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Abstract 

The absorption coefficient of electromagnetic wave propagating through overdense absorbing plasma is 

calculated by using Fresnel’s formula. Also, the force acting per unit volume of the electron fluid is 

calculated along z direction. The Fresnel’s formula is reduced in terms of conductivity and angular 

frequency so that nature of absorption coefficient with respect to conductivity of plasma and angular 

frequency of wave is studied, with the assumption that conductivity and angular frequency are two 

independent terms. By keeping conductivity of plasma constant, it is seen that the absorption coefficient is 

increased with increase in angular frequency and also absorption coefficient has the lowest value for the 

highest value of conductivity. At constant angular frequency of incidence, the absorption coefficient is 

decreased with increase in conductivity and also absorption coefficient has the highest value of angular 

frequency of incidence. Also the nature of force on the plasma is studied by considering that the 

conductivity of plasma is very large with compare to angular frequency of incident laser. The expression of 

absorption coefficient is separated into real and imaginary parts, and then plots are studied with respect to 

these parts. It is found that in both cases, the force on plasma is existed for short in time and distance, and 

then damps exponentially. Also, the variation of potential with distance is cleared that the potential is 

shielded within multiple distance of Debye length. 

 

Keywords: Absorption coefficient, angular frequency, conductivity, reflection coefficient, skin length. 

 

1. INTRODUCTION 

Light waves exert a radiation pressure which is 

very weak and hard to detect. For example, the 

comet tails formed by the pressure of sunlight is 

tainted by the added effect of particles streaming 

from the sun. When high powered microwaves or 

laser beams are used to heat or confine plasmas 

then the radiation pressure can reach several 

hundred thousand atmospheres. The force on 

plasma is coupled to the particles in a somewhat 

subtle way when it is applied, and is called the 

ponderomotive force [1]. Many nonlinear 

phenomena have a simple explanation in terms of 

the ponderomotive force [2]. 

To derive this nonlinear force, we consider the 

motion of an electron in the oscillating 

electromagnetic fields, E and B , of a wave 

which is described by the equation of motion 

electron [1,2] 

][ BvE
v

 e
dt

d
m   ..................................  (1.1) 

The nonlinearity comes partly from second order 

term because both E and B vanish in the 

equilibrium, so that the term is no larger than 

11 Bv  ,where v 1 and 1B are the linear-theory 

values. 

 The wave equation in the electric field is, 

ωtcossEE   

where Es contains the spatial dependence of electric 

field and ω is the angular frequency of the laser. 

Then the force becomes 

2

sE
2

2

4

1

m

e
fNL   .................................... (1.2) 
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This is the effective nonlinear force on a single 

electron. The force per unit volume is NLf times 

the electron density en  and is  given by, 

           

     
  

 

           .........................................(1.3) 

where, 
e

e

p
m

eπn
=ω

2

2 4
 is the plasma frequency. 

The ponderomotive force is nonlinear force where a 

high frequency electromagnetic laser field induces 

by the plasma. This force is involved in many 

physical phenomena such as, 

a. Momentum transfer to the target. 

b. Self-focusing and filamentation of the laser 

beam 

c. Plasma profile density changes such as the 

formation of caviton and soliton. 

d. Parametric instability. 

e. Second harmonic generation. 

f. Magnetic field generation. 

From the ratio of the ponderomotive force exerted 

on the ions  to the applied on the electron, 

)( ppe ff   is equal to 
i

e

pe

pi

m

m
=

f

f
, where im   is 

the mass of ion. However, the ponderomotive force 

exerted on the electrons is transmitted to the ions by 

the electric fields in the plasma because 

ponderomotive force on the ions is negligible. In 

this phenomenon the electrons are separated from 

the ions and an electric charge separation is created 

in the plasma [2]. 

 

1.1 Effect of Ponderomotive Force on Wave 

Dispersion 

1.1.1 Electron Wave Dispersion 

For the derivation of electron wave dispersion with 

ponderomotive force, we assume that 

a. The problem is one- dimensional. 

b. The ions are immobile. 

c. The charge separation electric field is E . 

