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ABSTRACT 

Background: Previous literatures have indicated that log-binomial regression model is an 

alternative for the logistic regression model for frequent occurrence of event of outcome. The 

comparison of the performance of these two models has been found with reference to 

clinical/epidemiological data. Nonetheless, the application of log-binomial model and its comparison 

with the logistic model for poverty data has not been described.   

Objective: To compare logistic and log-binomial regression model in terms of variable selection, 

effect size, precision of effect size, goodness of fit, diagnostics, stability of the model, and the issue 

of failure convergence. 

Materials and Methods: Cross sectional data of 5988 households of Nepal Living Standard 

Survey 2010/11 has been used for the analysis. The performance of logistic and log-binomial model 

has been compared in terms of variable selection, effect size, and its precision for each covariate, 

goodness of fit using Hosmer - Lemeshow (H-L) test, diagnostics of the model, stability of the 

model using bootstrapping method, and the issue of failure convergence. 

Results: Logistic model overestimates the effect size, yields wider 95% confidence interval than 

that of log - binomial model for each covariate. The greater elevation in risk for covariates varies 

from 13% to 173%. Logistic model satisfies goodness of fit of the model (p = 0.534), diagnostics 

tests, and stability of the model. However, log-binomial model grossly violates the goodness of fit 

of the model (p = 0.0004) but satisfies the model diagnostics and stability criteria.  

Conclusion: Log-binomial model satisfies all criteria for model development and diagnostics 

except gross violation in goodness of fit of the model. However, logistic regression model satisfies 

all the criteria including goodness of fit of the model. On the basis of the entire comparison of 

model performance, logistic regression model is better fitted than the log-binomial model in fitting 

the poverty data set of Nepal. 

 

Keywords: Diagnostics, elevation in risk, goodness of fit, log-binomial, logistic, poverty, stability, 

variable selection. 
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INTRODUCTION  

The logistic regression model is being used as a common method to study the associations 

of independent variables with the categorical dichotomous outcomes. Its use is frequent in case 

control, cohort studies and clinical trials. It has also been used in cross-sectional studies (Barros & 

Hirakata, 2003). It does not only measure the association of outcome variable with the independent 

variables, but also help to quantify the effect of these variables on the response variable.  Logistic 

regression yields both regression coefficient for each independent covariate and the odds ratio 

(OR) based on the regression coefficient itself. Odds ratios are commonly reported in the analysis 

of different studies under such scenario (Davies, Crombie & Tavakoli, 1998) and seem to be 

relatively more appealing and effective in interpretations compared to regression coefficients. A 

considerable number of previous studies also indicated the use of relative risk, risk ratio (RR), 

prevalence ratio (PR), or rate ratio under such scenario (Davies et al., 1998; Holcomb, 

Chaiworapongsa, Luke & Burgdorf, 2001; Martinez, Leotti, Silva, Nunes, Machado & Corbellini, 

2017; Gallis & Turner, 2019).  There is still an academic debate regarding the issue of reporting 

which one either 'OR' or 'RR' is better.  Some authors favor to report OR, some favor RR.   Walter 

(1998), Olkin (1998), Newman (2001), and Cook (2002) favor to report odds ratio (OR) as they 

claimed that it is symmetric with the outcome.  On the other hand, Sackett, Deeks and Altman 

(1996), De Andrade and Carabin (2011), and Gallis and Turner (2019) favor to use relative risk 

(RR) claiming that it is easily understandable. Lee (1994) has also remarked that odds ratio has been 

described as incomprehensible. Williamson, Eliasziw, & Fick (2013) has encouraged to use relative 

risk in epidemiological studies wherever possible, and to advocate its use.  The odds ratios and the 

risk ratios are closer if the outcome of interest is very rare i.e. generally considered as less than 10 

% (Greenland & Thomas, 1982; Greenland, Thomas & Morgenstern, 1986; Viera, 2008).  If the 

outcome of interest is common (i.e. ≥10%), odds ratio will not be able to approximate risk ratio 

(Greenland, 1987; McNutt, Xiaonan Xue & Hafner, 2003; Katz, 2006; Viera, 2008; Ranganathan, 

Aggarwal & Pramesh, 2015; Gallis & Turner, 2019).  

