matricies of processing times 
pij and of completion times cij, respectively. The 
objective function is Cmax = maxiCi = maxij(cij), 
where the completion time Ci is the completion time 
of job i. The set of all instances of P = [pij] is denoted  
by Pnm. Here, Cmax(A) represents the finish time of 
the schedule C = (A, P) for the matrix P and the 
sequence A. 
 

A schedule is called semiactive if each operation is 
started as early as possible with respect to the given 
processing orders. For a regular objective, one can 
restrict the investigation in the space of all semiactive 
schedules. Mapping the associated semiactive schedule C 
for a given A and P is an easy problem. The difficulty 
on the complexity issues of the OSSP lies to the 
construction of an appropriate sequence. Therefore, the 
study concentrated either on the determination of 
polynomial solvable subproblems or on the 
development of an algorithm for an approximate 
solution. 
 
 

Determination of the feasible solution space by 
considering the cardinality of special latin rectangles 
or the chromatic polynomial of the Hamming graph 
Kn×Km is a difficult counting problem (Harborth 1999). 
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A closed formula for this unsolved counting problem 
is unlikely in general. However, bounds are available 
in general cases (Braesel & Kleinau 1992a, 1999b, 
Dhamala 2002). Enumerative results demonstrate a 
huge number of sequences in OSP (Braesel et al. 
1999a, 1999b, Harborth 1999).  
  
A set of sequences is potentially optimal if it contains 
an optimal sequence with respect to the given 
objective function for arbitrary data. The elements of 
such a solution set are potentially optimal. Obviously, 
the set of all sequences is potentially optimal thought 
not the minimal one. Existence of unique minimal 
potentially optimal set is unlikely, in general.  
 
Reducibility is very applicable when the processing 
times are erroneous, difficult to find out in advance or 
simply unknown in manufacturing and service 
industries. For example, a car may require repairs on 
its engine, body and electrical circuit in a large 
automotive garage with specialized shop centers. 
These operations may be processed in any order but it 
is not possible to perform any two of the same job 
simultaneously. Similar applications of OSSP may 
arise in testing components of an electronic system, 
repairing parts of an airplane in a large aircraft garage 
and satellite communications (Prins 1994). The OS 
arises in many industrial environments like quality 
control centers, semiconductor manufacturing 
including the applications in examination scheduling 
and teacher class assignments (Andresen et al. 2008). 
 
 
The irreducible sequences by introducing a 
dominance relation on the set of all sequences with a 
fixed format n × m have been studied since last 20 
years (Kleinau 1993). The irreducible elements are 
the minimal sequences with respect to this partial 
order independent of the given processing times. The 
solution set of all these locally optimal sequences is 
potentially optimal of smaller cardinality. The 
irreducible sequences for the problem O||Cmax on an 
operation set with spanning tree structure are studied 
in (Braesel & Kleinau 1996). This concept to 
minimize the makespan have been studied in 
(Dhamala 2008). A necessary and sufficient 
condition for the irreducibility can be tested in 
polynomial time on tree-like operation sets 
(Tautenhahn & Willenius 2000).  
 
 
The irreducibility is generalized by considering a 
dominance relation between a sequence and a set of 
sequences (Tautenhahn & Willenius 2000, Willenius  

 
2000). A sequence A is unavoidable with respect to a 
sequence set if for all sequences in this set, there exist 
processing times with a better value on A. They give 
several necessary and sufficient conditions for a 
sequence to be dominated by a set. They formulate 
the dominance relation as a mixed integer program 
and compute minimal potential solutions for small 
sized OSP. The results on irreducibility for other 
regular objectives are extended in (Willenius 2000). 
A sequence decomposition approach is introduced in 
(Dhamala 2002, Dhamala 2007).  
 
Problems with uncertain input data under uncertainty 
have been considered under stability analysis 
calculating the stability radius. This radius is the 
largest quantity of independent variations of the data 
such that an optimal schedule remains optimal. It is 
used for the phase of an algorithm at which a 
sequence of a scheduling problem has already been 
found and more calculations are made in order to 
investigate how this sequence depends on the data. 
There are relations between the stability and 
irreducibility analysis (Sotskova 2001, Harborth 
1999). 
 
