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Abstract

The aim of this paper isto introduce and study anew classc, (S (E, || . ||), &, u) of normed space E valued
functions which will generalize some of the well known basic sequence spaces and function spaces studied in
Functional Analysis. Besidethe investigation pertaining to thelinear paranormed structureof theclass ¢ (S, (E,
[I.1), & u) whentopologizedit with suitable natural paranorm, our primarily interest isto explorethe conditions
pertaining the containment relation of theclass ¢, (S (E, || . ||), &, u) intermsof different € and u so that such
aclass of functionsis contained in or equal to another class of similar nature.

K ey wor ds. paranormed space, normed space, summable family

Introduction
We bhegin with recalling some notations and basic
defirdtions that are vsed inthis  paper.

The concept of paranormed space iz closely related
to lnear metric space, see Wilansky (1978 and its
studies on sequence spaces were indtiated by Daddox
(1969  and maty others.

Definition 1. Let Sbe the linear space with zero
element § over € A paranormed space (5 G isa
linear space 5 together witha function & 5 — R
(called a paranorm on &) which satisfies the
following axioms:

Flip, o(h=10,

FlNy G =G fordlxe 5,

FlNz Gixy+xa) 2 Goen+ Gz foralx, xpe &
and

Fly if< oy > be asequence of scalars with o — o
asm —» = atd < % = bea sequence in S with
Gxy—x1—0asn— o, then Glogr,—or) —0as
¥ = o [contimdty of scalar moultiplication).

Mote that the continmaty of scalar multiplication is
ecivaletit to
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() if Glxg —0 and op— ®asn — o, then
Froy r) —0as n— o and
(i) if o — 0 as» — = and x be any element in

S then Gog ) — 0, see Wilansky (1975).

& paranorm is called total if in addition we have
NP5 G5 =01impliesx=§

MNanda ef al (1983), Parasar and Choudhary (1994),
Bektas and Altin (20037, Bhardwraj and Bala
(2007, Khar (20087, Basariv and Altundag (2009
atud moary other s frther stodied warious types of
paranormed sequence spaces .

Definition 2 A normed space (5, || 15 a linear
gpace 5 with zero elemert § together with the
mapping ||| & —= B (calledrorm onS) such that
for all x, xp, ¥y € Sand o= €, we hawe

My |l 20 and||x] =0 if and enly if x =8 ;
My loal] = | f1xl); and
Ny ot oxal] £l + ] 2]

Clearly by N, and N,, the algebraic operations of
addition and scalar multiplicationin the normed space
Sarecontinuousi.e, if <x >and<x' >are
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sequences it the normed space Swith %, 2' € & such
that xy — x, 2y = 2 in 5 and < 0y = a sequence of
goalars sach that o — oin G thenx, + 3% —= x + 1
arid O Xy — O in S

Inn fact, Maddox (1969, Kamthan and Gupta (1981,
Srivastava (1996), Tiward and 3Srivastava (200E,
20100, 3rivastava and Pahard (2011, 2011, 2013) and
Pahari [ 2011,2013,2014)  and  many others have
been introduced  and stodied the algebraic and
topological properties of warious sequence  and
function spaces  in nommed spaces. All these
sequenice and function spaces generalize and unify
varios exising bhasic sequence spaces studied in
Functional Analysis.

Definition 3. For the set of indices 5, F(5 denctes
the collection of all firdite subsets J of 5 The set
FL5 is an ordered set with respect to set theoretic

inclusion relation < used as £,

If oo & — ), then the family < ofx) =; o5 15 sad to
cotrverge to £ = O if for each positive number £
there exists a set J= F5 such that |ox) - £ < 5
for all x = 5- J Definitiond Let o 5= € and <

X)) =y ox be the family of numbers Then  the
finite partial sums

)

Py= 2 o0, JE F(S),
form a directed system with tespect to set theoretic
inclusion  relation . If this directed system
= Pr¥ 5. g converges then we say that the familyis
summable. The unigquely determined limit £ 15 then
called the sum of the family atnd we write
‘- Zolx)

e=J
coiticides with the ordinary sum.

JIf the index set is finte then £ obwiously

The class  cp (5, (E,|| .|| ) & 1} of normed
space valued functions

Let 5 he an arbitrary non empty set (ot necessarily
coutable) and  F (5 be the collection of all findte
subsets of 5 ditected by inclusion relation Let

CE, || - ]| 7 be 2 normed space owver the field of
compler numbers € We shal write w, v for
functions on 5 — R, the set of all positive real
rambers, and

25 RN ={w: 5= R suchihat supy sx) < =}
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Further we wiite £, p for functions on & — € -0}
and collection of all such functions will be denoted
by a5, € —{01.We shall also frequently use the
notations

0= supyasux) =L <= andfor scala oy

Alo] = max (1, ).