 

Initially, Wacholder (1986) recommended a simple approach of estimating risk ratios (RR) 

directly for studying the association of number of independent variables with the dichotomous 

response variable.   Later, Barros and Vânia (2003) declared that generally the OR overestimates 

the RR in cross-sectional studies having frequent occurrences of event of interest. The basis of the 

log-binomial model is a generalized linear model with log link and binomial probability distribution, 

which results in risk ratio (RR).  Robbins, Chao and Fonseca (2002), and McNutt et al. (2003) also 

highlighted their descriptions and applications.  After that, Blizzard and Hosmer (2006) proposed 

the goodness of fit test and some diagnostics of the log- binomial regression model. There are 
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established methods to convert odds ratios into risk ratios. However, Robbins et al. (2002) had 

clearly indicated that these converted methods yielded inaccurate confidence intervals of estimates. 

It is also reported that there is failure convergence of log - binomial regression model for some 

applications (Williamson et al., 2013). The odds ratio and the relative risk can be computed in a 

different approach. The established technique for computing OR and RR in bivariate analysis is 

summarized in Table 1.  

 

             Table1. Layout of computation of OR and RR. 

Independent variable 
Outcome variable 

Total 
Present Absent 

Group I a b 
10

n  

Group II (Reference category) c d 
20

n  

Total 
01

n  
02

n  n  

 

With reference to table1, probability of occurrence of ‘a’ is 1

10

a
p

n
  , and its 

complementary probability is 
1

(1 )p  in Group I. Similarly the probability of occurrence of ‘c’ in 

Group II is denoted by 2

20

,
c

p
n

  and its complementary probability is
2

(1 )p . 

The odds ratio for the presence of outcome is defined as:  

   
1 1

2 2

/ (1 )

/ (1 )

p p
OR

p p





 

The relative risk for the presence of defined outcome is simply defined as: 
1 2

/RR p p  

The odds ratio is the ratio of two odds whereas the risk ratio is the ratio of two probabilities. 

The value of OR suppose is 3, is interpreted as the odds of having the outcome is 3 times higher in 

Group I than the reference group. If the probability of occurrence of outcome in Group I is 0.9 and 

0.3 in reference group respectively, then risk ratio is interpreted as the group I is thrice as likely to 

have the outcome as the reference group. There is still some confusion while interpreting the odds 

ratios and relative risks which had been well indicated by Schwartz, Woloshin and Welch (1999); 

Zocchetti, Consonni and Bertazzi (1995). Further, Holcomb et al. (2001), and Baicus (2003) also 

clearly indicated the misinterpretation of odds ratio as risk ratio in considerable number of 

published articles in medical journals. However, the interpretation of RR and OR is not the focus 

of this paper; these issues have been discussed for the sake of completeness of the paper. Poverty 

is a complex issue and it possesses broadly two dimensions such as monetary poverty and non-

monetary poverty. The analysis of this paper is exclusively focused on monetary poverty of Nepal. 

There are still 18.5% of households under poverty based on data of Nepal Living Standard Survey 

(2010/11) (Acharya, Khanal & Chhetry, 2022).  
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Identification of important factors associated with poverty using appropriate statistical model plays 

very important role for policy point of view.  This is an attempt to recommend a more suitable 

model by comparing logistic and log-binomial regression model based on different criteria.  

 

On extensive review of literature, it is found that the use of log- binomial regression is almost 

rare in social science related data problems especially on poverty data. The comparison of logistic 

regression model and the log-binomial regression model is also found quite rarely in social science 

researches. The objective of this paper is to apply the log-binomial regression model to the variables 

of the poverty data set of Nepal Living Standard Survey (2010/11), and to compare the results of 

logistic regression model and log-binomial regression model in terms of selection of variables in the 

final model, estimates, precision of the estimates, goodness of the fit of the model, diagnostics of 

the model, issue of convergence of the model, and stability of the model in the context of household 

poverty of Nepal. The issues of variable selection and model comparison are based on the paper 

by Acharya et al. (2022). 

