
81

Nepal Journal of Science and Technology Vol. 15, No.1 (2014) 81-88

Design and Implementation of Synthesizable 32-bit Four Stage
Pipelined RISC Processor in FPGA Using Verilog/VHDL

Bikash Poduel1, Prasanna Kansakar1, Sujit R.Chhetri1 and Shashidhar Ram Joshi2

1Department of Electronics and Communication, Thapathali Campus, Institute of Engineering,
Kathmandu Nepal

2 Department of Electronics and Communication, Institute of Engineering,
Pulchowk Campus, Lalitpur

e- mail: 065bex410@ioe.edu.np

Abstract
This paper is delineating the design and implementation of high performance, synthesizable 32-bit pipelined Reduced
Instruction Set Computer (RISC) Core. The design of the Harvard Architecture based 32-bit RISC Core involves
design of 32-bit Data-path Unit, Control Unit, 32-bit Instruction Memory, 32-bit Data Memory, Register file with
each register of size 32 bit. The processor is divided into Fetch, Decode, Execute and Write Back block in order to
implement a four-stage pipeline. A 2*16 LCD is connected to the processor IO block to show the instruction
execution sequence for demonstration in FPGA. The RISC Core is designed using Verilog HDL and VHDL and is
tested in ISIM Simulator. The implementation of the processor is done in a Spartan 3E Starter Board using Xilinx ISE
14.7. All of the instructions incorporated with the processor have been tested successfully both in simulation and
hardware implementation in FPGA.

Key words: SoC, Harvard architecture, Xilinx ISE, IP Core, Register file.

Introduction
The Reduced Instruction Set Computer (RISC) is a
design philosophy used in powerful microprocessors
and micro-controllers (Stallings 2011). This design
philosophy involves fixed length instruction, single
clock cycle execution for most of the instructions, only
load and store instruction for memory access, pipelined
execution, and a large register bank for fast memory
operation. The most common RISC microprocessors
are ARM, DEC Alpha, PA-RISC, SPARC, MIPS, and
IBM’s Power-PC.

This project involves designing a high performance
32-bit synthesizable RISC core in Verilog-HDL and
VHDL. The implementation of the core is done in
Spartan 3E FPGA. FPGA (Kilts & Steve 1978) is the
short hand for Field Programmable Gate Array, which
is capable of implementing combinational, sequential,
and FSM based digital systems or components.
Today’s deep submicron fabrication technologies

enable design engineers to implement an impressive
number of components like microprocessor, memories,
and interfaces in a single microchip called
Configurable System-on-Chip (Kim & Leibson 2005).
With the advent of large, fast, cheap FPGAs, it is
practical and cost effective to skip the ASIC (Xilinx
2005) and ship volume embedded system in a single
FPGA since FPGA implements all of the system logic
including a processor core.

This project has a very promising future in the context
of the synthesizable embedded system design,
verification, and implementation. There is not a single
company in Nepal till this date which works in
designing, manufacturing, and verifying Hi-Tech
electronic product as microcontrollers, simple low end
phone set to high end phones like smart phones,
processor cores, etc. Every year thousands of
electronics Engineers gets B.E. degree from various
Universities here in Nepal but there are no electronic

82

Nepal Journal of Science and Technology Vol. 15, No.1 (2014) 81-88

jobs. This Hi-Tech business has a huge upside
potential technically and economically thus creating
myriad of job opportunities. This paper is inception
from our team to start writing and contributing IP Cores,
which in our case, involves designing, and verifying
processor core. This paper, we believe, shall be the
reference for students who wanted to learn designing
and verifying processor core, for teachers who want
to teach a simple real world implementation of
processor core in FPGA, and for all of those who
wanted to be a contributor of IP Cores. This project
shall emanates a good insight of a real deal involve in
Hi-Tech work which is designing and verifying Cores
as Processor, Bus, Peripherals, etc. thus bringing the
horizon closer and clearer which was hazy since
nobody has done it before here.

Methodology
Basic building block of RISC core
The HDL design of the RISC core involves the design
of the following components, which are the major
building blocks of most of the processor: memory unit,
data path unit, and control unit.

Memory:The pre-dominant feature of a RISC Core is
the use of registers from a register file, which is a fast
memory, and immediate values for all arithmetic and
logical instructions. This leads to less frequent
accesses of the main memory. Since the RISC core is
based on the Harvard Architecture (Iannucci 1988),
there is separate data and instruction memory. Memory
access is limited to Load and Store instructions only.

There are sixteen 32-bit registers in the register file.
The instruction memory is implemented as a single
port on-chip distributed ROM while the data memory
is designed as a single port on-chip block RAM inside
the FPGA. The data memory and instruction memory
is 32 * 256 bits, which can be extended as per
requirement. Since the core being designed is
synthesizable, we can adjust the code to change the
attributes of the core.