But when the functions w(x) and »(x) ocow, then to
distinguish L we use the notations L) and L0
respectively.

We now introduce the following new class of
notimed space B vaued funeti ons:

callS (B || |0 L ={¢d: 5= F: foreverye> 0,
there existz afinite subget J= TF(5) such that

uix)
[| 85 iy ]| <=5 foreachze &—J)

Futther when £ : 5 — €—{0} iz a function such that
Exy=1 for all x, thencg (S (B, || .]|), & 2d will be
dennted by e (5 (B, || ||, b and whenw : & — R
is a function such that wlx) = 1 for 4l x, then

co G5 CE, . K o will he denoted by
co (5 & 11 8.
Actually, this  class is the generalization of the

familiar sequence and function spaces, studied in
Stivastava ef al (10067, Srivastawa (1996, Tiwati of
al. (2008, 2010, Srivastava and Pahari (2011, 2011,
2013), Pahari 2011, 2013.2014).

&g far az the linear space structire of this class over
the field € of complex munbers is concerned, we
throughout  take pointwise  operations  ie,for
functions ¢ 1 atnd scalar o

(b 30 (0 = g(x) + 3x) and (2@ (1) = 0 g, xEs
and we see helow that if 2 =4, (5 RO, then the
class o5 (E, || .||, &, 2d forms alinear space ower
C. Moreower, we shall denote the zero elemernt of
thiz space by § by which we shall mean the function
8:5—=F sachthat (A =0 foralx s &

Main Results on ¢gl8, (E, || . [|), & =)

Inthiz section, we first shady the linear paranorme
of the dass co( 5 (E, || . |2 & ) by endow:
paranorin arisingin a natural way and then stady the
CE, . [0, E, 2 of normed space B walued functio
of different w and £ so that such a class iz contained
to another class of similar natare Throughout the wos
denote
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4x)
¥x) _ R
LORBESR O s
Ilore u:uver:!: 1.;:'& 18g ) -
X X X
|a +5&| ﬁl?"[|.:z[1 + |5 1],Whnarna a,beC

and T=max (1, 251y = 4251

Theorem 1. The set co (05, (B, || .|| 0, &, tb forms a
linear space over  the field € of complex
tambers with respect to the poirdwise wector

cperations iff < 202 * xes iz bounded above,
Froof:

Suppoge Sup ges WX L e and b e o
CSCE || |0, B wd Let 2= 0 be givenn Then there
exigt firite subsets ), &y = F(5) such that

ax)
G ¢l <3,

arud

for every x &5 -0 (1)

£

uixl
|| Byl ]l = 5. foreveryxe S (2)

Let 7= Hwdyand for eachxr € 5 =0 and in wiew
of (17 atud (20, we have
¥

| &0xn [ =) + ]| )
) EGD gln + E&g W) || ]
STIEE ¢ |+ & ]l ]

L ELE_
1Tz h
which cleatly showrs that gy = cp (5, CF, |||, K, .

Let o= C thetriwe have
ux) £x) uix)
[R=R-C - €1 I ECx) ) "u: 4

CALAIED Dl L re -1
Thisz cleatly gvesus that

ap = cp (S CE, |[ID, & 20 Thusif sup au(y) < o
then (S, (B, || .|, L2 forms alinear space over
the field & This completes the proof.

How for ¢= ep (S, (E, ||
walued function 3 by
wix)f £

F (P = supe | EC) F | (3

Theorem 2. The spacecy (S (F, || .|| 1LE ¢ formsa
paranormed space with respect to & defined by (30,
Froof:

For dy € co(S (B || 01D, & wd G(d 20,

G =0, G- @ =G and

Glg+ oy 2 Gld+ Ty can easily be proved

Ao FNp Flo and FIz are ohirious,

Ay, E o, define a real
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We only prove bhelow Fly ie,
sealar multiplication.