 

METHODOLOGY 

Data 

The study is based on cross sectional data of 5988 households of Nepal extracted from 

Nepal Living Standard Survey 2010/11. The survey was conducted by Central Bureau of Statistics 

(CBS) Government of Nepal. The un-weighted data was used for both log-binomial and logistic 

regression model. The detail survey methodology of Nepal Living Standard Survey is explained in 

survey report (CBS, 2011).  The response variable for the model is the poverty status of household 

(coded 0 for non-poor and 1 for poor). Based on extensive review of relevant literature, altogether 

seven independent variables namely sex of household head (male vs. female), literacy status of 

household head (literate vs. illiterate), remittance receiving status(yes vs. no), land holding 

status(yes vs. no), access to market(better vs. poor), number of children in the household under 

15 years of age (≤ 2 vs. > 2), and number of literate members of working age(≥ 1 vs. none)  are 

considered initially for log-binomial regression model as used in  logistic regression model. All 

details about selection of variables and need of dichotomization of independent variables, etc. had 

been described in Acharya et al. (2022). 

 

Statistical model 

The log-binomial regression model is a special type of generalized linear model for which the 

link function is log link. Logistic regression model is also a type of generalized linear model with 

logit link function. The response variable for both the models is dichotomous type. 

The log-binomial regression model for p number of covariates
1 2

( , ,.............., )
p

X X X  in 

association with binary response variable is given by: 

                     
0 1 1 2 2

log ...                                           (1)
p p

X X X           

where
0 1 1 2 2

Pr [ 1| ] = exp( ... )  
p p

ob Y X X X X          for binary outcome Y, 

1 2
, ,............,  

p
    are the regression coefficients for covariate  
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1 2 0
( , ,.............., ),   is the constant term in the model

p
X X X  .

 
The link function for this model 

is log link. In this model RR can be computed as e    j
for each considered covariate as done in 

the case of computing OR in logistic regression model.  Regression coefficients are estimated by 

using the maximizing the likelihood function (for detail, please see McCullagh and Nelder, 1989) 

                  
1

log 1 log 1                                      (2)
n

i i i i

i

l y y  


       

 where,       
0

e

p

j ij

j

x

i



 

 
 
 
 


  

 

Goodness of fit test and diagnostics of the fitted model 

The goodness of fit of the log - binomial regression model can also be assessed by using 

Hosmer and Lemeshow (H-L) 
2  test with (10 - 2 = 8) degrees of freedom using the formula 

The observed and expected value in H-L 
2  test in case of log-binomial regression model appear 

approximately equal but not exact.  However, this test can also be applied for assessing the 

goodness of fit of the log-binomial regression model (Blizzard & Hosmer, 2006). The diagnostics of 

the fitted log-binomial regression model has been assessed graphically through the plot of (i) 

leverage in the vertical axis and the fitted model in the horizontal axis, and (ii) Chi-square 

displacement generated by the log- binomial model in the vertical axis and model fitted values in 

the horizontal axis (Blizzard & Hosmer, 2006). 

 

The stability of the developed model has been evaluated by using bootstrapping method 

(Chen & George, 1985; Altman & Anderson, 1989; Saurbrei & Schumacher, 1992) as used for 

assessing the stability of Cox regression model. Same approach as applied by Khanal, Sreenivas & 

Acharya (2019) for comparing the stability of Cox proportional hazards model and two accelerated 

failure time models has been used to assess the stability of the logistic and log- binomial regression 

model. After fitting the final log-binomial regression model, the risk assessment of factors has been 

performed in terms of RR running the log-binomial model with same response variable on newly 

generated variable (
i

X   for i =1, 2, 3,…, p), where 1 represents the presence of any one factor,2 

for presence of any 2 factors, and finally the presence of all factors in the final model respectively. 

The values of RR obtained from log-binomial model and the values of OR computed in similar 

manner from logistic regression model are compared. 

