Kathmandu University Journal of Science, Engineering and Technology, Vol. 14, No. 1, April 2020

Kathmandu University

Journal of Science, Engineering and Technology

A vowel based word splitter to improve performance of existing
Nepali morphological analyzers on words borrowed from Sanskrit

Madhusudan Adhikari® and Aatish Neupane

Department of Computer Science and Engineering, School of Engineering, Kathmandu University

Abstract

Nepali lexicon is rich in words borrowed from Sanskrit language, called "Tatsama” words. These words have a specific set of rules to split
them into affixes and morphemes. This paper details these rules and describes an implementation that can be used to improve existing Nepali
Morphological Analyzers which do not yet implement concrete rules for these kinds of words.

Keywords: Natural Language Processing(NLP); morphological analyzers; Sanskrit conjunction; Nepali morpho-analysis; Tatsama words

1. Introduction

Nepali lexicon consists of a wide category of words and one of
them is Tatsama words: “those borrowed from Sanskrit language
without any changes” [1]. These words follow some regular word
formation patterns of Sanskrit and Sandhi is one of the word join-
ing pattern in Sanskrit where letters or sounds combine to form
a new word. In this pattern, words may be formed after replace-
ment, addition or deletion of letters undergoing the conjunction
(Sandhi) process. This process is used in a variety of situations like
combination of two individual words and addition of affixes to the
roots, of which examples are shown below:

Affix-Word combination:
Su (@){prefix}+ Aagata (3TTd){root} = Svagata (FITTd)
Word-Word Combination:

Vikash (fersTe1) +Unmukh (379%) = Vikashonmukh
((EERIE:TC)]

There are many rules for Sandhi in Sanskrit depending on the
letters involved. Understanding Sandhi is not just important to un-
derstand the structure of Sanskrit words formation but also impor-
tant for those languages which borrow words from Sanskrit- like
Nepali and Hindi since the rules for Tatsama words are completely
based on Sanskrit grammar. Understanding this process is help-
ful in the field of Natural Language Processing (NLP) of Nepali lan-
guage as it helps to optimize and improve the working of many NLP
components like Morphological Analyzer (MA) and Stemmers for
Nepali, specially rule-based ones.

A Morphological Analyzer (MA) is a common tool used in Natural
Language Processing (NLP). It is a tool responsible for determining
morphemes of a given word. A morpheme is a meaningful morpho-
logical unit of a language that cannot be further divided. A rule
based MA is unique for every language as each language possesses
its own process of forming inflected and derived words from the
root. Normally rule-based MA requires a thorough understanding
of the word structure of the language for its development.

“Corresponding author. Email: mdhsdnadhikari@gmail.com

Existing implementations of morphological analyzers for Nepali
are rule-based [3]. These MA utilize a common Nepali word forma-
tion process to break down the words to get its root with stemmer
at its core. In most cases, it strips off the suffixes and prefixes to
reach the root. For instance:

Shahareeyaa (F8414T) = Sahar(¥80){root}+ eeyaa(3aT){suffix}

Videshee (faesi) = vi (fN){prefix}+ desh
(FM{root} +ee(3){suffix}

This technique of stripping affixes to extract the root is very
much helpful for words that follow a regular pattern and majority
of words follow the same pattern but this may not work for Tat-
sama words. Nepali compound words forming as a result of the
combination of the free and bound morphemes are not always reg-
ular in terms of formation and consequently in breaking. Insertion
and deletion of one or more free vowels and vowel symbols or de-
pendent vowels is a common phenomenon [3]. An example is:

Atyadhik(3Teafera) = Ati (A0 {Prefix}+ Adhik (&) {root}.

The technique of stripping of affixes cannot work here as this type
of words are Tatsama words and they follow rules from Sanskrit, not
Nepali.

This paper focuses on development of an algorithm to implement
Sandhi rules from Sanskrit as Sanskrit grammarian Panini described
in his magnum opus Ashtadhyayi [2]. Though the algorithm being
developed is for Sanskrit words, it can be utilized in contemporary
NLP tools in Nepali like Morphological Analyzers and Stemmers so
that it can deal with some categories of Tatsama words. Not all
Sandhi rules are applicable to the Nepali language. This paper fo-
cuses on some of those Sandhi rules which are relevant for Nepali
lexicon.