(i) Let < de= be a sequence inca(S CE, || ]|, &
atwd < o= a sequence of scalars such that
Gl — 0 and op— cash— =

Suppose that [ | 21 far k2 1. Thﬂn:lwe have

the cortiity of

G w8 = sup || 6, 50 4 | s
= supelow] . sue | 50D )|
Coupld] sl K 40l
<A M] G

impliesthat Flog ) =0 ask— =,
(i) Let op—+ 0 as kb — ., Withowut loss of generdity
we cat assume that o | 2 1, B 2 1. Let 2> 0 he
giver, Thenfor ¢= co 08 (B, || |, E w0 there
exists aﬂmte mbsetjnf'ﬁ' such that

| i xy ofx || :: g for alle.S‘ A
Inn particdar, || B 020 || {S,fnra]leS—i
Thus,
uxl L
Il cwECx) ) | = Iﬂu-,l I E[:-kl):l ) ||
R g |

g farallye &0
Mowr chiooge a positive itteger by such that for any
reJ

Wi I
Gond = Il el 40 |

= | cigl Il BCxy i) ||
< g for all kb * Iy

ux)f L

Hence, Glog i < £for all k 2 iy This means that
Glog i — 0 ask—

Thus (1) and (i) prove the continudty of scalar
multiplication Hence & form s a paranorm on

cal (B, || ||, & ) and it completes the proof.

Theorem 3. If supposaa(®) < =, v: &= R and

e s( S C-{0]), then

C[;IES; [:Er ” : ”:Ir E—u u)':cﬂl::'s; I:Er ” ”:Ir Er V:I

if and onlyif < 20271 =y .5 has positive limit inferior.
Proof:

For the sufficiency of the conditios, assume that lim
irfy 2(x) * 0. Then there exists m > 0 such that

¥(x) = m oy, for all bt firdtely many x £ 5

Let ¢= call o8, || |5 E w) and £ > 0 be given
Thenfor 0< 9« lwithn™ < 2, there exists

T Fin satisf'j.ring

Il’é(e"-’)t#'[i»‘fflllHI < and so

e gD I <DE) g0l 1™
g™ is,fn:nreacthS—h_f.
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Thuas we easily get ¢ = ollX (E, || .|| E ) and

hence

co(S (B 11110, &b < ool E, |10, 5 v

For the necessity of the condition, assume that

colE CE 1D, B e S & |10, &

bt limm ify =027 = 0. Then there exists a sequence

< xp> of distinect poirts in S such that for each

EE 1, Rvixd <ulxn Y]
Now, takinge = B with|| 2| =1, define ¢ 5= F
by the function

: k
)= {E%t,(ﬁme

Then for each k > 1, we have
e ey |90 = | 7l e g

1
= lle

e, forx=x,k=1,3,3,. ,ad
(3

1
St Allell ™

and forx# . k21, || B ¢l || %=1,
This shows that ¢ < cpS CE, || ||, E ). Bt on

the other hand for each k& 21, in wew of (4) and ()
we have

|| Eexy e || = T el g Y
1
= e ll el ™
1
» Emz
. 1
_Em .

Thiz shows that ¢ & oo 05 (B, ||| 0. & ), 2
cottradiction This completes the proof,

Theorem 4. Letw: 5— R, ve £, (5 K" and
£ sl C— {01, then

co(S (B, 1110, B vy Ceg (5 (B, [ 1) £

if and adyif < =020 =, o2 has findte lim it superior.

Proof:

For the necessity of the condition, suppose that

coCE (B 111D, &) Ceols (B 111D, E, 2 but
litn gy 2070 = = Then thete exists a sequence < x>
ing of distinct points such that

vixg = klxp foreach k2 1. 1]

Mow, takinz e = Fwith || ¢]|=1.

We define ¢ 5= F by

D= {(E(xjj_l R S =T | &
#, otherwise.
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Then for lE!:Eu:h‘{J:J= xg k2 1, we have
&
IEG @iy || - = || Y g
1
=< lel ™

1
- oy
drAllell ™
atud

| &5 {5 ||‘m=EI, forx#xg kb2l
This shows that ¢= cp (5 CE, || ]|, E ¥
But on the other hand for each k > 1 and in wAew of
(&) and (7, we have
I &z @Crsy | 4 = | &7 g 0
= k'ﬂ:xﬂﬂxﬂ ” & ”“':?‘CE."
> gy g2
This shows that ¢ en (5, (8, || .]]), £, a
cotitradict on
For the sufficiency of the condition, assume that lim
sy 2x) < o, Then there exists a constant 4 > 0
such that w(x) <  w(x) for all but finitely many
=g
Let d= col 5 CF, || ]| E.vdand 2> 0. Thenfor
O<y<l withy ¥ <2, there exists J& F(
saisfying
IEGD 4 | e, forsachr & S—J
atud s0 i) "
IEG) gl < TJlE) 4l 1%
i?}m{ g for eachx & 5—T
This deatly implies that
pecalS (B, || )3 E W@ and hence

col S CE ||, v CoalS (R 11D, B
The proof is now complete.