 

Finally, the logistic regression model developed in the same data set by Acharya et al. (2022) 

and the log-binomial regression model developed in this attempt are compared in terms of variable 

selection, estimates, precision of estimates, goodness of fit of the model, regression diagnostics, 

stability of the model, and model convergence issue. Bootstrapping procedure has been done by 

 
2

1 10

0 1

ˆ
ˆ                                                             (3)

jk jk

j k jk

o e
c

e 


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using R software, and remaining all statistical analysis has been performed by using STATA version 

13.0.  

 

RESULTS  

There are altogether seven independent covariates associated with outcome variable used 

in the model. In order to identify the candidate variables for the final log-binomial regression model, 

simple log-binomial regression model considering one independent variable at a time separately is 

performed. Among these seven variables, only six variables; literacy status of household head - 

literate vs. illiterate (RR: 2.31, p < 0.001), remittance receiving status - yes vs. no (RR: 1.38, p < 

0.001), land holding status - yes vs. no (RR: 1.79, p < 0.001), access to market - better vs. poor (RR: 

2.25, p < 0.001), number of children under 15 years of age-less than or equal to 2  vs. more than 2 

(RR: 3.68, p < 0.001, and number of literate members of working age- at least one vs. none (RR: 

1.97, p < 0.001), each has come out significantly associated with response variable at 5% level of 

significance except sex of household head - male vs. female (RR: 0.92, p = 0.195). Though sex of 

household head has not come out statistically significant even in the simple log-binomial regression 

model, it is also considered as one of the candidate variables for developing multiple log-binomial 

regression model treating it as a known confounder. Hence, the seven variables including sex of 

household head are considered as potential candidate variables for the final multiple log-binomial 

regression model.  

 

Results of multiple log-binomial regression model 

In order to select the significant variables in the final model both stepwise forward selection 

and backward selection procedure are adopted considering seven candidate variables.  Both 

selection procedures have yielded six common set of significant variables at 5% level of significance 

except sex of household head. The values of RR, standard error (S.E.) of RR, p-values and 95% CIE 

for each independent factor associated with poverty obtained through multiple log- binomial 

regression model are presented in Table 2. 

 

Among finally selected six independent predictors associated with poverty, the risk of 

household having more than two children under 15 is found to be the highest (RR: 2.96, 95% CIE: 

2.66, 3.28) followed by household having illiterate household head, household with poor access to 

the market center, household not receiving remittance, household with no land respectively.  The 

risk of household being poor among household not having single literate members of the working 

age in comparison with households having at least one literate member is found to be the least (RR: 

1.16, 95% CIE: 1.05, 1.29). This can be interpreted as the household not having single literate 

members of the working age is 1.16 times as likely to have poorer than those household having at 

least one literate members of the working age. The goodness of fit of the model assessed by H-L

2
( ) test with 8 degrees of freedom is highly violated (p = 0.0004) (Table 2).  
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Table2. Results of multiple log - binomial regression model. 

Independent variables RR S.E. p-value 95% CIE 

Literacy status of household head: 

   Literate  

   Illiterate  

 

1.00 

1.68 

 

 

0.1006 

 

 

< 0.001 

 

 

(1.49    1.89) 

Remittance receiving status: 

   Yes  

   No  

 

1.00 

1.45 

 

 

0.0685 

 

 

< 0.001 

 

 

(1.33    1.59) 

Land holding status: 

   Yes 

   No  

 

1.00 

1.22 

 

 

0.0594 

 

 

< 0.001 

 

 

(1.11    1.34) 

Access to market: 

   Better  

   Poor  

 

1.00 

1.51 

 

 

0.0888 

 

 

< 0.001 

 

 

(1.34   1.69) 

Number of children under 15:  

   ≤ 2 

   > 2 

 

1.00 

2.96 

 

 

0.1590 

 

 

< 0.001 

 

 

(2.66    3.28) 

No. of literate members of working-

age:  

    ≥ 1 

    0 

 

1.00 

1.16 

 

 

0.0606 

 

 

< 0.001 

 

 

(1.05    1.29) 

Constant 0.05 0.0034 < 0.001 (0.05    0.06) 