1.1. Status of NLP and morphological analyzer in Nepali

Morphological Analyzer is considered one of the basic building
blocks necessary for further NLP works on the language in consider-
ation. [3] points out that the research in NLP for Nepali started in
the year 2005, with the release of the first Spell Checker for Nepali

2 M. Adhikari et al.

and the "Dobhase" English to Nepali machine translation project..
The first MA and Stemmer for Nepali was developed and described
in [3], which utilized a rule-based approach, and it used a stemmer
at its core. Besides a stemmer, it consisted of POS tagsets, Tokenizer,
Free morpheme based lexicon, two sets of affixes each for the suffix
and a database for word breaking grammatical rules. In another
approach, context free hybrid stemmer which used traditional rule-
based system with string similarity approach which was proposed
in [4]. It used a threshold distance of 0.5 for stripped word with
stems and after stripping the word, the words were compared with
the roots stored in the database using string similarity function. A
suffix removal stemmer for Nepali was developed by [5]. [6] devel-
oped a new stemmer for Nepali with suffix rules. They composed
128 suffix rules, which were executed in step-by-step and iterative
manner to eliminate inflections. None of these rules based systems
have implemented Sandhi rules for analysis.

1.2. Related works on Sandhi computation in Indo-Aryan lan-
guages

[7] has surveyed surveyed various sandhi splitting techniques for
different Indian languages - Sanskrit, Hindi, Malayalam and Marathi

They also developed a Vowel Sandhi splitter for Sanskrit [8].
[9] presented rules and rule-based algorithm for sandhi splitting
of Marathi compound words. Statistical sandhi splitter for aggluti-
native languages was developed by [10] and it was tested on Malay-
alam and Telugu.

2. Discussion
2.1. Sanskrit conjunction (Sandhi) rules relevant to Nepali

As introduced in earlier sections, Sanskrit has a process of com-
bining two letters leading changes in the combining letters. San-
skrit grammarian Panini has mentioned that the application of rules
follow a hierarchical order: one rule supersedes another if the con-
ditions necessary are satisfied [2]. Though there are many rules
in Sanskrit regarding Sandhi, only limited ones are used in Nepali.
The common rules that are applied in the Nepalese lexicon, are rep-
resented in Table 1, and Table 2, and are based on the natures of
Sandhi.

2.2. Proposed improvement to existing systems

The proposed implementation utilizes techniques developed by
previous researchers in the field of Nepali morphological analysis
and adds algorithm to break the words as per the Sanskrit conjunc-
tion (sandhi) rules. Prerequisites for the system to work are similar
to that of the Morphological Analyzer developed by [3]: a lexicon
based on free morphemes, a set of affixes, and an algorithm to break
the words. The algorithm to break the words is what improves exist-
ing implementations to handle Tatsama words and hence, this paper
focuses on that algorithm specifically. The general algorithm is as
follows:

1. Start

2. Take two arrays, LHS (initially an empty list) and RHS (list of
Unicode letters for the word)

3. Keep pulling letters from RHS into LHS (processing step) until
both lists contain free morphemes or an affix and a morpheme
(base condition)

4. Whenever a half consonant is found, check if any rules match
current condition and create a copy of LHS and RHS with new
replacements. Keep processing this replacement as a new word
until base condition matches or all of RHS is exhausted.

Word

Initial input (replaces
vowel sounds with vowels)

Replace vowels with
vowel sounds

LHS

Free
morpheme checker

A\

Figure 1: Simplified system flow.

5. Keep processing arrays which have not been replaced until base
condition is matched or all of RHS is exhausted.

6. Stop
The general flow of the algorithm is shown in Fig. 1.

2.2.1. Processing step

During the processing step when a letter is transferred from RHS
to LHS, isolated vowel sound modifiers such as =T (aa) < (00) P (ai)
end up in RHS. This is replaced by a corresponding vowel sound
and then checked against the base condition. For instance, while
processing a word “ﬁlﬂ'[ﬁﬂil:@f", a state is such that:

LHS = 9 (B)
RHS = [f=m=q#]

With the replacement, it becomes:

RHS = [smﬁ?gﬂ@r] (Icharonmukh). Here the vowel
sound modifier sign is changed to a distinct vowel letter
i

A vice-versa replacement should happen when *“S" (i) ends up in the
LHS. So, a conversion table is necessary in both scenarios, which is
shown in Table 3.

