Nepal Journal of Science and Technology Vol. 15, No.1 (2014) 81-88

Design and I mplementation of Synthesizable 32-bit Four Sage
Pipelined Rl SC Processor in FPGA Using Verilog/VHDL

Bikash Poduel!, Prasanna K ansakar?, Sujit R.Chhetritand Shashidhar Ram Joshi?
Department of Electronics and Communication, Thapathali Campus, Institute of Engineering,
Kathmandu Nepal
2 Department of Electronics and Communication, Institute of Engineering,
Pulchowk Campus, Lalitpur

e- mail: 065bex410@ioe.edu.np

Abstract

Thispaper isdelineating the design and implementation of high performance, synthesizable 32-bit pipelined Reduced
Instruction Set Computer (RISC) Core. The design of the Harvard Architecture based 32-bit RISC Coreinvolves
design of 32-bit Data-path Unit, Control Unit, 32-bit Instruction Memory, 32-bit Data Memory, Register filewith
each register of size 32 hit. The processor is divided into Fetch, Decode, Execute and Write Back block in order to
implement a four-stage pipeline. A 2*16 LCD is connected to the processor 10 block to show the instruction
execution sequence for demonstration in FPGA. The RISC Coreisdesigned using Verilog HDL and VHDL andis
testedinISIM Simulator. Theimplementation of the processor isdonein a Spartan 3E Starter Board using Xilinx ISE
14.7. All of the instructions incorporated with the processor have been tested successfully both in simulation and

hardwareimplementationin FPGA.

K ey words: SoC, Harvard architecture, Xilinx I SE, |P Core, Register file.

I ntroduction

The Reduced Instruction Set Computer (RISC) isa
design philosophy used in powerful microprocessors
and micro-controllers (Stallings 2011). This design
philosophy involves fixed length instruction, single
clock cycle execution for most of theinstructions, only
load and storeinstruction for memory access, pipelined
execution, and a large register bank for fast memory
operation. The most common RISC microprocessors
areARM, DEC Alpha, PA-RISC, SPARC, MIPS, and
IBM’sPower-PC.

This project involves designing a high performance
32-bit synthesizable RISC core in Verilog-HDL and
VHDL. The implementation of the core is done in
Spartan 3E FPGA. FPGA (Kilts & Steve 1978) isthe
short hand for Field Programmable Gate Array, which
is capable of implementing combinational, sequential,
and FSM based digital systems or components.
Today’s deep submicron fabrication technologies

81

enable design engineers to implement an impressive
number of componentslike microprocessor, memories,
and interfaces in a single microchip called
Configurable System-on-Chip (Kim & Leibson 2005).
With the advent of large, fast, cheap FPGAS, it is
practical and cost effective to skip the ASIC (Xilinx
2005) and ship volume embedded system in asingle
FPGA since FPGA implementsall of the systemlogic
including a processor core.

Thisproject hasavery promising futurein the context
of the synthesizable embedded system design,
verification, and implementation. Thereisnot asingle
company in Nepal till this date which works in
designing, manufacturing, and verifying Hi-Tech
electronic product as microcontrollers, simplelow end
phone set to high end phones like smart phones,
processor cores, etc. Every year thousands of
electronics Engineers gets B.E. degree from various
Universities herein Nepal but there are no electronic

Nepal Journal of Scienceand Technology Voal. 15, No.1 (2014) 81-88

jobs. This Hi-Tech business has a huge upside
potential technically and economically thus creating
myriad of job opportunities. This paper is inception
from our teamto start writing and contributing IP Cores,
which in our case, involves designing, and verifying
processor core. This paper, we believe, shall be the
reference for students who wanted to learn designing
and verifying processor core, for teachers who want
to teach a simple real world implementation of
processor core in FPGA, and for all of those who
wanted to be a contributor of IP Cores. This project
shall emanatesagood insight of areal deal involvein
Hi-Tech work which isdesigning and verifying Cores
as Processor, Bus, Peripheras, etc. thus bringing the
horizon closer and clearer which was hazy since
nobody has done it before here.