Up to today, no polynomial time algorithm is known 
for the decision whether a sequence is irreducible in 
the general case. Recently, two variants of algorithms 
based on the specific properties of the corresponding 
H-comparability graph are presented and thus the 
problem of irreducibility is solved partially in 
(Andresen 2009, Dhamala 2010, Andresen & 
Dhamala 2010). The first variant is polynomial 
whereas the second is exponential. They expose a 
number of open problems.  
 
Section 2 reviews the mathematical formulation of 
shop graphs and their main properties. We give brief 
sketch of irreducibility and reducibility in Section 3. 
It also considers the minimal potentially optimal 
solution sets and gives the main idea of recent 
reducing algorithms. Last section concludes the 
paper. 
 
 

Fundamental Properties 
The Sequence Graph 
Here, we use the block-matrices model (Braesel 
1990).  Special latin  rectangles  are used  to 
formulate  this model which are also called 
sequences. A latin rectangle  LR[n, m, q] = [lrij]  is  a 
matrix  of size  n × m  with lrij  ∈ {1, . . . , q}  
such  that  each integer  of the  symbol  set {1, . . . , q}   
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occurs at most once in each row and in each column 
of LR. If n = m = q, then the matrix is a latin square 
of order n (Dhamala 2002). 
 
  
The n × m matrices of all job orders and machine 
orders are denoted by JO and MO, respectively. By 
moij = k we mean that oij is the k-th operation of job i 
in the machine order. For any (MO, JO), we define 
the shop graph GMO,JO = (SIJ, E) where E represents 
the precedence constraints between the operations. A 
shop graph is a sequence graph, which is an acyclic 
orientation of the disjunctive graph, (nonsequence 
graph) if it is acyclic (cyclic). An efficient algorithm 
of complexity O(max{mn2, m2n}) to decide whether a 
given connected digraph is a shop graph (sequence 
graph) is given in (Dhamala 2002, Braesel et al. 
2001).   
 
For each sequence graph we can describe the 
sequence (MO, JO) by a special latin rectangle A = 
[aij], where aij = rank (oij), with sequence property: 
for each integer aij > 1 there exists aij − 1 in row i or 
in column j or in both. An arc from oij to okl exists if 
and only if i = k or j = l is satisfied and aij < akl 
holds.  
 
Example 2.1 The machine orders for the jobs J1 : M1 
→ M2 → M3, J2 : M1 → M3 → M2, and the job 
orders on the machines M1 : J1 → J2, M2 : J1 → J2, 
M3 : J2 → J1, yield the following matrices  
  

 

A= ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
342
421

,   

 

MO = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
231
321

,  JO = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
122
211

 

 
By A−1  we mean the reversed sequence constructed 
from A with all arcs in the reversed direction. 
 
Theorem 2.1 There is a one-to-one correspondence 
between the sets of all sequences and all sequence 
graphs. The mapping is in linear time on the number 
of operations. 
 
 
For this, one calculates the rank matrix (latin 
rectangle) to each vertex of the sequence graph, and 
on the other hand, also constructs a sequence graph 
with labeling the integers of a latin rectangle (Braesel 
1990).  
 

 
Counting Sequences 
It  holds,  |Snm| +|S*nm|=(m!)n (n!)m for the sequence set 
Snm and the nonsequence set S*nm of n × m  the shop 
graphs in OS. Exact formula for 2-jobs and better 
bounds for the exact algorithms for higher order 
sequences are given in (Kleinau 1993, Braesel & 
Kleinau 1992).  Moreover, exact numbers are 
calculated for n=2∧ (2 ≤ m ≤ 8) and n = 3∧ (3 ≤ m ≤ 4) 
(Braesel & Kleinau 1992), and for n = 3∧ (5 ≤ m ≤ 7) 
and n = 4 ∧ (4 ≤ m ≤ 5) in (Braesel et al. 1999a, 
1999b). 
  
An infinite set of schedules can be assigned to each 
sequence. We can define an equivalence relation on 
the set of all schedules decomposing the set into 
finite number of classes. Two schedules belong to the 
same class if and only if they base on the same 
sequence. The semiactive schedules under unit 
processing times, i.e., a finite set of all sequences, are 
used to find a set of distinct representatives. 
 