Log likelihood (only with intercept) = - 4068.888; Log likelihood (full model) = - 2412.336 

AIC =  0.808; BIC = - 47195.150; H-L 
2

( )  with 8 d. f. = 28.602, p = 0.0004  

Source: computed based on NLSS 2010/11 data 

 

Results of diagnostics for log-binomial regression model 

The plot of the leverage values in y-axis and the model fitted values in x-axis is presented in 

Figure1 (a). One data value seems to be in the top right corner having relatively greater leverage 

than others. Majority of the leverage values are found less than 0.008 and the extreme one leverage 

in this dataset is also less than 0.01. Hence, all the leverage values are found to be less than 0.08 

which indicates that there is not violation of the diagnostics of the model assessed based on leverage 

(Blizzard & Hosmer, 2006).  
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                       Fig. 1(a).  Leverage and fitted values of log - binomial model. 

The diagnostic of the fitted model has also been assessed through the plot keeping 
2 in 

vertical axis and the values of fitted log-binomial regression model in horizontal axis with plotting 

symbol proportional to Cook's distance (Figure1(b)). There are four poorly fit data points with 
2

> 10 (Blizzard & Hosmer, 2006). The circles of these four data points are observed to be larger than 

others. Two data points are lying in a bit far away and another one is farther away from others in the 

right lower corner.  There is not much serious violation of the diagnostics of the fitted model 

evaluating on the basis of the plot of 
2  vs. fitted log - binomial model. 

 

 

                       Fig. 1(b). Graph of 
2  vs. values of fitted log - binomial model with  

                                       plotting symbol proportional to Cook's distance. 
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Comparison of logistic and log-binomial regression model 

Model building of both logistic and log-binomial regression models are started taking with 

same set of seven covariates. Out of these seven covariates both models have come up with six 

significant covariates except variable 'sex of household head'. While comparing the effect size(OR 

for logistic regression and RR for log - binomial regression model) for each covariate, logistic 

regression model overestimates the effect size (Table3) and wider width of 95% confidence interval 

estimation than that of log-binomial regression model (Table 3 ). Wider confidence interval 

estimation of effect size for each covariate in logistic regression model clearly indicates the lesser 

precision of the estimate than that of log-binomial regression model. The value of OR for each 

independent variable obtained from logistic regression model overestimates the value of RR 

obtained from log-binomial regression model. The reference value for each OR and RR is 1.  

 

The elevation of risk percentage for a covariate is computed as 

 Elevation risk(%) = (OR-1) - (RR-1) ×100 . For example; let us consider the elevation risk (%) 

for the variable literacy status of the household head is computed with reference to Table3 as 

 (2.20 - 1) - (1.68 -1) ×100 = (1.20 - 0.68) 100 = 52.0% . It is computed in similar fashion for other 

covariates (Table3). The elevation of risk for the covariate estimates generated by logistic 

regression varies from 13% to 173% than those generated by log-binomial regression model. The 

highest elevation of risk (173%) is noted for the variable 'number of children less than 15 years of 

age' and the least elevation of risk (13%) is observed for the variable 'number of literate members 

of working age'. 

 

Logistic regression model has satisfied the goodness of fit of the test as assessed by H-L 

2
( ) test (8 d.f.) with non-significant result (p = 0.534) whereas the goodness of fit test of the log-

binomial regression model as assessed by H-L 
2

( ) test (8 d.f.) is grossly violated (p = 0.0004). The 

value of AIC is lees, and the value of BIC is greater with negative sign in log-binomial model 

compared to logistic regression model. Neither logistic regression nor log-binomial regression 

model has faced the model failure convergence i.e. both the models do not show the misbehavior.  
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Table 3. Comparison of logistic and log - binomial regression model in terms of variable selection, 

estimates, precision of the estimates, goodness of fit of the model, AIC and BIC. 