M ethodology

Basic building block of RISC core

TheHDL design of the RISC coreinvolvesthe design
of the following components, which are the major
building blocks of most of the processor: memory unit,
data path unit, and control unit.

Memory: The pre-dominant feature of aRISC Coreis
the use of registersfrom aregister file, whichisafast
memory, and immediate values for all arithmetic and
logical instructions. This leads to less frequent
accesses of the main memory. Sincethe RISC coreis
based on the Harvard Architecture (lannucci 1988),
thereis separate dataand instruction memory. Memory
accessislimited to Load and Store instructions only.

There are sixteen 32-bit registers in the register file.
The instruction memory is implemented as a single
port on-chip distributed ROM while the datamemory
isdesigned asasingle port on-chip block RAM inside
the FPGA. The datamemory and instruction memory
is 32 * 256 bits, which can be extended as per
requirement. Since the core being designed is
synthesizable, we can adjust the code to change the
attributes of the core.

Data path unit: The datapath unit comprisesof ALU,
multiplexers, Instruction Decoder, Branch Logic
Generator, Pipeline Registers, destination register
selection logic, Program Counter, Link Register, Data
Register, etc. The pipeline progresses through four
stages when executing an instruction. The first stage
isthe Instruction Fetch stage, where the address of

82

the instruction to be fetched isloaded in the Program
Counter (PC). Theaddressisal so saved in the pipelined
register for internal purpose. The particular instruction
pointed by PC isfetched from the Instruction Memory
into the Instruction Register (IR). The second stageis
the Instruction Decode stage, where the Instruction
Decoder decodes the fetched instruction. Here, the
decoder extracts out the source operands, destination
operand, and the operation to be performed, from the
available 32-bit instruction. The next, isthe Execution
stage where the operation on the source operands is
performed and the result is generated in the internal
pipeline register. The corresponding flags (Negative,
Carry, Zero and Overflow) are set according to the
result of the arithmetic and the logical operations
performed. For the load and store instruction, the
memory location where the data is to be loaded or
fetched fromiscalculated. Thefinal stageisthe Write
Back or Memory Read/Write stage. For the arithmetic
and logical operation, the result of the ALU operation
is written to the destination register and for the load/
store, instruction reading from the data memory or
writing to the data memory is done.

Control unit: The pipeline is controlled by setting
control values during each pipeline stage. Each control
signal isactive only during asingle pipeline stage and
hence the control lines can be divided according to
the four-pipelined stages. These signals will be
forwarded to the adjacent stage through the pipeline
registers.

Instruction pipelinedesign: The processof breaking
an instruction (process) into anumber of independent
sub-processes, which are capable of executing
concurrently and executing such sub-processes
simultaneously, is known as pipelining. In order to be
successful commercially, any processor design must
have afast system clock and must be able to execute,
onaverage, one or moreinstruction per clock cycle. In
order to achieve this requirement, pipelining is
essential.

Theinstruction pipelineis designed by pipelining the
basi ¢ fetch-execute operation sequence shown in Fig
1. It shows, in particular, the four stage pipeline
architecture of the RISC core, whichisimplementedin
the proposed core. Theinterrupt path has been omitted
to simplify the pipeline design. Table 1 and Table 2
demonstrate the performance improvement that can
be achieved by pipelining.

Bikash Poduel et al./Design and Implementation of.......

Table 1. Execution of four-instruction takes 16 clock cycleswithout pipelining

Clock
) 1 2 3 4 5] 1 3 o 10 1 12 13 14 | 15 la
Instction
L£TD IF ID EX WB
SUB IF | ID | EX | WB
LHD IF | ID' | EX | WB
L£TD IF ID | EX | WE
IR < M rC
IF Stage (R) emi(Pc]
(rC) = (PCY 4
Opcode < IR[31:24]
Source Registerd (Rn) < IR[11:3]
1D Stage
Source Register2 (Rm_Rs) - IR[7:4]
Cestination Register (Rd) %- IR[3:0]
EX Stage ALU out =- Spurce Registerl Operator Source Register 2
WE Stage —_ .
Cestination Register = ALU_out

Fig.1. A four stage pipeline showing the stages and the respective operations

Pipeline hazards: Conditions that may result in the
need to delay the execution of an instruction pipeline
arereferred to as pipeline hazard (Jiang 2006). There
are three main types of pipeline hazards - structural
hazard, data hazard, and control hazard.

