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ABSTRACT

Landslides pose a significant threat in mountainous regions globally, causing substantial damage to infrastructure, 
disrupting livelihoods, and leading to loss of life. This study focuses on the Khotang District, Koshi Province, Nepal, 
a region highly susceptible to landslides due to its steep terrain, active tectonics and heavy monsoon rainfall. The 
research aims to assess landslide susceptibility in the district using Partial Least Squares Regression model (PLSR), a 
robust statistical technique capable of handling complex datasets with correlated variables. The research emphasizes the 
significant influence of topographic factors on landslide occurrence. Specifically, the Topographic Wetness Index (TWI) 
and Elevation were found to be the most influential variables, demonstrating the highest importance scores in the PLSR 
model. The model demonstrated excellent performance in predicting landslide susceptibility, with a balance between fit 
and generalization. It achieved a testing AUC of 0.740, indicating strong generalization ability and potential for practical 
applications. The findings of this study indicate the potential use of the PLSR for future landslide susceptibility mapping, 
owing to its robust predictive power. The study also enhances our understanding of the factors that influence landslide 
occurrences in the Khotang District. Furthermore, it provides a scientific basis for the implementation of effective 
mitigation measures to reduce landslide risks. 
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INTRODUCTION

The challenging topography, fragile geology, and complex 
environment have always impacted livelihoods and 
development activities in the region. In the flat Terai region, 
factors are relatively simple to calculate. However, the 
mountainous areas present costly and complex challenges, and 
the hilly regions have many poorly understood issues that need 
to be addressed for development activities to proceed.

The Himalayas are seismically active and very fragile due to 
their inherently weak geological characteristics. High relief, 
steep slopes, relatively steep river gradient; fragile, active 
geology and seismically active zone make the Himalayas 
highly susceptible to geo-hydrological processes i.e. 
landslides, erosion, debris torrents, flood, and river channel 
shifting (Dhital, 2003; Kull and Magilligan, 1994; Shrestha 
et al., 2017). The mountain environment in Nepal, as in other 
Mountainous regions of the Hindu-Kush Himalayas is fragile 
and extremely vulnerable to hazards and disasters whether 
natural or manmade. Prolonged and high-intensity rains in 
the monsoon season are the most important factors triggering 
mass movements, gully erosions and floods (Pradhan and 
Kim, 2020; Starkel, 1972). Although the main triggering 
factor of landslides is the monsoonal rainfall associated with 
extreme weather events, a combination of both natural and 
anthropogenic factors and processes determines the extent and 
magnitude of such disasters for any affected areas. 

High intensity of soil erosion and high incidence of 
landslides and frequent floods are the geomorphic processes 

of environmental and socio-economic concerns of both 
mountains and the adjacent plains (Eckholm, 1975). Landslide 
susceptibility mapping is considered the first step in landslide 
hazard assessment. A variety of methodologies are employed 
in the evaluation and mapping of landslide susceptibility. 
These include geomorphological mapping, landslide inventory 
mapping, statistical approaches, heuristic or knowledge-based 
methods, physically-based slope stability models, and methods 
utilizing artificial intelligence, deep learning and classification 
techniques (Guzzetti et al., 1999; Pradhan et al., 2024; Pradhan 
and Kim, 2021, 2014; van Westen et al., 2008).

Geomorphological mapping provides a detailed understanding 
of the terrain and its processes, which is crucial in assessing 
landslide susceptibility (Guzzetti, 2000). Landslide inventory 
mapping, on the other hand, records past landslide occurrences 
and their characteristics, providing valuable data for future 
susceptibility assessments (Van Den Eeckhaut et al., 2009). 