 

Independent 

variables 

Logistic regression model 
Log - binomial regression 

model 
 

 

Elevation in 

risk (%) OR(95% CIE) 
Width of 

interval 
RR(95% CIE) 

Width 

of 

interval 

Literacy status of 

household head: 

   Literate  

   Illiterate  

1.00 

2.20 (1.86    2.61) 

 

0.75 

1.00 

1.68 (1.49    1.89) 

 

0.4 

 

52 

Remittance receiving 

status: 

   Yes  

   No  

1.00 

1.90 (1.64    2.20) 0.56 

1.00 

1.45 (1.33    1.59) 0.26 45 

Land holding status: 

   Yes 

   No  

1.00 

1.53 (1.31    1.78) 0.47 

1.00 

1.22 (1.11    1.34) 0.23 31 

Access to market: 

   Better  

   Poor  
1.00 

1.77 (1.52    2.07) 0.55 

1.00 

1.51(1.34    1.69) 0.35 26 

Number of children 

under 15:  

   ≤ 2 

   > 2 

1.00 

4.69(4.06    5.42) 1.36 

1.00 

2.96(2.66    3.28) 0.62 173 

No. of literate 

members of working-

age:  

    ≥ 1 

    0 

1.00 

1.29(1.07    1.56) 0.49 

1.00 

1.16(1.05    1.29) 0.24 13 

H-L 
2

( ) with 8 d.f 

AIC 

BIC 

6.05, p = 0.534 

4813.844 

4860.727 

28.602, p = 0.0004 

0.808 

- 47195.150 

 

Source: Results of logistic regression are adopted from Acharya et al. (2022); Results of log-binomial 

regression are computed based on NLSS 2010/11 data. 

 

Comparison based on diagnostics of the model 

The diagnostics of the fitted logistic regression model was assessed graphically through the  

(i)  plots of   vs. model estimated probability, and (ii) 
2 vs. model estimated probability with 

symbol size proportional to   (Figure2(a) and 2(b)). Both the figures have reasonably satisfied 

the diagnostics of the model through visual assessment except 2 data points greater than 1 in 

Figure2 (a), and the value of 
2 and   are not influenced by covariate patterns except for one 

covariate (Figure2 (b)). 
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               Fig. 2(a).  Plot of   versus logistic regression model estimated probability. 

                               (Source: Acharya et al. (2022) 

 

 

                    Fig. 2(b). Plot of 
2 versus logistic model estimated probability with  

                                    symbol Size proportional to ( ) .  

                                   (Source: Acharya et al. (2022)) 

 

The diagnostics of the fitted log - binomial regression model is assessed graphically by (i) 

leverage versus predicted value of log - binomial regression model (Figure1 (a)) , and by (ii) graph 

of  
2 versus values of fitted log - binomial model with plotting symbol proportional to Cook's 

distance(Figure1(b)).  Based on the visual assessment of the plots, the fitted log-binomial model 

(Figure 1(a) & (b)) reasonably satisfies the diagnostics of the model. 
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Comparison based on stability of the model 

High repetition of each variable in each final model is assessed through bootstrapping 

resampling technique running each model 1000 times with final set of independent variables. The 

major objective of this method was to identify the importance of each variable in each final model 

through the maximum number of occurrences of each variable in each model. Naturally, the higher 

the repetition of occurrence of variable indicates the more importance in the model and 

consequently indicates the stability of the fitted model.  In each model same five variables are found 

repeated 100% of times, and only one variable ' number of literate members of working age group' 

is repeated 97.4% of times. Hence, both models have satisfied the stability criteria indicating that 

the selected variables are almost equally important in each model. 

 

Comparison based on risk assessment 

The risk assessment has been performed for each model based on the presence of any one, 

any two risk factors, etc. by running logistic and log - binomial model separately. The risk of 

households being poor is found increasing continuously as the number of factors increases in each 

model (Figure3). However, logistic regression model overestimates the risk for each factor than 

that of log - binomial regression model analogous to the results of the original logistic and log - 

binomial model we used in the analysis.  

 

 
         Fig. 3.  Risk assseemsnt based on presence of factors for logistic and log-binomial  

                      regression model. 