 
One way, to deal with the cycle space S*nm is to 
count the fundamental cycles in the shop graph.  Each 
subgraph of Kn × Km induced by the operations {oi1j1 , 
oi1 j2 , . . . , oiK−1jK , oiK jK , oiK j1} with k ∈ {2, . . . , 
min{m, n}}, iu = iv and ju = jv for all u, v with u = v, is 
called a fundamental cycle [C2k] of length 2k. Each 
[C2k] alternately contains edges of Km and Kn. There 
are 22k different orientations of [C2k] but only two of 
them are fundamental dicycles.  
 
Each nonsequence graph contains at least one such a 
dicycle. For fixed k ∈ {2, . . . , min{m, n}}, The 
number of dicycles which contain at least one fixed 
fundamental dicycle is given in (Dhamala 2002).  
Moreover, a general formula for the number of all 
sequences is developed. First question would be: how 
can a set of pairs (MO, JO) be constructed with 
exactly given number of prescribed dicycles?  
 
Theorem 2.2 Let LS1, LS2 ∈ LS[n]. Then, a 
necessary and sufficient condition that the pair (LS1, 
LS2) is a sequence is that they are identical. 
 
 
Irreducibility  
A given sequence A is called reducible to another 
sequence B if Cmax (B) ≤ Cmax (A) for all P ∈ Pnm, 
denoted by B p  A. Clearly, B is optimal if B p  A for all  
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A, though an optimal solution may not be unique. The 
equality Cmax (A) = Cmax (A−1) holds. A sequence A is 
called strongly reducible to B, denoted by B ≺ A, if B 
p  A but not A p  B. Two sequences A, B are called 

similar, A ≃  B, if B p  A and A p  B. A sequence is 
irreducible if there exists no other non-similar 
sequence to which it can be reduced. 
  
The set of all n ×m irreducible sequences is denoted 
by SI

nm. The irreducible elements are the minimal 
sequences with respect to the partial order ≺ and 
hence are locally optimal. This relation drastically 
reduces the set of all sequences which must be 
considered. The similarity relation ≃ is an 
equivalence relation on Snm decomposing this set into 
disjoint equivalence classes. The set of all pairwise 
non-similar irreducible sequences, denoted by SI

nm∗, 
is potentially optimal and |SI

nm∗ | ≤ 12 |SI
nm| holds.  

 
 
Maximal Paths 
A path wA with vertex set V (wA) in the sequence A is 
called maximal if there does not exist another path 
wA∗ with V (wA) ⊂ V (wA∗). The set of all maximal 
paths in A, denoted by WA, contains an exponential 
number of maximal paths. One of the paths in WA 
becomes the longest depending on processing times. 
The A reduced to B if and only if for all wB ∈ WB 
there exists wA ∈ WA such that V (wB) ⊆  V(wA). If 
B≺ A, then there exists wB ∈ WB such that V(wB) ⊂ 
V(wA) for some wA ∈ WA. The relation B≺ A does not 
necessarily imply Cmax(B) < Cmax(A) for arbitrary pij. 
The strict inequality remains true if there exists a 
unique maximal path in A. The following matrices 
illustrate more explanation. 

A= ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
342
421

,  B = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
231
314

,   

 

C = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
231
312

, P = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
111

1011
 

 
We have A ≻ B (respectively, B ≻ C) since {o11, o21, 
o22} (respectively, {o23, o13, o11}) belong to a common 
path in A (respectively, in B) but not in B 
(respectively, in C), and whenever certain operations 
belong to a common path in the latter sequence these 
operations also belong to a common path in the 
former. Moreover, Cmax(A) = Cmax (B) = 13 but 
Cmax(C) = 12 for given P = [pij].  
 

 
An undirected graph G = (V, E) is called a 
comparability graph if there exists an acyclic 
orientation Etr  of E  such that the corresponding 
digraph Gtr = (V, Etr ) is transitive closure, i.e. (a, b) 
∈ Etr and  (b, c)  ∈  Etr   implies that (a, c)  ∈  Etr   
for  all  arcs. The  comparability  graph  of  a  sequence  
graph GA is denoted by [Gtr

A], where [G] stands for 
the underlying undirected graph of a digraph G and 
Gtr = (V, Etr) denotes the transitive closure of G, 
(Dhamala 2002). 
 