Early attempts at landslide susceptibility mapping relied 
heavily on qualitative methods based on expert knowledge 
and field observations. However, the increasing availability of 
spatial data and advancements in computational capabilities 
led to the adoption of quantitative methods, particularly 
statistical approaches. Frequency Ratio (FR) and logistic 
regression (LR) are among the most widely used statistical 
models in this domain and are commonly used to identify and 
quantify the relationships between landslide occurrences and 
various causative factors (Lee and Talib, 2005). Heuristic or 
knowledge-based methods rely on the expertise of the analyst 
to rank and weight different factors based on their perceived 
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importance in causing landslides (Ayalew and Yamagishi, 
2005; Pradhan and Kim, 2016). Rasyid et al. (2016) examined 
the effectiveness of FR and LR models in generating GIS-based 
landslide susceptibility maps for Lompobattang Mountain, 
Indonesia. Their research underscored the influence of data 
characteristics and model assumptions on the performance 
of these models, emphasizing the need for careful model 
selection based on the specific study area. Despite the relative 
simplicity and interpretability of FR and LR models, their 
limitations in capturing complex non-linear relationships 
between landslide conditioning factors and susceptibility have 
led to the exploration of more sophisticated techniques.

Machine learning algorithms, with their ability to discern 
intricate patterns from large datasets, have emerged as powerful 
tools for landslide susceptibility mapping (Pradhan et al., 
2024). Chowdhury et al. (2024) demonstrated the application 
of machine learning algorithms, including LR, Random Forest, 
and Decision Trees, for generating landslide susceptibility 
maps in the Chattogram District, Bangladesh. Their study 
showcased the potential of these algorithms in improving 
prediction accuracy compared to traditional statistical methods. 
However, the effectiveness of machine learning models is 
contingent upon the quality and representativeness of the 
training data. Gameiro et al. (2022) explored the influence 
of sampling strategies on the performance of Artificial neural 
networks for landslide susceptibility mapping. Their research 
underscored the importance of robust sampling techniques 
to ensure the reliability and generalizability of the resulting 
susceptibility maps.

Traditional methods for landslide susceptibility mapping have 
relied heavily on qualitative approaches, which are based on 
expert knowledge and field observations. While these methods 
have provided valuable insights, they are often subjective 
and limited in their ability to handle the complex interplay 
of factors contributing to landslides (Sujatha and Sudharsan, 

2024) . To minimize those gaps in traditional methods, this 
study involves a novel Partial Least Squares Regression 
(PLS). PLS is a robust multivariate regression method that is 
particularly effective when predictors exhibit collinearity. 

STUDY AREA

Khotang District is located in the eastern Nepal which spans 
1,591 square kilometers of predominantly hilly terrain. It is 
situated between 26° 50" N to 27° 28" N and 86° 26" E to 
86° 58" E (Fig. 1). The district's elevation ranges from 161 
meters to 3,620 meters above sea level (masl). The Sunkoshi 
and Dudh Koshi Rivers form natural boundaries to the north, 
west, and south, while a series of hills and smaller waterways 
delineate its eastern border with Bhojpur District. Forest 
covers approximately 56% of Khotang, with cultivated land 
accounting for around 42% of its area.

Khotang District is composed of various sub-watersheds of 
Koshi Basin. Dudh Koshi River runs from Solukhumbu along 
the Western Border of Khotang District demarking Khotang 
from Okhaldhunga towards the west and drains into the 
Sunkoshi River and runs along the border demarking Udayapur 
towards the south. Rawakhola sub-watershed, Supsup Khola 
sub-watershed, Tuwa Khola sub-watershed and Sawa Khola 
sub-watershed are the major sub-watershed that drain into 
Sunkoshiriver. Other tributaries of Sunkoshi in the district are 
Dikhuwa Khola, Tawa Khola, Tap Khola, Buwa Khola, etc. 
The drainage pattern is dendritic type. 

Figure 2 illustrates the number of landslides, the number of 
deaths, and the estimated financial loss in millions of Nepalese 
Rupees (NRs) in the Khotang District from 2011 to 2023. The 
data reveals significant variability over the years. Notably, 
2019 stands out with a peak in both landslides and associated 
financial loss, indicating a severe impact that year. Other years, 
such as 2011, 2014 and 2017, also show notable occurrences 

Fig. 1: Location of the study area.
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of landslides and deaths, though with comparatively lower 
estimated financial losses. The trend suggests intermittent 
severe events with varying impacts on human life and economic 
loss throughout the observed period.