Structural hazard refersto the situation in which two
instructions must use a common resource, thereby

83

resulting inaresource conflict. For example, acommon
problem of this form occurs when there is only one
memory device for instruction and dataand aload or
store instruction is encountered. Since instruction
must be fetched during each clock cycle, if an
instruction in the pipeline requires an access to
memory then amemory access conflict will result.

Nepal Journal of Science and Technology Val. 15, No.1 (2014) 81-88

Table2. Four-instruction execution with four-stage pipelining takes 7-clock cycles (lessthan half of what it

takeswithout pipelining)

Clock | p 3 4 3 6 7
Instructi on
ADD IF ID EX WH
SUR IF ID EX WH
AND IF ID EX WE
ADD IF ID EX WE
Block diagram of proposed RISC core
Instruction Memery
Address I sTrUCTomn
IF Ceape

C)

k.

imstnection Decoder

R gisver file

(RO - Fd1E]

4 d

Io_Re 10 o_Rd_
offsat code

Dpcode decodss snd

Lranch Le e

| ER_opemnde I
Cata Memony
ata Address

E 1Sl I8}

T T e T

Wwp
Stage

[Wrila Hack Comnbrinational Logic

I ;

]

Fig.2. Internal pipelined architecture of the proposed RISC core

In data-hazard, one instruction changes the value of
aregister, whileafollowing instruction usesthat same
register value. If the following instruction reads the

register value before the preceding instruction
changes the register value, the later instruction may
usean incorrect value, thereby resulting in anincorrect
program result.

Bikash Poduel et al./Design and Implementation of.......

Control hazard occurs when an unconditional or
conditional branch instruction is encountered. In
absenceof branchingtruction, al instructionstypically
can be fetched in strict sequential order. Then, if a
fixed lengthinstruction format is used, a sequence of
instructions can be pre-fetched before the first
instruction of the sequence has completed the
execution. However, if the first instruction happens
to be a branch instruction, then all subsequent
instructionsfetched in thismanner will beincorrectly
fetched instructions.

Pipelinehazar d solution adopted: In order toremove
the structural hazard, a separate memory for the data
and instruction is used. Thus, there are two sets of
the address and data lines in the processor. There is
no any mechanism used to remove the data hazard. It
is left for the assembly programmer to perform

Data Processing I nstruction

instruction scheduling in the assembly to remove the
datahazard. For the control hazard, whenever abranch
instruction is encountered in which the branch takes
place, thefollowinginstructionscurrently inthepipeline
are marked and subsequent instructions are fetched,
starting from the branch-target address. Whenever a
marked instruction isencountered during the execution
stage, the result of that instruction is nullified by not
storing the execution result for that instruction.

Instruction set: The RISC corehas 32-hit instructions,
which mostly are register based operations. Since
register arefast memory RISC core mostly usesregister
based addressing mode. However, thereis support for
immediate operand and | oading/storing mechanism for
memory access.The instructions are divided into four
categories, which are Data Processing Instructions,
Load/Store Instruction, Interrupt Instruction, and
Branch Instruction.