Here, the electrons are assumed to be an ideal gas 

and oscillations are adiabatic, then the electron 

pressure iP   and electron density en  are related by 

equation of state [2,3] 

eBei TknP    ................................................ (1.1.1) 

From continuity and momentum equation of 

electrons 

0=
x

vn
+

t

n ee








 ............................................. (1.1.2) 

pee
e

ee fnEen
x

P

x

v
v

t

v
nm 























 (1.1.3) 

Consider the oscillating quantities are assumed to 

behave as sinusoidal, then the dispersion relation 

for the electron wave is  

e

p

e

eB2

p
m

kf
i+

m

kTk
+ω=ω

2
2 3

 ........................ (1.1.4) 

The last term on the right hand side of the Eqn 

(1.1.4) gives the ponderomotive force contribution 

to the wave dispersion. If we neglect 

ponderomotive force term then this equation 

changes to ordinary equation of electron plasma 

wave. Due to this term ,  it is complex and wave 

growth fed by the imposed ponderomotive force is 

possible. At  the real and imaginary parts are 

22

22

2

4 pe

p

pR
m

kf


   ....................................... (1.1.5) 

and 

Re

p

I
m

kf




2
  ............................................... (1.1.6) 

It is interesting that even for 0eT wave 

propagation occurs, and then the phase velocity v  

and group velocity gv are given by  

e

pp

m

kif

k
v 

2

2
  

e

p

p

e

p

g
m

kif

m

if
v  2

2
  

In the case without ponderomotive force, the group 

velocity vanishes if electron temperature becomes 

zero and wave doesn't propagate. So that dispersion 

relation for ion wave is at  in the real and 

imaginary parts of ω are 

i

p

R
m

kfZ

2

||
  and  

Ri

p

I
m

kZ






2
  



P. K. Thakur, S. Bhaila and J. J. Nakarmi 

125 

Here, ion wave can propagate even for the 

temperature becomes zero, unlike that in the case 

without ponderomotive force. 

 

2. THEORY 

When a laser is incident upon a solid at the same 

time a small fraction of it is absorbed and plasma is 

created at the surface and then laser energy can  

absorbed by the plasma so that it is heated to a very 

high temperature and the electron density gradient 

is increased towards the solid. Once the plasma is 

created, the laser energy can no longer be deposited 

upon to the solid target surface. The refractive 

index μ is given by the relation [4.5] 

2

2

2

1

1





p
 ............................................... (2.1) 

Hence the laser light can only propagate up to a 

certain density, known as the critical density(nc) at 

which it is reflected. The surface of the plasma 

corresponding to this density is known as the 

critical surface. Critical density can be expressed as 

2

2

4 e

m
n

ep

c



  

In terms of the wavelength critical density is 

2

2

21

)(

1011.1 
 cm

m
nc

  ................................... (2.2) 

As the absorption increases with respect to function 

of density, but the laser cannot propagate beyond 

the critical surface so we expect the temperature of 

the plasma to be maximum at the critical density. 

Between the critical surface and the solid, the 

temperature must therefore drop. Heat from the hot 

plasma at the critical surface is conducted down 

this temperature gradient, and this conducted heat 

generates more plasma at the solid surface, keeping 

the process going on. It can be seen that the 

temperature in the corona is roughly constant 

although the plasma is expanding in this region, this 

is somewhat compensated for the fact that some 

laser energy is being deposited here. 

The absorption coefficient over a length l is related 

to the difference between the incoming  and 

outgoing  laser intensity by 

in

outin
ib

I

II 
 








  dzk

l

ib

0

exp1  .............. (2.3) 

For a linear density profile of the form 











l

z
nn ce 1  and the analytical solution is given 

by 











c

lncei
ib




15

32
exp1  ............................ (2.4) 

And for an exponential profile, we get 











c

lncei
ib




3

8
exp1  .............................. (2.5) 

 

2.1 Resonance Absorption 

We have to consider the interaction of p-polarized 

light of angular frequency ω on plasma with a 

density gradient. As the density varies as a function 

of , so that the dielectric constant as a function of 

 for the plasma [6,12] 

2

2

1)(


 p
z   

It is cleared that when laser frequency is equal to 

the plasma frequency then  i.e. dielectric 

constant is zero, so that light will generate some 

part of resonance phenomena at the critical surface 

which can be seen by considering Poisson's 

equation, as plasma is neutral. 