METHODOLOGY AND DATASET

Method

Figure 3 presents a two-phase framework for assessing 
landslide susceptibility. In Phase-1, Data Collection, various 
independent variables are gathered, categorized into three 
groups: Geomorphic (elevation, slope, curvature), Hydrologic 
(DrainProx, VDCN, TWI, STI, SPI), and Geologic (geology, 
Faultprox). These variables are used to compile the dependent 
variable, the landslide inventory. In Phase-2, the Modeling 
Framework, the collected data is split into training and test sets, 
with validation ensuring model accuracy. The PLS method 
is applied to analyze the data, producing coefficients and 
importance values. These outputs contribute to determining 
landslide susceptibility.

Dataset

Landslide Inventory

The creation of comprehensive landslide inventories is a critical 
step in understanding landslide patterns, assessing risks, and 
guiding mitigation efforts (Guzzetti et al., 2012). Traditionally, 
these inventories have been developed only through field 
investigations which are time-consuming, and often limited 
to accessible areas (Martha and Kerle, 2012). However, the 
advent of high-resolution satellite imagery has revolutionized 
this process, providing extensive spatial coverage and enabling 
the detection of landslides based on changes in land cover, 
vegetation patterns, and topographic features. Google Earth 
Pro, with its high-resolution imagery and global coverage, has 

emerged as a valuable tool for visually identifying and mapping 
landslides, particularly when leveraging the platform’s 
historical imagery capabilities. The methods for acquiring 
landslide inventory can be broadly categorized as field 
surveys and image interpretation techniques. Satellite images, 
remote sensing and Google EarthTM were used for digitizing 
80 landslide polygons in GIS. The digitized landslides were 
confirmed by field verification in several locations. Figure 4 
presents the distribution of landslides in the study area.

Independent variables

This research has been supported by incorporating independent 
variables derived from terrain analysis into the modeling 
procedures. All morphometric variables were derived, in 
the first case study, from a detailed Digital Elevation Model 
(DEM) produced by the Department of Survey, Government 
of Nepal (20 × 20 m). 

Factors influencing the likelihood and behavior of landslides  
are categorized as causative variables. These variables 
encompass a range of features, including topography  (elevation, 
slope, curvature, drainage), geology, geomorphology, 
and human activities. Essentially, these factors create the 
preconditions that make landslides possible in a given area. 
While standardized variables like elevation, slope and drainage 
are commonly considered, researchers often select causative 
factors for landslide susceptibility mapping based on subjective 
assessments and local knowledge. As a result, the selection of 
landslide causative variables and their classifications is critical 
in landslide susceptibility modelling research. In this study, 
a total of 10 variables namely elevation, slope, curvature, 
DrainProx, VDCN, TWI, STI, SPI, Faultprox and geology 
were selected based on relevancy and availability. Among 10 
variables, geology is categorical so geology was converted into 
a dummy variable for further analysis. 

Fig. 2: Number of landslide, death and estimated loss in Khotang District.
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Fig. 3: Architect of the research procedure.

Fig. 4: Landslide inventory map of the study area.
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Geomorphic variables

Elevation is a significant factor influencing the occurrence of 
landslides. The relationship between elevation and landslides 
is not always straightforward and can vary significantly based 
on regional factors like climate, geology, and topography. 
While it's not the sole determinant, it plays a crucial role 
because higher elevations often receive more rainfall, leading 
to increased soil saturation. This can weaken soil structure 
and contribute to landslides. Higher elevations typically have 
steeper slopes, making them more prone to landslides. The 
elevation ranges from 161 m above sea level (asl) to 3615 m 
asl as shown in Fig. 5a.

The slope is a primary factor influencing the occurrence of 
landslides. The steeper the slope, the greater the potential for 
gravitational forces to overcome the stability of the materials 
on it. As the slope angle increases, the shear stress (the force 
acting parallel to the slope) also increases. This force tends to 
pull the material downhill. The slope distribution in the study 
area ranges from 0 to about 69˚ as shown in Fig. 5b.