Sequence Implication Classes 
An arc (oij , okj) in A is said to directly imply (oij , oil) 
in the same sequence if and only if {okj , oil} ∉ [EA

tr]. 
Similarly, we have (oil, okl) γ (okj, okl) in sequence A if 
and only if {oil, okj } ∉ [EA

tr]. If {oil, okj} ∉ [EA
tr], then 

{oil, okj } ∉ [EB
tr ] whenever A is reduced to B. An arc 

(oij , ouv) in a sequence A is said to imply an arc (okl, 
oxy) in the same sequence, denoted by (oij , ouv) γ tr 

(okl, oxy), if there exists a chain of arcs e1, e2, . . . , ek 
in A such that (oij , ouv) γ e1 γe2 . . . ek γ (okl, oxy) holds. 
The relation γtr is an equivalence relation partitioning 
the arc set of sequence graph into disjoint 
equivalence implication classes in O(n2m2) time and 
space (Willenius 2000). We call these classes by 
sequence implication classes. 
  
Note that a graph is a comparability graph if and only 
if there is no implication class containing both an arc 
and its reverse. A sufficient condition for 
irreducibility is presented in terms of implication 
classes (Braesel et al.1999a, Willenius 2000). 
 
Algebraic Structures 
Let St be the symmetric group of order t and Z2 be the 
cyclic group of order two. Consider a row 
permutation πr ∈  Sn, a column permutation πc ∈ Sm, 
a transposition Φ ∈ Z2, and a reversion Ψ ∈ Z2 of a 
matrix, respectively. Two given sequences A and B, 
they are called structure isomorphic, graph 
isomorphic or permutation isomorphic, denoted by 
≅s, ≅g or ≅p if there exists a mapping such that (πr, πc, 
Φ, Ψ)A = B, (πr, πc, Φ)A = B or (πr, πc)A = B, 
respectively. Each of these isomorphism relations 
yields an equivalence relation decomposing the set of 
all sequences into disjoint isomorphism classes.  
 
Theorem 2.3 Let A and B be two n × m sequences of 
the same size. Then the isomorphism of A and B is 
decidable in O(min{mn2, m2n}) time. 
  
The sets of all isomorphism of the same type and 
same formats form a group G, Sn ×  Sm, Sn × Sm × Z2 
and Sn × Sm × Z2 × Z2 for permutation isomorphism, 
graph isomorphism and structure isomorphism,  
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respectively. For each sequence A and the group of 
any type above, the sets {φ ∈ G : φ(A) = A} and 
{φ(A) : φ ∈ G} are the stabilizer and orbit of A with 
the property |{φ ∈ G : φ(A) = A}| × |{φ(A) : φ ∈ G}| 
= |G|. 
 
 
The orbits are the isomorphism classes and the 
elements of the stabilizer of sequence A are the 
automorphisms of A.  
 
 
Therefore, given a system of distinct representatives 
SDR for each isomorphism classes, the total number 
of sequences is given by the algebraic class equation 
(Harborth 1999). However, the number of distinct 
automorphisms for A is not known in general, an 
algebraic problem. The properties of sequence 
isomorphism play important roles for the 
enumeration of OSP (Braesel et al 1999a). 
 
 
Theorem 2.4 Let A and B be two sequences in the 
same isomorphism class. Then sequence A is 
irreducible if and only if the sequence B is also 
irreducible. 
 
 
Irreducibility of Sequences 
We give different approaches of test and the current 
status of irreducibility in the OSP. Extensive studies 
consider the problem O||Cmax with respect to the 
irreducibility theory (Dhamala 2007, Andresen 
2009).   
 
The set of all irreducible sequences for the OSP 
O2||Cmax are presented in (Braesel & Kleinau1996). 
Also, they obtain an optimal sequence in the set of all 
irreducible sequences. For every A ∈ SI

2m there 
exists a k ∈ {2, . . . , m} such that A can be obtained 
by a permutation of the columns of the following 
sequence 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−+−

+−
1...21...2

...11...1
kmmkm

mkkk

 
 
The main idea of their proof is to show that any 
sequence in this class is irreducible and any sequence 
not belonging to this class reduces to a sequence 
belonging to this class. 
 
 
The total number of irreducible sequences for O|n = 
2|Cmax is m!(m − 1) which is dominated by the total 
number of sequences. This justifies that only a small 
fraction of all sequences is irreducible. 