0)(  E  
            

           
 

 

  

  
   (2.1.1) 

As at critical surface  and according to this 

the gradient of the electric field becomes infinite at 

this point. In practice, this doesn't happen as we 

have treated  as a real function but actually it has 

imaginary components due to Landau damping or 

collisional absorption and prevents the singularity. 

It is generally the case that the calculation of the 

electric field at the critical surface in the case of p-

polarized light is non-trivial. We will thus first 

consider the interaction of s-polarized light with the 

plasma, where resonance absorption doesn't take 

place as the electric field oscillates along a 

direction where there is no gradient in density. 

Dielectric constant of the plasma and thus the way 

in which electromagnetic waves can propagate 

within it, is given by            
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

4
1 i  ..................................................(2.1.2)                              

2.2 Absorption coefficient of electromagnetic 

wave in non-dispersive plasma 

Let us assume that polarised laser beam is incident 

along the normal to the surface of the plasma i.e. z-

axis coincides with the direction of the normal [7]. 

The incident field components have the form 

)ω(),BB();,E(E inin 0-kzexpi~00,0,0  ....(2.2.1)                      

The intensity of radiation ionizes the atoms in the 

target in a period of the order of femtoseconds due 

to both field and electron ionization processes. The 

laser beam interacts with a homogeneous collision 

less plasma. The interaction process can be 

described by the set of Vlasov kinetic equation for 

the electrons and Maxwell's equation. 

Thus, from Maxwell's equation, 

tcc 




E
JB

14
 

Taking  curl of z-component  

EJ
B

0

4
ik

cz




 
 ................................... (2.2.2) 

And, 

tc 




B
E

1
 

Taking y-component, 

B
E

0ik
z





 ................................................... (2.2.3) 

In vacuum the electric and magnetic fields are, 

)exp()exp( 000 ziktizikti Rin   BBB
 

 ........................................................................ (2.2.4) 

)exp()exp( 000 ziktizikti Rin   EEE
 

 ........................................................................ (2.2.5) 

Where,  and  are the amplitudes of the 

incident and reflected waves respectively. 

We know that reflection coefficient is given by the 

relation, 

2

in

RR
B

B
   ..................................................... (2.2.6) 

The magnetic field inside the plasma (medium) is 

)exp( 00 ziktiT  BBp  ........................ (2.2.7) 

Applying the boundary condition at the plasma 

vacuum interface, 

pBB           at z = 0  ..................................... (2.2.8) 

zz 






 pBB
  at z = 0 ..................................... (2.2.9) 

Applying boundary condition in Eqns (2.2.8) and 

(2.2.9) 

We get, 

TR BBBin    ............................................. (2.2.10) 

TR
k

k
BBBin

0

   ....................................... (2.2.11) 

After solving above equations 

kk

kkR






0

0

inB

B
 






1

1

inB

BR
 

Applying this result we get the reflection 

coefficient as follows  

2

1

1




R   ................................................ (2.2.12) 

And, absorption coefficient      

2

1

1
11




 RA  

|1|

4




A   ................................................. (2.2.13) 

 

2.3 Ponderomotive force in non- dispersive 

plasma 

Here, we have taken a local relation between field 

and current at a certain medium [11] 

EJ   

0

4
1




i  .................................................. (2.3.1) 

Where,   is the conductivity and  is the dielectric 

permeability. 
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 Here, we have obtained the space dependence of 

the fields inside the plasma 

BE 2

1


  ........................................................ (2.3.2) 

And, 

)exp(iqzBpB  ........................................... (2.3.3) 

Where, 

2

1

1




 inB
pB  

Using the relation for ponderomotive force [7] 