On combining the Theorems 3 and 4, one obtain

Theorem 5. Ifw, v €8, (5 KD and
Ee g & €— {0, then

co (5 (&, || 1), B2 = colS (R |7, Ev)
if and ol iF0<lim infy 2000 £ lim s, 2080 < .

Corollaryé . Assume thatu € £,(8 R and
= s C— {01, then

@ colECE D). Dedd (B 1D, &w
if and ondy if lim inf w02 = 0
(W ol CE LD, & SodS 08 ], E)
if and anldy if lim supy (2 < =) and
(i) o (5 (B || ]). & W) =colS (B || |0, Bif

atud ondy if O<lim infy 20202 Lim supy w0 =
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Froof: The proof follows easily if we takes(x) =1
for all x andvisreplaced by w2 in Theorems 3, 4 and
3 respectively.

Theorem 7: [fue &, (5 R-':I and &, pe s(5 C-01),
then

co (5 (&[]0 & 2d Soa (S (B, |10 g

if and only if < wix) =y .5 has positive limit inferior.

Froof: For the necessity of the condition, asmume
that

oS, (B, 11 1), & ) Cod, (&, [[.1 22

bt lim inf, wix) = 0. Then we can find a sequenice

< xg > of distinet points in X such that for every
Ex1,

HECxI < e TV, @)

We now choose ¢ EF suchthat || e || =1 and
define ¢ 5—= E by

4= _!;'(E[xjj k e, fors =x,k=1,2,3,... ,amd ©

b b, ctherwise,
Thet for each /t > 1, we have

I ECx x| 490 = | i TR g ) e
1
= Zlel

<

1
¢ Al ] =0,k =

atd

uiE)
| Bl = 0forx # oz, k21
Thuasfor agiven £% 0, we can find a finite subset J
of & sati sfying

ux]
| Gy || g fordlre S0

Thiz cleatly shows that = o 5 (E, || |0, £, 28 .
Butfor eachlk 2 1, inwew of (2) and (9 we have

I ey im0 = || gy (g ™ i LR g 0
(U ]ee MY, L e
i E':x.l;' " lg”

=1,

whichizindependent of & This shows that
g el 5 CE || ||, 2d, acontradiction

For the sufficiency of the condiion , assume that
lit infy w(x) = 0. Then there exists a constant

me 0 mchthat m g ] < (B for al but
findtely many x £ 5

Let $<co(S(E |||, &2, ande> 0,

Thet there exists J= F5)  such that

&)
| By gixa || < g for eachy s 5—0
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Ther, we hav;: :| )
Hec gl ™™ = ool Il €l
<L ool | o || 4

< i, for each x= 55— T,
m

Therefore we easily get ¢= colS, (F, || |7, &,
atud proves that

colS (B, |11 B 2 Sl S (B |1 110, fh .

Thiz completes the proof.

Theorem 8: If &, p = 505 €= {0, ws 405 RY
andv . 5— R+,thn3n

e (5 (B, |- 10 &y S (S, (2 111 2, v)

if and ondy if

(1) lim inf, =(x) >0; and (i) lim inf, wiz) = 0.

Proof: Proof of the theoremn follows imimediately
From the Theorems3 and 7.

Inthe following ex attple, we show that

colS (B, |- 117, &, ) may strictly be contained in
cals (B |- |, i ) itspite of the satisfaction of
(i) atud (i) of Theorem 5.

Examgle 9.

Letd be any set and < xg> be a sequence of distinet
points of & Considere € F with || e || = 1 and define
A

1 1 = —
d0x) = ke,:.f'x—x,.i:—l,i,l,,,,md 1y
&, othe rwse.
1
Futther, if x = xp, we define wizp = P if i iz odd

1 1
integet, Wxg = e if kb iz evenintager, v (xp) = T for

all walues of F,
Bxp = 3% u (xp = 2% For all values of &, and

1
u(x) = 5, v(x) = 1, B () = 3, ¢ () = 2 therwise.
Thenfor x = rpand kb 2 1, we have

eI
3
Wixp = E—I(‘:% = | =§,if'.ﬁ:is odd inte ger;
2

I AT el 3* E_ 3 " i
Wixp = () = |3 =13 Lif ki
every inte ger and.u;aj -

B(x) [3] .

wix) = =15 | otherwise.
@7 fso
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Thus, lim infy wix) = 0, ie;
Theorem 11 iz satisfied. Further,

=kl = 1.( ) = I ifkis eveninteger and

cotdition (i) of

, ifkis odd inte ger,

=) = ﬁ— 2 otherwize.