 
Comparability Graphs 
The decision problem whether a given sequence is 
reducible, similar or strongly reducible to another 
given sequence takes exponential time by using the 
definition. However, this can be solved by using the 
algorithms on the transitive closures for graphs which 
needs O(n2m2) time to determine the transitive 
closure of a sequence graph and to check if [Gtr

B ] is a 
subgraph of [Gtr

A] (Braesel et al. 1999b). 
 
Theorem 3.1 Let A, B ∈ Snm. Then A is similar, 
reducible or strongly reducible to B for O||Cmax  if 
and only if [Gtr

B] = [Gtr
A ], [Gtr

B] ⊆ [Gtr
A] or [Gtr

B ] 
⊂ [Gtr

A ], respectively. 
 
 
Let Ed be the set of all diagonal arcs in the transitive 
closure Gtr

A  = (SIJ, EA
tr ), and let EA  = EA

tr  \ Ed be  
the  set  difference. Then  the  graph  GA   =  (SIJ, EA)  
is  such  that  [GA]  = Kn  × Km  for  any n × m 
sequence A. A sequence A is irreducible if and only if 
there exists no comparability graph GC = (SIJ, EC ) 
such that [GA] ⊆ GC ⊂ [Gtr

A ]. Assuming that a given 
graph G contains no comparability graph GC with 
[GA] ⊆ GC ⊂ G, they present an algorithm of 
complexity O(n2m2) to test whether there is a 
sequence A with G = [Gtr

A ]. 
 
 
Several sufficient conditions for sequence 
reducibility which can be tested without computing 
the transitive closures of the associated sequence 
graphs are presented in (Braesel et al. 1999a, 
Harborth 1999). For example, an n × m sequence 
[aij], where min{n, m} ≥ 3, having an operation oij 
with aij ≥  nm−2 is strongly reducible. Likewise, any 
sequence with oij such that oij has at least one 
successor but none of its successors in row i or 
column j has a direct predecessor outside row i and 
column j, respectively, is strongly reducible to some 
sequence for O || Cmax. Following result is applicable 
to investigate certain properties in OSP. 
 
Theorem 3.2 Let A be a sequence such that each job i 
∈ {1, 2, . . . , n} is first processed on the same 
machine j ∈ {1, 2, . . . , m}. Then there exists a 
sequence B ∈ Snm such that B ≺ A for Cmaxx.  
 
If one wish to test whether a given sequence can be 
strongly reduced to another sequence by deleting an 
operation and reinserting it as a sink or a source, it 
has to ensured that no new path is created in the latter  
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sequence and at least one path is destroyed in the 
former one. This test can be performed in O(n2m2) 
time and in O(n2m2) space, given an n × m sequence 
(Braesel et al. 1999b). They prove that a sequence 
with only one sequence implication class is 
irreducible. In particular, any complete latin square is 
irreducible for the makespan objective. Therefore, if 
n = m, each rank minimal sequence is irreducible. 
But, in general, there exist rank minimal sequences 
which are reducible. 
 
 
To check the reducibility of a sequence by the 
reversion of a certain set of arcs in it having more 
than a single implication class, one has to consider 
one implication class totally. In this reducibility test, 
for each subset of the set of sequence implication 
classes in given sequence, we have to construct a 
possibly reduced sequence from it by reversing the 
orientations of all arcs belonging to these sequence 
implication classes. This test depends on the number 
of sequence implication classes, which may cause 
exponential cost. In the worst case, if all operations 
belong to a single path, one has to check all O(2nm2 
+mn2) subsets of sequence implication classes (Braesel 
et al. 1999a). They illustrate that, the smaller ranks 
do not necessarily imply a less number of implication 
classes. 
 
Enumeration Procedures 
An enumeration algorithm which computes all 
irreducible sequences constructing inclusion minimal 
comparability graphs by successively inserting 
diagonal arcs into [GA] can be found in (Braesel et al. 
1999a). Each sequence in such a set to minimize Cmax 
is similar to exactly one sequence in this class, 
namely its reverse one. This algorithm constructs 
graphs G such that G = [Gtr

A] for some sequence A. 
Number of diagonal arcs play crucial important role 
in this algorithm. For min{n, m} ≥ 2, a lower bound 
on the number of diagonal arcs of an n × m sequence 
on the complete operation set is of size O(n2m2) . 
  