BJFp 
c

1 t)iω(iqz
c

σ
= 0


exp2

2/1 ..... (2.3.4) 

t)iωiqz(
)+(

B

c

σ
= 0

in 22exp
1

4
22/1

2

2/1


 
 .... (2.3.5) 

For high conductivity plasma, 

0

4




i  

It is convenient to introduce, 



i


1
2

1

 

Where, 

1
2

0 



  

Then, we have 

i




1
11 2

1


22

2

1

1

1
1


i

i

i

i










  

    
 

  
 

                      ............. (2.3.6) 

And,  

2

* 211







ii
 

Thus, 



2
  ................................................... (2.3.7) 

From all above the equations, we can obtain the 

force acting per unit volume of the electron fluid by 

considering only in the inward  direction for the 

plasma 

 tizik
c

BF inz 0

21

0

2 22exp
1

4 








 

........................................................................ (2.3.8) 

Again, solving for δ 

21

1






i
  










24
2

211 00

2121

2
i

i

ii












  

Taking magnitude only 






2

0 ..................................................... (2.3.9) 

Solving,   
 

    
 

 and   
 

    
 

 separately, 

   
 
    

   

 
 

   

 
 

 

 
 

  
 

    
 

  
   

 
 

 

 
   

   

 
 

 

 
  

      

    

 (2.3.10) 

Similarly, 

  
 

    
 

 
      

        ................................... (2.3.11) 

 

Substituting these values, the reflection coefficient 

becomes 

)1(

2
1

)1(2

)1(2

2

2

















R

   

 .................... (2.3.12) 

)1(

2
1


 R

 

R


1

2
)1(   ........................................... (2.3.13) 

Introducing the skin length for the normal skin 

effect as[10], 
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0

2

1

o

0 2 

 c

k
ls 








  .............................. (2.3.14) 

After solving, 

z
i

kzik


1
22 0

2

1

0


       .......................... (2.3.15) 

Substituting all these values, Eqn (2.3.8) becomes 












 ti

l

z
i

l

R
BF

ss

inz 0

2 2)1(2exp
1




 (2.3.16) 

Here, force is expressed in separated form for real 

and imaginary terms  
















ss

inreal
l

z

l

R
BF

2
exp

12


 

























ss

inim
l

z
t

l

R
BF 0

2 2exp
1




 

In both the cases the exponential terms contain 

negative terms. 

 

And absorption coefficient 








1

2
1 RA  

21

0
2

1

21

0

)2(

2







A
  ................................. (2.3.17) 

This is required expression for absorption 

coefficient of laser plasma in terms of conductivity 

 and angular frequency , which is derived by 

using Fresnel’s formula. Here we have considered 

that  and  are two independent terms.  

 

3. RESULTS AND DISCUSSION 

3.1 Variation of Absorption coefficient of the 

laser plasma with respect to conductivity and 

frequency: 

The absorption coefficient for an electromagnetic 

wave with frequency ω0 and conductivity   of 

plasma is given by the relation, (2.3.17) 

21

0
2

1

21

0

)2(

2







A  

Here we have derived formula for . 

 

3.1.1 When Conductivity is constant 

From the variation of absorption coefficient with 

incident laser frequency for a given value of 

conductivity, it is observed that, for increase in 

some value of frequency of laser, the absorption 

coefficient increases and then saturates. For our 

purpose we have chosen the value of conductivity 

stated in [8] for z=1. The different curves are for 

the conductivity σ1= 5.9×10
18

/s, σ2= 6×10
19 

/s and 

σ3 = 6×10
20

/s. It is seen that when frequency 

increases the absorption coefficient also increases. 

 

 
 

 
 

Fig. (3.1): Graph between frequency of laser and 
absorption coefficient 

 

From above graph it is cleared that the variation of 

absorption coefficient is highest for the 

conductivity with lowest value. This is due to the 

fact that we have considered  but here 

angular frequency is approaching to the 

conductivity. 