Thetefore lim inf, 2021 = 1 > 0, i.e the condition (1)
of Theorem 2 is also satisfied

Then for ang.r.ﬁ: > 1 . we hawe
LR L%
Il & Crg gl II = ||27E T
1%
== u|
2
g Al
atud

o6 dd | = 0,ifx # xg, far k 2 1, which
showsthat ¢ co (5 (B, |||, & ¥).

Bt for even mte)%ersk atwd in Wew of (107, we get

I G gem 11 = 1 350 *u ) ¥
= (k)

1
o=
R

This implies that et on (5 (8, || . |0 £ 2. Tius the
cortainment of g (5 (&, ||. [0, & ) in

oS CE |||, it ) is strict inspite of the
satisfaction of the conditi cons 1) and (i) of Theorem
11.

Theorem 10 Letuw < £,(5 Y. Thenfor any
g pe a5 C—{0}),

colS (& 1110 & @ Sed S (B, | &
if and only if < wix) >y os has firdte limit superior.

Proof: For the necessity, suppose that

el SCE, || 10t ) SeolS (B ||, B

bt lith sugy wix) = o Then thete exists a sequenice

< xp> of dstinet poitts in 5 such that for each £ 2 1,

| e | 8> || ) (1

Now, we choose e = B with || 2| =1, and define ¢

S B oy i)

_ g R e farx=x, k=1,2,3,
t &, othenaise.

Thenfor each k 2 1 | we have

e Gr) ngy || 79 = ) T g 4

1
= e

2 12)

1
<5 ANl ® =0, ask— =
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atud
ux)
| 2y x| =0,forx#xg, k2l
Thus for a given £> 0, we can find a finite subset J
of & sw:hthat

| 65 ﬂ#ix:lll " g foralxe &-J

Thiz shows that ¢= opls, CE, || .|| ), g 2. But o the
other hand for each & > 1 and in wiew of (110 and
(12%, we hawve

Il Expy e || % = | E(xg) r:w:xm: ; MR ) M)
- {i—c S ||e||“*‘ﬂ]
pg)
=1,

which isindependernt of & This shows that
g cp (S (R, |||, B, b, acontradiction

For the sufficiency of the condition , assume that

litn supy wix) < =, Then there exists a constant
d=10 such that

|E|:xj| { ] ||.'.;',[:xj| fn:nr all bt findtely many x & &
Let g¢= cols (8, || .|| 0.2 2 and 23 0. Then there
exists J= "'F(.Sj such that

|| % qb(xj” { g foreachzr = 5 —J.
Thet1 we hawve
g dnll ™ =t goa ™ -
<ape) ™l o)
= dl g ¢ |

2 dg foralxe 5=
Thiz cleatly shows that ¢= cp 5 (F, || . |0, & b
atud proves that

col & (&, |10, g2 Seo (S (B, |11, E .
This completes the proof.

On combiring the Theorems T and 10, we get the
foll oaritng the ot e

Theorem 11. Letu = £, (8 B, Then for any
£ pes (S C—{0}),

colS (2 |11 £, 20 = co(SCE || 10 ¢ 2
if and only if 0 < lim inf, wix) 2 lim supy wix) < =

Cotollaty 12, For w = £, (5 R*) and & e (5 C -
{0%). Then

&Y CDEEEE,II-IIJ,E,MJCCGEEEE, 112,
if and onlyif lim infy|E (1))

(el SCE ), W =eals, %E || (DR
if and only if lim supe |E (2] < =;and

(i) e (5 (B |11 B = cq (S (E, |10,

if and ordw if
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o<liminf (9] <limsup, £ <o.

Proof: If we consider £ : S — C — {0} such that
€ (x)=1 foreachx,in Theorems7 and 10 and 11 we
easily obtaintheassertions (i), (ii) and (iii) respectively.

In this paper,we have established some of the results
that characterize paranormed structures of the class
¢, (S (E Il - I, & u) of normed space E valued
functions. Infact, these results can be used for further
generalization and unification to investigate the
properties of various existing normed space valued
function spaces studied in Functional Analysis.
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