Table3. List of dataprocessinainstructionsand itsrespectiveaddressfields

Trstraction Werd (IR (510])
Instmechon Opende i Acoton
(EDBL24] estination (Rd) | Source2 (R Sourcel (R Fs)
ADD 0000_0000 R014 IR[7:4] RG] Fd « Fn+EmFs
ADC 0000_0001 R01E IR[7:4] RG] Fd — Bn+ Fm Fs +cFla
SUE 0000_0100 R[4 IR[7:4] RG] Fd .« Rn-Fm_Fs
RSB 0000_0101 R01E IR[7:4] RG] Rd « RmRs —Fn
AND 0000_1000 R01E IR[7:4] RG] Fd « RnfRm R
OR 0000_1001 R[4 IR[7:4] RG] Fd « Fn|RmRs
XOR 0000_1010 IR[11:] R[7:4] RG] Rd « Fn® Fam Bs
BIC 0000_1011 IR[11:] R[7:4] RG] Fd « Fnf (\Rm_Fs)
LSL 0001 _0000 R[1%:16] IR[15:12] Elﬁﬂéﬂj Fd « Rne< Inm#l2
L3R fonl_paol R[15:16] TR[15:12] (hﬁﬂ;ﬂﬂ Fd « Fres Iromdl2
CMP 1000_0000 IR[11:] R[7:4] RG] Fd .« Rn-Rm Fs
MOV 0010_0000 IR[1512] - (hﬁﬂﬁil Fd o hnou#l2

85

Nepal Journal of Science and Technology Vol. 15, No.1 (2014) 81-88

L oad/storeinstruction

Table4.List of memory accessinstructionsand their respectiveaddressfields

Instruction WordTE[31:0])
Instmection Opeade o detion
(R[5 1:24]) Destination (Fd) Sowrce2 (Fx)| Sourcel (Rrn Bs)
LDE 0011 _0oaad IR[11] IR[7:4] IR[3:0] En -+ MR
STE 0011 _0ool IR[11] IR[7:4] IR[3:0] MEA «— En
Branch instruction
Table5. List of branchinstructionsand their respectiveaddressfields
Instruction Wor /TR [31:07)
Instnaction o Action
Cpeode Destination Sowcel Sowcel
(IR[31:24 (Rd) (f3%] (Fm Rs
B 0100_0000 ; i IR[l 12{%‘““* Branch_ Tareet + Imm#12

Interruptinstruction

Table6. List of interrupt instructionsand their respectiveaddressfields

Instruction Diestination

(Rd
1111_1111 -

Cpeode (TR[E31:24])

HaALT

Instruction Wor dTR[31:0T)

ot ced

Bourcel Action

(Fai) (Rm_Rs)

Halt the processor

Programmer model of theRISC core

There RISC core executes 32-bit instruction. The
registers are all 32-bit wide. The ALU is 32-bit. The
programmer model for thisRISC coreisshownin Table
7. Thereare 16 visible registers (R0-R15) each 32-bit
wide and four status registers.

The Program Counter (PC) containsthe address of the
instruction to be fetched from the memory. The Link
Register (LR), used with sub-routine calls, contains
the address of the next instruction after the sub-routine
call. Thus, when areturn instruction is executed from
within the sub-routine the Link Register pointsto the
instruction to be executed after the return. The Stack
Pointer (SP) pointsto thetop of the Stack, which holds
the data contents in a last-in-first-out manner. The
condition flagsare Carry, Zero, Negative, and Overflow
which are all 1 bit wide. These bits are set or reset

during any arithmetic and logical operations.

Table7. Programmersmodel for theRISC core

Greneral puarpose
registers (32 bif)

Rl Rs Flags Spe;ial Purpn;nse
El Eu bity Regsters (32 hif)
k2 Ri0

R3 Rll

R4 R12 tFlag

2] R13 zFlag =P

Ré Rl4 cFlag LE

R7 Rl vFlag B

Implementationin HDL
This32-bit RISC coreisdesigned in both of the HDLSs,
Verilog and VHDL. Theblock diagram of the module

86

Bikash Poduel et al./Design and Implementation of.......

being implemented is shown in Fig 3. Thelists of the
ports are in Table 8. There are three input ports, five
output ports, and one bi-directional port. The RISC
core interacts with instruction memory and data
memory for the instruction fetching and data load/
store respectively. The instruction memory and data

memory moduleisshowninFig 4.