2.2.2. Base condition

Checking base condition requires a list of affixes and free mor-
phemes. Both of these resources are very scarce for Nepali language
and thus, we developed our own set of free morphemes to use with
our algorithm.

Implementation:

The proposed improvement algorithm was implemented in
Python 3 which supports Unicode processing very effectively. An
accompanying web application was also developed which showed
iterations along with applied rules. Some screenshots from the ap-
plication we developed using the algorithm are shown in Fig. 2 and
Fig. 3.

3. Results

250 different Tatsama words which followed the sandhi rules
were chosen from the dictionary [11] and were tested through
the system. The technique worked correctly with all the words
which were a combination of two entities (affixes-morphemes and
morphemes-morphemes) based on vowels. However, it didn't work
for words that were formed from consonant sandhi rules. One such
word was feTe9 (Digdarshan). The word follows consonant sandhi
rules and is broken down as:

Kathmandu University Journal of Science, Engineering and Technology, Vol. 14, No. 1, April 2020 3

Table 1: Replacement of a single letter.

Initial letter Following letter

Replaced letter Replacing letter ~ Examples

(), AT (aa) (), 3 (ee)

A (a), 3T (aa) 3 (u), 3 (00)

3,3 7 (ya) Ati (377d) + Aachaar (3T9X) = Atyaachaar (3TcIT9IY)
Ati (3AT) + Adhik (3T¥®) = Atyadhik (Ta¥H)
3,3 q (va) Su (g) + Aagata (3TTd) = Svagata (¥9T7d)

Table 2: Replacement of letters.

Combining letter 1~ Combining letter 2 Replacement letter Examples
Replacement of two letters:
A (a), 3T (aa) 3(3), T (ee) T(ae) (3A/ AT+ 3/ =T Upa (39) + Indra (37%) = Upendra (FT)
2T (a), 3T (aa) 3 (u), 3 (00) 2T (0) (31/3TT + 3/3 = 3 Sarva ('Fl?h + Uttam (39H) = Sarvottam (FSTH)
Replacement of one combining letter by another combining letter:
A (a) AT (aa) AT (A + 3 =3 Pustaka (T&d%h) + Aalaya (3T@H)
(Combining letter 2) = Pustakaalaya (J&dhTeTd)
Combination of repeated letters:
3 (a) #H (a) AT (A + 3 =31 Eka (T) + Aadhikar (AT&rehTY)
= Fkaadikaar (THTEHR)
Morphological Analyser Test Morphological Analyser Test
ICEIRUESRG] Check — Check
g
+
E +
Founa! SHNITd
1. + AR
Found!
2. § + SARFGE
1. + WdNTd
3. fo + aRIFgE
1. forg + SR 2. J +dITd
5. fyT + g 3. + 33HoTId
3. W + \3:n:a—@ 1. ﬁ + 3{o:TTId
7. f9aR + sr3g@ > + 3N
3. foR + 3@
Rules
Rules

Applied rule will be highlighted

Applied rule will be highlighted

A +3J =3

3 +3 =3

T+3(=7

g+3 =7

gT+aM=7

g+3=9

3=7

3=7

J+3=7

T+3=7

S+3=9d

S+3=4d

3I=1

3=d

Sample Words

Sample Words

TGS faRFIE oy UGG [SaRIFE YSuH
A SIS AR AIIE AR AR

AP 9E WrTd TR

fADbTHd WHTd UG

Figure 2: Output for the word fsFM=1& (Bicharonmukh) from our web Figure 3: Output for the word: TaTTd (Svaagat) from our web implementa-
implementation of algorithm in Python 3. tion of algorithm in Python 3.