Curvature and landslides are interconnected in the field of 
geomorphology, as the curvature of a slope can significantly 
influence the occurrence and characteristics of landslides. 
Curvature refers to the degree of bend or the change in slope 
angle over a specific distance. The distribution of curvature is 
shown in Fig. 5c.

Hydrologic variables

Drainage proximity is a significant factor influencing landslide 
susceptibility. The closer an area is to a drainage network 
(rivers, streams, etc.), the higher the risk of landslides. 
Proximity to drainage often correlates with higher groundwater 
levels. This excess water can saturate the soil, reducing its 
stability and increasing landslide risk. Water flowing through 
drainage channels can undercut the base of slopes, leading to 
slope failure. The drainage proximity is presented in Fig. 6a.

Vertical distance to channel network (VDCN) is a crucial 

geospatial parameter quantifying the elevation difference 
between a specific point and the nearest river or stream network 
point. In simpler terms, it measures how high a location is 
above the closest watercourse. Areas with low VDCN are 
more susceptible to erosion by the river or stream, which can 
destabilize slopes. The distribution of VDCN is depicted in 
Fig. 6b.

The Topographic Wetness Index (TWI) quantifies the 
potential for water accumulation on a slope, a critical factor in 
triggering landslides. Higher TWI values indicate areas prone 
to waterlogging. This excess water can increase soil saturation, 
reducing its stability and making it more susceptible to 
landslides. TWI is calculated using the DEM of a terrain (Fig. 
6c). It combines information about the slope's steepness and 
the area contributing to flow at a specific point. The TWI can 
be calculated using Eq. (1).

Fig. 5 Geomorphic variables a) elevation, b) slope and c) curvature.

ln ,
tan

TWI α
β

 
=  

 
(1)

where is the accumulated catchment area (area contributing 
flow to the point) and β is the slope angle.

The Sediment Transport Index (STI) is a quantitative measure 
used to assess the potential of a slope or watershed to transport 
sediment. It's a valuable tool in hydrology, geomorphology, and 
environmental science for understanding erosion and sediment 
yield. It quantifies the potential for sediment movement on 
a slope. The sediment transport index (STI) depends on the 
catchment size and slope angle in a nonlinear fashion (Moore 
and Burch, 1986), as shown in Eq. (2).

0.6 1.3sin ,
22.13 0.0896

sASTI β   = ×  
  

(2)

where As is a contributing area and is the slope gradient in 
radians. The distribution of STI is presented in Fig. 6d.
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The Stream Power Index (SPI) is a quantitative measure of 
the erosive power of flowing water. It's a valuable tool in 
geomorphology and hydrology, helping to understand the 
potential for erosion and sediment transport within a river 
system. The SPI can be calculated using the Eq. (3) as given 
below: 

generate strong ground motions that can trigger landslides, 
especially in areas with steep slopes and weak geological 
materials. Faults can also influence hydrogeological processes, 
acting as conduits or barriers to groundwater flow and leading 
to localized changes in pore water pressure within slopes. 
Increased pore pressure reduces the effective stress holding 
soil and rock masses together, further increasing landslide 
susceptibility. Therefore, accurate landslide susceptibility 
mapping in tectonically active regions must consider not only 
the distance to faults but also their activity levels, seismic 
history, and the surrounding geological context to assess and 
mitigate landslide hazards effectively.

Lithology, the study of the physical and chemical composition 
of rocks, plays a pivotal role in landslide susceptibility. The 
inherent characteristics of different rock types, such as their 
strength, weathering rates, and permeability, significantly 
influence slope stability. Variations in mineral composition, 
grain size, and degree of fracturing within the same rock type 
can also impact landslide susceptibility. 

The study area is geologically dominated by the Tawa Khola 
Formation (Ta), which is primarily located in the southern 
part of the area and consists of coarse-grained, dark grey 

( )( )ln tan ,i i iSPI DA G= × (3)

where SPIi is the stream power index at grid cell i, DAi is the 
upstream drainage area at grid cell i and Gi is the slope at grid 
cell i in radians. The spatial distribution of SPI is depicted in 
Fig. 6e.