 

DISCUSSION 

The findings of the study have clearly indicated that each model has picked up the same set 

of six independent predictors in the final model from the same pool of variables. Both stepwise 

forward and backward selection procedures have been applied to select the variables in each of the 

final model to akin whether different selection methods serve differently in each model. However, 

both selection procedures have behaved in a similar manner in each model by selecting the same 
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set of variables. The effect size of each independent variable is overestimated in logistic regression 

model as compared to that of log-binomial regression model. Similar findings have been reported 

by other studies (Barros and Hirakata, 2003; Espelt et al., 2017; Diaz-Quijano, 2012).   In logistic 

regression model OR varies from 1.29 to 4.69, and in log- binomial regression model RR varies 

from 1.16 to 2.96. There is clear greater elevation of risk in logistic regression model as compared 

to log-binomial regression model for each independent variable, and it varies from 13% to 173%. 

While comparing effect size for each variable within the model and between the models, if it is 

smaller or larger in a variable in logistic model, it is also smaller or larger in log - binomial model 

for the same variable. Just for example; the highest OR value of 4.69 for a variable 'number of 

children under 15 years' in logistic regression model, and the highest RR value of 2.96 for the same 

variable in log - binomial regression model.  The precision of effect size of each variable in log-

binomial model is better than that of logistic regression model as assessed by 95% CIE.  

There is remarkable wider interval width of effect size in each variable in logistic regression 

model than that of log-binomial regression model. This finding is similar to the findings of Deddens 

and Petersen (2008); Barr, et al. (2016).  While comparing the goodness of fit of two models, logistic 

regression model has satisfied the goodness of fit criteria but log - binomial regression model has 

grossly violated as assessed by H-L
2

( )  test. The violation in this regard in log-binomial model 

might be because of considering only categorical independent variables, but the exact reason is not 

known. There is not any problem of failure convergence in both models. Some studies have 

reported the issue of failure convergence specially while running log-binomial regression model 

(Williamson, et al., 2013; Barros & Hirakata, 2003; De Andrade & Carabin, 2011). The value of AIC 

of log - binomial model is smaller than that of logistic model; the value of BIC is larger in magnitude 

in log - binomial model than that of logistic model but with negative sign.  The diagnostics of the 

logistic model assessed through (i) the graph of   versus model estimated probability, and (ii) 

the graph of 
2 versus model estimated probability with symbol size proportional to ( )  are 

reasonably satisfied. The diagnostics of the fitted log - binomial model assessed through graph of (i) 

leverage versus model fitted value, and (ii) the graph of 
2  versus model fitted value with symbol 

proportional to Cook's distance is also reasonably satisfied. Similar findings are reported by 

(Blizzard & Hosmer, 2006) regarding the regression diagnostics based on the comparison of these 

two models using follow up study of infants. However, our finding regarding the goodness of fit of 

the model for log - binomial model does not support the study of Blizzard & Hosmer (2006) but 

supports for the logistic regression model.  While comparing the stability of the fitted model 

evaluated using bootstrapping resampling method of running each model 1000 times, all five 

variables are repeated 100% times except one variable's repetition of 97% of times. This signifies 

that both finally fitted models can be considered as stable.  

 

Limitation 

All independent variables used in both logistic and log - binomial model are of categorical  

type. The reasons behind the consideration of categorized variables are ease of interpretations of 

effect size and effective implementation in policy implications for comparing the groups such as 

advantaged vs. non advantaged groups, etc.  
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CONCLUSION 

Both logistic and log- binomial model possess same behavior in terms of selection of variables 

in the final model, diagnostics of the fitted model, stability of the model and issue of failure 

convergence. However, logistic regression model overestimates the effect size, wider CIE of effect 

size than that of log-binomial model. The value of AIC is smaller in log- binomial model than that of 

logistic model. Comparison based on the estimates, precision of estimates, and AIC, log-binomial 

model is better than logistic regression model in this cross sectional poverty data of Nepal. Logistic 

regression model satisfies the goodness of fit but log - binomial model grossly violates.  Logistic 

regression model is better than log - binomial regression model for this poverty data comparatively 

based on the entire comparison including goodness of fit of the model. Nonetheless, log - binomial 

model is a good alternative for logistic regression model, especially for not overestimating effect 

size and its better precision. 
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