An insertion method for the enumeration of all 
sequences can be found in (Braesel & Kleinau 1992). 
This method is modified and a new enumeration 
algorithm is presented in (Braesel et al. 1999a). In 
their algorithm, a set of nonisomorphic sequences is 
computed and, thereafter, tested for irreducibility. 
One sequence per isomorphic class is sufficient. They 
compute that the ratio between the number of 
irreducible sequences and all sequences decreases 
with growing n and m. 
 

 
A dominance relation is formulated as a mixed 
integer programming in (Tautenhahn & Willenius 
2000). They compute unavoidable sequences for 
small formats. Among seven classes of all 3 × 3 
irreducible sequences only three of them are 
unavoidable in the sense that these together with their 
reverses are the unique optimal solutions for certain 
matrices of processing times. This set is the minimal 
one ensuring of at least one optimal solution. A 
sequence of biggest rank five among all O3|n = 
3|Cmax  irreducible sequences belongs to the class of 
unavoidable sequences. For the problem O3|n = 
2|Cmax,, the minimal cardinality of a potentially 
optimal solution is 3. There are two disjoint 
potentially optimal solutions of this cardinality. Thus, 
the minimal set is not unique. 
 
The set of all latin squares does not guarantee the 
existence of an optimal solution for O || Cmax. There 
exist irreducible sequences that are not rank minimal 
(Braesel et al. 1999a). 
 
 
Sequence Decomposition 
A generalized decomposition on irreducibility is 
introduced in (Dhamala 2002). For this, we consider 
an underlying 2 × 2 OS problem by the assignment of 
an operation to each part. In the 2 × 2 OSP, we hav2 
irreducible (1 unavoidable) and 12 reducible 

sequences, namely, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
12
21

and ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
21
12

. Then, we 

partition  an  n × m  sequence   called  the  A(i, j)-

decomposition  A(i,j) = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−−−

−

jminjin

jmiij

SS
SS

,,

,
. 

 
In this partition,  the A(i, j)-decomposition is a block 
decomposition where at least one part in {Si,j , Si,m−j , 
Sn−i,j , Sn−i,m−j } is a block of at least 2 × 2 size. In the 
cases when any one of the sequences Sk,l in A(i, j) 
represents an 1 × 1 matrix, we denote it by A(1, 1) 
and we call an operation decomposition. In the A(1, 
1) decomposition one of the blocks Sk,l contains only 
one but arbitrary ouv, without loss of generality, we 
assume that the block S1,1  = (o11).  
 
Furthermore, consider the following three class 

representatives: ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
22
21

, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
32
21

 and ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
34
21

, 

which are the lexicographically minimal in their 
structure isomorphic classes of  2 × 2  OSP. Then  we  
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construct the corresponding A(i, j) decompositions, 
denoted by type1, type2 and type3, respectively.  
 
An n × n irreducible sequence A is said to satisfy the 
irr-decomposition property if it contains exactly n 
sinks and there exists no other sequence  S ≠ A−1 
similar to the sequence A.  
 
For the proof of Theorem 3.3, invariant property of 
irreducibility within each isomorphic class is 
applicable. Afterwards, it is shown that there is no 
any other nonsimilar sequence of the type1 to which A 
can be reduced. Neither it can be reduced to the 
sequence of any other types. It is conjectured that 
Theorem 3.3 holds even if the second condition of 
this property is violated. For this, the structure of 
similarity of sequences has to be understood better. 
 
 
Theorem 3.3 Consider the A(1, 1) decomposition of 
type1 in an n × n sequence A where SA = Sn−1,n−1 is 
irreducible for O||Cmax. Then, A is irreducible for 
O||Cmax  if SA satisfies the irr-decomposition property. 
 
As a consequence, any A(1, 1) decomposition of 
type1 in an (n + 1) × (n + 1) sequence A, where Sn,n is 
a latin square sequence of order n, is irreducible for 
Cmax. Observe that ai1 and a1j in this sequence are the 
permutations of {n + 1, . . . , 2n} for all i, j ∈ {2, . . . , 
n + 1}. Therefore, there exists an irreducible 
sequence of format (n + 1) × (n + 1) with maximal 
rank 2n for O || Cmax.   
Corollary 3.1 Any A(i, i)-decomposition of type1, 
where all of its 4 partitions are latin squares of order 
at least 2 is an irreducible sequence for Cmax.    
Any A(1, 1) decompositions of type2 and type3 in an 
n × m sequence A is a strongly reducible sequence for 
Cmax, see Theorem 3.2. However, a natural question 
is: do there exist irreducible sequences of type2 and 
type3 in these block-decompositions? A positive 
answer is unlikely.  
 