Data path unit: The data path unit comprises of ALU,
multiplexers, Instruction Decoder, Branch Logic
Generator, Pipeline Registers, destination register
selection logic, Program Counter, Link Register, Data
Register, etc. The pipeline progresses through four
stages when executing an instruction. The first stage
is the Instruction Fetch stage, where the address of

the instruction to be fetched is loaded in the Program
Counter (PC). The address is also saved in the pipelined
register for internal purpose. The particular instruction
pointed by PC is fetched from the Instruction Memory
into the Instruction Register (IR). The second stage is
the Instruction Decode stage, where the Instruction
Decoder decodes the fetched instruction. Here, the
decoder extracts out the source operands, destination
operand, and the operation to be performed, from the
available 32-bit instruction. The next, is the Execution
stage where the operation on the source operands is
performed and the result is generated in the internal
pipeline register. The corresponding flags (Negative,
Carry, Zero and Overflow) are set according to the
result of the arithmetic and the logical operations
performed. For the load and store instruction, the
memory location where the data is to be loaded or
fetched from is calculated. The final stage is the Write
Back or Memory Read/Write stage. For the arithmetic
and logical operation, the result of the ALU operation
is written to the destination register and for the load/
store, instruction reading from the data memory or
writing to the data memory is done.

Control unit: The pipeline is controlled by setting
control values during each pipeline stage. Each control
signal is active only during a single pipeline stage and
hence the control lines can be divided according to
the four-pipelined stages. These signals will be
forwarded to the adjacent stage through the pipeline
registers.

Instruction pipeline design: The process of breaking
an instruction (process) into a number of independent
sub-processes, which are capable of executing
concurrently and executing such sub-processes
simultaneously, is known as pipelining. In order to be
successful commercially, any processor design must
have a fast system clock and must be able to execute,
on average, one or more instruction per clock cycle. In
order to achieve this requirement, pipelining is
essential.

The instruction pipeline is designed by pipelining the
basic fetch-execute operation sequence shown in Fig
1. It shows, in particular, the four stage pipeline
architecture of the RISC core, which is implemented in
the proposed core. The interrupt path has been omitted
to simplify the pipeline design. Table 1 and Table 2
demonstrate the performance improvement that can
be achieved by pipelining.

83

Bikash Poduel et al./Design and Implementation of.......

Table 1. Execution of four-instruction takes 16 clock cycles without pipelining

Fig.1. A four stage pipeline showing the stages and the respective operations

Pipeline hazards: Conditions that may result in the
need to delay the execution of an instruction pipeline
are referred to as pipeline hazard (Jiang 2006). There
are three main types of pipeline hazards - structural
hazard, data hazard, and control hazard.

Structural hazard refers to the situation in which two
instructions must use a common resource, thereby

resulting in a resource conflict. For example, a common
problem of this form occurs when there is only one
memory device for instruction and data and a load or
store instruction is encountered. Since instruction
must be fetched during each clock cycle, if an
instruction in the pipeline requires an access to
memory then a memory access conflict will result.

84

Nepal Journal of Science and Technology Vol. 15, No.1 (2014) 81-88

Table 2. Four-instruction execution with four-stage pipelining takes 7-clock cycles (less than half of what it
takes without pipelining)

Fig.2. Internal pipelined architecture of the proposed RISC core

In data-hazard, one instruction changes the value of
a register, while a following instruction uses that same
register value. If the following instruction reads the

register value before the preceding instruction
changes the register value, the later instruction may
use an incorrect value, thereby resulting in an incorrect
program result.

Block diagram of proposed RISC core

85

Bikash Poduel et al./Design and Implementation of.......

Control hazard occurs when an unconditional or
conditional branch instruction is encountered. In
absence of branch instruction, all instructions typically
can be fetched in strict sequential order. Then, if a
fixed length instruction format is used, a sequence of
instructions can be pre-fetched before the first
instruction of the sequence has completed the
execution. However, if the first instruction happens
to be a branch instruction, then all subsequent
instructions fetched in this manner will be incorrectly
fetched instructions.

Pipeline hazard solution adopted: In order to remove
the structural hazard, a separate memory for the data
and instruction is used. Thus, there are two sets of
the address and data lines in the processor. There is
no any mechanism used to remove the data hazard. It
is left for the assembly programmer to perform

Data Processing Instruction
Table 3. List of data processing instructions and its respective address fields

instruction scheduling in the assembly to remove the
data hazard. For the control hazard, whenever a branch
instruction is encountered in which the branch takes
place, the following instructions currently in the pipeline
are marked and subsequent instructions are fetched,
starting from the branch-target address. Whenever a
marked instruction is encountered during the execution
stage, the result of that instruction is nullified by not
storing the execution result for that instruction.