— (L : .
Ity
—] P 3
Data
RIS
p reedlsz_n Core
(HOL) 3l
Wadnle nsrAddr
] 122 Addz 1
daadddr -
L o B g

Fig.3. HDL module for proposed RISC core

. Clk Instx i '
HDL Module
of
Instruction Memory
32
readlnstr instrAddy ‘__

Fig.4. HDL module of instruction memory

87

— Clk 3
D |y
o madBatan | DL Module
of 3
Data Memory ¢
dansAddr #
| ILELNE2 11

Fig.5. HDL modulefor datamemory

Table8. List of theport for RISC core

Port Name Eﬁh Direction ?;gi:fﬁiﬁ;e}
Instr 32 Ingmt -

Diata 32 Inpmtfoutgmt | -

instrhddr 32 Chatpmt -

datatddr 32 Crutpt -

readlnstr 1 1 Chatpmt Hegative
readData 1 1 Chatpmt Hegative
wiiteData n| 1 Chatpmt Hegative
1k 1 Inprat Positre
Best n 1 Ingmt Hegative

Resultsand Discussion

The simulation of the proposed RISC core was done
in the Xilinx ISIM simulator where the actual coreis
instantiated along with the data and instruction
memory in the test bench. The instruction memory
wasloaded withADD, SUB,AND, and ADD instruction
in the sequence, which was fetched, decoded, and
executed by the processor. All of the instructions are
simulated correctly and theresult isshownin Table 9.
Inaddition, thefinal synthesisreport of the RISC core
generated by Xilinx ISEisinthe Table 10.

Nepal Journal of Science and Technology Vol. 15, No.1 (2014) 81-88

Table9. Result of execution of theinstructions

Operation Source Registerl Somrce Hegister2 Diestination register
Flag
LD 327h01 327h02 PN I -
3B 32709 327h05 3204 -
LI 32h04 327h02 327W0D -
R5B 327h01 327h05 3204 -
LD 3XWFF 32TWOF ITWIE -
CE. 32HFF 327HW0F 32WFF -
ZOR 3XHFF 32TWOF 3XWFO -
BIC 32WFF 32THW0F 32WIF -
ChIE 32709 32h09 - zFlag
IWICW - HIh 5 32°h154 -
{Imrm)

Table 10. Result of oper ation of theinstructions

Logic Utilization Tzed Errailable | Utilization
Mumber of Slices

containirg related | 1472 4656 31.a2%
logic

IO Blocks a7 232 2%

The simulation and result of this processor verifiesall
of theinstructionsincorporated inthe RISC core. The
RISC coreisuseful to develop a32-bit micro-controller
by simply adding the peripheralsand abus. Sincethis
core is synthesizable and reconfigurable one can
upgradeit by increasing the memory of the processor,
by moving up to 5-stage pipeline, by adding the data-
forwarding techniqueto remove datahazard, by adding
branch prediction block to remove the control hazard.

Acknowledgements

We take this opportunity to express our profound
gratitude and deep regardsto Professor Dr. Shashidhar
Ram Joshi for hisexemplary guidance, monitoring and
constant encouragement throughout the course of this
research project. The support, help and guidance given
by him time to time shall carry us along way in the
journey of life on which we are about to embark. We

88

would like to thank Mr. Sandesh Ghimire and Ballav
Bhattarai to read our paper and to provide valuable
advices.

References

Hong J. 2006. Pipeline: Hazards. cse.unl.edu/~jiang/
cse430/L ecture%20Notes/Pipeline_Hazards.ppt.

lannucci, R. A. 1988. Towards a Dataflow / Vons Neumann
Hybrid Architecture.In: Proceedings of the 15th Annual
International Symposium on Computer architecture
(May 1988), IEEE Computer Society PressLos
Alamitos, CA, USA, pp. 131-140.

Kilts, Steve.2007. Advanced FPGA Design: Architecture,
Implementation, Optimization.Wiley-lEEE Press, New
Delhi, India. Pp. 170-265.

Kim,James and Steve Leibson. 2005. Configurable
processors: A new era in chip design.computer
38:51-59.

Stallings, W. 2011. Computer organization and architecture,
designing for performance. Dorling Kindersley India
Pvt. Ltd., New Delhi, India.pp. 498-536.

Wikipedia.2011. Semiconductor intellectual property
core. http://en.wikipedia.org/wiki Semiconductor_
intellectual _property_core.

Xilinx.2000. FPGA vs ASIC. http://www.xilinx.com/fpga/
asic.htm