Geologic variables

Fault proximity (Fig. 7a) is a critical factor influencing landslide 
susceptibility, particularly in tectonically active regions. The 
presence of faults significantly weakens rock masses due to 
intense fracturing and shearing, reducing their overall strength 
and stability. This weakening makes slopes more susceptible 
to weathering and erosion, further exacerbating landslide 
hazards. Earthquakes, a common occurrence in fault zones, 

Fig. 6: Hydrologic variables a) drainage proximity, b) VDCN, c) TWI, d) STI and e) STI.
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garnetiferous muscovite biotite quartz schists. This formation 
is followed by the Seti Formation (St), which includes grey 
to greenish-grey phyllites and gritty quartzites. Next in the 
sequence is the Shiprin Khola Formation (Sp), characterized 
by coarse-textured, highly garnetiferous muscovite biotite-
quartz schists. Following this is the Sarung Khola Formation 
(Sk), consisting of fine-textured, dark grey to greenish-white 
quartz biotite schists. The Ulleri Formation (Ul) comes next, 
which includes feldspathic schists with augens of feldspar 
and quartz. The Maksang Formation (Mk), is characterized by 
grey to grayish-white, fine-grained quartzites. The area also 
features abundant Granite Intrusions (Gr). After the granite, 
the sequence continues with the Udaipur Formation (Ud), 
consisting of grey, grayish-black crystalline limestones. This 
is followed by the Kushma Formation (Ks), which includes 
greenish grey, white fine to medium-grained quartzites. Next 
is the Sangram Formation (Sg), characterized by grey to 
greenish-grey carbonaceous shales. Lastly, the area includes 
a small amount of rocks belonging to the Lower Siwalik (Ls), 
consisting of fine-grained sandstone. The geological map of 
the study area is presented in Fig. 7b (DMG, 2020). 

Partial Least Square Regression Model

Partial Least Squares (PLS) is a method used in machine learning 
that amalgamates the benefits of principal component analysis, 
conventional correlation analysis, and linear regression 
analysis. PLS maps both the predicted and observed variables 
into a novel space. This is accomplished by identifying pairs of 
weight vectors that optimize the covariance between the two 
projections. The PLS regression is an extension of the multiple 
linear regression model.

This approach connects two data matrices, x and y, using a 
linear multivariate model. Each parameter in the model is 
determined by the gradient of a straightforward bivariate 
regression (least squares) between a column or row of the matrix 
as the y-variable, and another parameter vector serving as the 
x-variable (Wold et al., 2001). In its simplest form, a linear 
model specifies the (linear) relationship between a dependent 
(response) variable Y, and a set of predictor variables, the X’s, 
so that

                         Y = b0 + b1X1 + b2X2 + … + bpXp                   (4)

In this equation, b0 is the regression coefficient for the intercept 
and the bi values are the regression coefficients (for variables 1 
through p) computed from the data.

In PLS modeling, the importance of a predictor for the 
dependent variables is indicated by the variable importance in 
the projection (VIP). Factors that have VIP values exceeding 
1 are deemed to be the most significant in elucidating the 
dependent variable. They are viewed as notably influential 
predictors within the PLS model (Wold, 1995). The VIP 
and regression coefficients were used to explain the relative 
influence of each independent variable. 

Assessment of the accuracy of the model

Assessment of model landslide susceptibility accuracy involves 
evaluating its ability to correctly predict landslide occurrence. 
This is typically done by comparing the model's output to a 
known dataset of historical landslides. Evaluation metrics were 
employed to assess the proposed models utilizing contingency 
matrices, which include True Positives (TP), True Negatives 

Fig. 7: Geologic variables a) fault proximity and b) geology (DMG 2020).
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(TN), False Positives (FP) and False Negatives (FN). The 
diagnostic ability of the models was depicted using receiver 
operating characteristic (ROC) curves, which illustrate the true 
positive rate against the false positive rate. The area under the 
curve (AUC) represents the prediction values, with larger AUC 
values indicating better predictions.