 

3.1.2 When Frequency is Constant 

Here, we have considered plasma with variable 

conductivity. Three separate waves with frequency 

ω01 , ω02 , and ω03  are 

plotted with variable values of conductivity. For 

plasma with variable conductivity, the absorption 

coefficient decreases with increase in conductivity 

also it is cleared that the wave with highest 
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frequency have the highest absorption coefficient. 

Also the magnitude of absorption coefficient is very 

low for the frequency whose magnitude is very low 

with that of conductivity. 

 

 
 

Fig. (3.2): Graph between conductivity and  
absorption coefficient 

 

3.2 Variation of ponderomotive force of real and 

imaginary parts with respect to distance and 

time: 

3.2.1 Variation of real part of the force with 

respect to distance: 

From the above relation of pondermotive force in 

the plasma along z-axis is 












 ti

l

z
i

l

R
BF

ss

inz 0

2 2)1(2exp
1




 

After substituting the value of 1+R and   in the 

above equation, and for , then the real part of 

the ponderomotive force becomes 


















c

z

c

B
F in

realz

2

1

0
2

1

0

2

)(

)2(2
exp

)2(
2



  

The pondermotive force for an electromagnetic 

wave with distance along z-axis is plotted in fig 

(3.3). We have plotted the curve with incident 

amplitude in 0.5 unit and then it is plotted for three 

different values of laser frequency. Here we have 

considered for only one value of conductivity. 

From the graph it is cleared that the force decreases 

exponentially and exist for few hundred of micron. 

Here the force is decreased more exponentially for 

laser with the highest value of frequency, and as if 

the frequency is decreased then the value of 

decreasing rate is also decreased.  

 
 

Fig. (3.3): Graph between real part of pondermotive 
force and distance 

 

3.2.2 Variation of imaginary part of the force 

with respect to time: 

The imaginary part of the ponderomotive force in 

the plasma due to laser passing through it, is given 

by the relation 



























s

in

imgz
l

z

c

B
F 0

2

1

0

2

)( 2exp
)2(

2 



 

 

Fig. (3.4): Graph between imaginary part of 
ponderomotive force and time 

 

This is the imaginary part of the force in the 

distance  from the plane at z=0, where 

 . The graph of fig (3.4) is cleared that 

the variation of force in the three different values of 

laser frequency with respect to time, in addition, it 

exists only for a very small value, i.e. a small 
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fraction of nanosecond. Further it is seen that, the 

force exponential decrease in the highest level for 

the laser with the highest value of frequency.  

 

3.3 Variation of potential of the laser plasma 

with respect to Distance: 

From the relation between potential of plasma and 

distance is [2,9] 
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The graph between the ratio of potential in the laser 

plasma with respect to distance is as shown in fig 

(3.5) in which the ratio of potential is decreased 

exponentially with distance. From the graph we can 

also say that the potential is shielded within few 

multiple distance of Debye length and for a typical 

Cs plasma the Debye length is cm [1]. 

 

 
Fig (3.5): Graph between potential with distance 

 

4. CONCLUSIONS 

In this work we have considered the very basic and 

classical absorption mechanism when the intensity 

of radiation is low, also its theoretical calculation 

and graphical representation are studied. The 

theoretical value of absorption coefficient is 

showed the relation with angular frequency of 

radiation and conductivity of plasma. Then the 

result is cleared that the absorption coefficient 

increases with increase in angular frequency and 

also absorption coefficient increases with decrease 

in conductivity. The expression of ponderomotive 

force in terms of real and imaginary parts is 

signified that the force decreases exponentially with 

distance and time. Finally, the variation of potential 

of plasma with distance is studied and from the 

graph it is cleared that the potential is decreased 

exponentially with distance. On deriving the 

expression of absorption coefficient and 

ponderomotive force, we have assumed that the 

conductivity and angular frequency of radiation are 

two independent terms because conductivity is very 

large in compare to angular frequency but in fact 

they have relation so interested can study the 

relation for them at the range near to conductivity 

and angular frequency or absorption coefficient 

with their mutual relation.  
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