Note that the irr-decomposition property is not a 
necessary condition for the irreducibility of a 
sequence for O || Cmax. If we consider an A(i, j) 
decomposition for i ≥ 2 and j ≥ 2 with type1, then an 
example illustrates that there exists a reducible 
sequence even if all 4 partitions contain the same 
irreducible sequence. But, it is also possible to 
construct an irreducible sequence by considering the 
same irreducible sequence as its all 4 partitions. In 
the following, both sequences A and B are 
irreducible: 
 
 

A = 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

2174
1543
7651
8762

   and  B = 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

2174
1543
7652
8761

. 

But the decompositions ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
AA
AA

 and ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
BB
BB

 

are, respectively, irreducible and reducible for Cmax 
 

 
Generalized Numerical Data 
The concept of irreducibility for arbitrary release 
time ri ≥ 0, due date di ≥ 0, weight wi ≥ 0 and pij ≥ 
0 with respect to some regular objectives γ can be 
found in (Willenius 2000). 
 
A sequence A ∈ Snm is called r-reducible to B ∈ Snm, 
if Cmax(B) ≤ Cmax(A) for all instances of processing 
times P and release dates r = [ri]. A sequence A ∈ 
Snm is called general reducible to B ∈ Snm if Ci (B) ≤ 
Ci (A) for all jobs i and all numerical data. Obviously, 
if Ci (B) ≤ Ci (A) for all jobs and all numerical data, 
then γ(B) ≤ γ(A) holds for all regular γ. The 
definitions of strong reducibility, similarity and 
irreducibility have been extended similarly. 
 
A number of results in terms of comparability graphs 
and precedence relations between operations, and 
some interesting relations between the general 
reducibility and r-reducibility are established. For 
instance, for any two sequences A and B, it holds that 
B is r-reduced to A if and only if B−1 is g-reduced to 
A−1. 
 
Conflict Resolution 
The theory of irreducibility for the OSP with respect 
to the H-comparability graph has been investigated 
and the complexity issues of the decision problem 
whether a given sequence is irreducible has been 
discussed in (Andresen 2009, Andresen & Dhamala 
2010). Two variants of algorithms, one with 
polynomial time complexity and the other an 
enumerative, have been proposed which differ 
depending on specific characteristics of the diagonal 
edges of the corresponding H-comparability graph of 
the given sequence. For computational results we 
refer to, [LiSA, 2010]. 
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These results relay on the role of the diagonal edges 
which have to be removed as a set rather than as a 
particular member. Main idea behind this is to 
destroy a path, which has to be broken between two 
extended sequence implication classes. One of the 
main issues while doing this process is that the 
diagonal edges, which belong to the irreducible 
sequences, should not be removed and the problem of 
merging two implication classes occurs when an edge 
play a role of conflict.  
 
The theory of reducibility has been considered since 
last 20 years from both theoretical as well as practical 
view points. The set of all irreducible sequences is 
potentially (universally) optimal for the OSP though 
it is not the minimal one. The existence of unique 
minimal solution is unlikely in general. The non-
similar irreducible sequences yield a solution set of 
still smaller cardinality, but this space is not good 
understood yet. Determination of this set is extremely 
important. One of the strong motivations of studying 
the theory of irreducibility comes from the fact that 
only a very small fraction among all sequences is 
irreducible. 
 
 
No polynomial time algorithm is known for the 
decision whether a sequence is irreducible though a 
number of polynomial tests have been presented. The 
good properties of this set has to be detected which 
helps to develop exact and heuristic algorithms in 
OS. Development of new constructive and iterative 
neighborhood structures in this smaller set would be a 
constructive step. 
 
 
By defining a number of graph structures in the space 
of the induced Hamming comparability graph, 
different reduction strategies which can be tested in 
polynomial time have been presented in recent 
outcomes. A number of open problems have been 
explored from this research. In coming issues we 
would like to discuss on various conjectures whose 
validity decide whether the irreducibility problem 
belongs to the polynomial solvable class or to the 
NP-class, respectively.  
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