Instruction set: The RISC core has 32-bit instructions,
which mostly are register based operations. Since
register are fast memory RISC core mostly uses register
based addressing mode. However, there is support for
immediate operand and loading/storing mechanism for
memory access.The instructions are divided into four
categories, which are Data Processing Instructions,
Load/Store Instruction, Interrupt Instruction, and
Branch Instruction.

86

Nepal Journal of Science and Technology Vol. 15, No.1 (2014) 81-88

Load/store instruction
Table 4.List of memory access instructions and their respective address fields

Branch instruction

Table 5. List of branch instructions and their respective address fields

Interrupt instruction
Table 6. List of interrupt instructions and their respective address fields

Programmer model of the RISC core
There RISC core executes 32-bit instruction. The
registers are all 32-bit wide. The ALU is 32-bit. The
programmer model for this RISC core is shown in Table
7. There are 16 visible registers (R0-R15) each 32-bit
wide and four status registers.

The Program Counter (PC) contains the address of the
instruction to be fetched from the memory. The Link
Register (LR), used with sub-routine calls, contains
the address of the next instruction after the sub-routine
call. Thus, when a return instruction is executed from
within the sub-routine the Link Register points to the
instruction to be executed after the return. The Stack
Pointer (SP) points to the top of the Stack, which holds
the data contents in a last-in-first-out manner. The
condition flags are Carry, Zero, Negative, and Overflow
which are all 1 bit wide. These bits are set or reset
during any arithmetic and logical operations.

Table 7. Programmers model for the RISC core

Implementation in HDL
This 32-bit RISC core is designed in both of the HDLs,
Verilog and VHDL. The block diagram of the module

87

Bikash Poduel et al./Design and Implementation of.......

being implemented is shown in Fig 3. The lists of the
ports are in Table 8. There are three input ports, five
output ports, and one bi-directional port. The RISC
core interacts with instruction memory and data
memory for the instruction fetching and data load/
store respectively. The instruction memory and data
memory module is shown in Fig 4.

Fig.3. HDL module for proposed RISC core

Fig.4. HDL module of instruction memory

Fig.5. HDL module for data memory

Table 8. List of the port for RISC core

Results and Discussion
The simulation of the proposed RISC core was done
in the Xilinx ISIM simulator where the actual core is
instantiated along with the data and instruction
memory in the test bench. The instruction memory
was loaded with ADD, SUB, AND, and ADD instruction
in the sequence, which was fetched, decoded, and
executed by the processor. All of the instructions are
simulated correctly and the result is shown in Table 9.
In addition, the final synthesis report of the RISC core
generated by Xilinx ISE is in the Table 10.

88

Nepal Journal of Science and Technology Vol. 15, No.1 (2014) 81-88

Table 9. Result of execution of the instructions

Table 10. Result of operation of the instructions

The simulation and result of this processor verifies all
of the instructions incorporated in the RISC core. The
RISC core is useful to develop a 32-bit micro-controller
by simply adding the peripherals and a bus. Since this
core is synthesizable and reconfigurable one can
upgrade it by increasing the memory of the processor,
by moving up to 5-stage pipeline, by adding the data-
forwarding technique to remove data hazard, by adding
branch prediction block to remove the control hazard.

Acknowledgements
We take this opportunity to express our profound
gratitude and deep regards to Professor Dr. Shashidhar
Ram Joshi for his exemplary guidance, monitoring and
constant encouragement throughout the course of this
research project. The support, help and guidance given
by him time to time shall carry us a long way in the
journey of life on which we are about to embark. We

would like to thank Mr. Sandesh Ghimire and Ballav
Bhattarai to read our paper and to provide valuable
advices.

References
Hong J. 2006. Pipeline: Hazards. cse.unl.edu/~jiang/

cse430/Lecture%20Notes/Pipeline_Hazards.ppt.
Iannucci, R. A. 1988. Towards a Dataflow / Vons Neumann

Hybrid Architecture.In: Proceedings of the 15th Annual
International Symposium on Computer architecture
(May 1988), IEEE Computer Society PressLos
Alamitos, CA, USA, pp. 131-140.

Kilts, Steve.2007. Advanced FPGA Design: Architecture,
Implementation, Optimization.Wiley-IEEE Press, New
Delhi, India. Pp. 170-265.

Kim,James and Steve Leibson. 2005. Configurable
processors: A new era in chip design.computer
38:51-59.

Stallings, W. 2011. Computer organization and architecture,
designing for performance. Dorling Kindersley India
Pvt. Ltd., New Delhi, India.pp. 498-536.

Wikipedia.2011. Semiconductor intellectual property
core. http://en.wikipedia.org/wiki Semiconductor_
intellectual_property_core.

Xilinx.2000. FPGA vs ASIC. http://www.xilinx.com/fpga/
asic.htm