4 M. Adhikari et al.

Table 3: Vowel and Vowel Modifiers Conversion Table

RHES - «vvvvmrnenaninna 2 SLHS
Vowel Sound Vowel
<Combines with half consonant and removes H(a)
half consonant>
ol 3T (aa)
o 3 ()
T % (ee)
Q 3 (v)
2 3 (00)
0 T (e)
T (ai)
T 3T (0)
T 1) (ouw)

ferewm (Digdarshan) = ﬁ$\ (Dik) + €91 (Darshan)

In this case, a consonant sound "' (k) merges with "%’ (da) to
form "' (ga). This finding has opened up possibilities for further
improvement to this rule-based analyzer.

4. Conclusion

An algorithm to improve the performance of existing Nepali Mor-
phological Analyzers by borrowing Sanskrit Conjunction (sandhi)
rules were successfully created and implemented. This algorithm
can be integrated into existing MAs to break Sanskrit words in the
Nepali lexicon. These cases of breaking words based on vowel com-
binations were not handled previously by any Nepali language stem-
mers and this is an addition to these MA systems with acceptable
accuracy. This article described the portion that can be integrated
into existing MAs to improve their performance. A feasible position
where this algorithm can be integrated with the flow of existing MAs
can be a subject of another research and was not discussed in this pa-
per, leaving open options for the respective authors and developers,
where to integrate this unit of the algorithm in their MAs.

Limitation and further work

Techniques used by existing stemmers and morphological analyz-
ers doesn't work for many pure Nepali words. An example of such
words is:

Lavaai(<TdTs) = Laa (<M){root}+ Aai (3T3) {suffix}

This pattern cannot be solved even by the rules followed by Tat-
sama words and need a detailed study of its own and is out of scope
of this paper.

References

[1] Kulkarni M, Dangarikar C, Kulkarni I, Nanda, A & Bhat-
tacharyya P, Introducing Sanskrit wordnet, In Proceedings on
the 5th Global Wordnet Conference (GWC 2010), Mumbai, Jan-
uary 31 - February 4, 2010.

[2] Panini, The Ashtadhyayi of Panini, Edited/translated by Srisa
Chandra Vasu, 2 Vols, Motilal Banarsidass, Delhi, India. (1962)
2.

[3] Bal BK & ShresthaP, AMorphological Analyzer and a stemmer
for Nepali. PAN Localization, Working Papers, 324-31 (2007).

[4] sitaula C, A hybrid algorithm for stemming of Nepali text. In-
telligent Information Management, 5(04),136 (2013).

[5] Paul A, Dey A & Purkayastha, An Affix Removal Stemmer
for Natural Language Text in Nepali, International Journal of
Computer Applications, 91(6) (2014).

(6

—

Shrestha I & Dhakal S S, A new stemmer for Nepali language.
International Conference on Advances in Computing, Commu-
nication, & Automation (ICACCA), Fall, IEEE, Bareilly, India,
September 30 - October 1, 2016.

[7] Deshmukh R, Bhojane V, Sandhi Splitting Techniques For Dif-
ferent Indian Languages, International Journal of Engineering
Technology, Management and Applied Sciences (ijetmas), 2(7)
(2014).

[8

—_—

Deshmukh R & Bhojane V, Building Vowel Sandhi Viccheda
System for Sanskrit. International Journal of Innovations &
Advancement in Computer Science IJIACS, 4, 12 (2015).

[9] Joshi Shripad S, Sandhi splitting of Marathi compound words.
International. Journal on Advanced Computer Theory and
Engg, 2(2) (2012).

[10] Kuncham P, Nelakuditi K, Nallani S & Mamidi R, Statistical
sandhi splitter for agglutinative languages.In International
Conference on Intelligent Text Processing and Computational
Linguistics, Cairo, Egypt,14-20 April, 2015.

[11] Baral, T D, dcqH Ut 7Y W eIV (Tatsama Nepali
Vyutpatti Shabdakosh). Vidharthi Pustak Bhandar, Kathmandu,
Nepal (2011).

	Introduction
	Status of NLP and morphological analyzer in Nepali
	Related works on Sandhi computation in Indo-Aryan languages

	Discussion
	Sanskrit conjunction (Sandhi) rules relevant to Nepali
	Proposed improvement to existing systems
	Processing step
	Base condition

	Results
	Conclusion