This approach involves iteratively splitting a dataset into 
training and test sets. The training data is utilized to train 
the model, which is subsequently applied to the test set for 
evaluation. For this purpose, the entire dataset was divided into 
training (70%) and test (30%) sets using a random sampling 
technique. The training set is utilized to instruct a machine 
learning model to perform a specific task, such as adjusting the 
system’s parameters based on input and output data. The test 
set is then employed to assess the performance of the machine 
learning model once it has been trained on the training data.

A ROC curve is a graphical representation of the performance 
of a binary classification model (Hosmer et al., 2000). In ROC 
curves, the true positive rate (TPR: sensitivity) is plotted 
against the false positive rate (FPR: 1-specificity) at different 
classification thresholds. The TPR is the ratio of true positive 
predictions to the total number of actual positive cases, and the 
FPR is the ratio of false positive predictions to the total number 
of actual negative cases. AUC values are typically measured in 
the range of 0.5–1. According to Yesilnacar and Topal (2005), 
there is a relation between prediction accuracy and AUC value 
that may be classified as follows: 0.5–0.6 (poor), 0.6–0.7 
(average), 0.7–0.8 (good), 0.8–0.9 (outstanding) and 0.9–1 
(excellent).

RESULTS

TWI has the highest importance score, indicating that it is 
the most critical factor in the PLS model (Fig. 8). Elevation 
also shows a high importance score, making it a key predictor. 

Slope, faultprox, curvature have relatively high importance 
scores and contribute significantly to the model. Sp, Ta, Gr have 
moderate importance scores, indicating they are still influential 
but less critical than the top contributors. UI, Sk, St show a 
noticeable drop in importance but still play a role in the model. 
VDCN, Mk, Ud have lower importance scores, suggesting they 
contribute less to the model's predictive power. Drainprox, Sp 
and St have the lowest importance scores, indicating minimal 
contribution to the model. Understanding these variable 
importance scores can help in focusing on the most impactful 
factors in future analyses or model improvements. 

Each bar has an associated error bar, representing the 
variability or uncertainty in the importance score. Larger error 
bars suggest greater uncertainty in the importance estimate. 
The dashed line across the graph serves as a threshold for 
significance. Variables with importance scores above this line 
are considered significant contributors to the model.

As shown in the Fig. 9, the bar chart highlights the relationships 
between various predictors and the response variable in the 
PLS model. Positive coefficients suggest variables that increase 
the response variable when they increase, while negative 
coefficients indicate the opposite. Variables like Elevation, 
TWI, and Faultprox show strong positive relationships, whereas 
Slope and Curvature show strong negative relationships. 
Variables with coefficients near zero have little to no direct 
relationship with the response variable, suggesting they are 
less critical in the model.

The landslide susceptibility map of the study area was 
prepared using the coefficients of independent variables in 
Python scripts, which normalize the susceptibility values from 
0 to 1. To identify variations in landslide susceptibility across 
the entire study region, the output values of the model were 
reclassified into five levels: very low, low, moderate, high and 
very high, using the natural break classification system (Jenks, 
1967) as shown in Fig. 10. 

Fig. 8: Variable importance.
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Fig. 9: Bar chart showing the coefficients of each variable.

Fig. 10: Landslide susceptibility map of the study area.
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Figure 11 depicts the relationship between different 
susceptibility classes and the corresponding percentages 
of landslide occurrences. The susceptibility classes are 
categorized as Very Low, Low, Moderate, High, and Very 
High. In the Very Low susceptibility class, the area percentage 
is 21.11%, while the percentage of landslides is significantly 
lower at 1.266%. The Low susceptibility class has an area 
percentage of 33.23% and a landslide percentage of 11.39%. 
For the Moderate susceptibility class, the area percentage is 

25.75%, and the landslide percentage is higher at 27.85%. The 
High susceptibility class shows an area percentage of 15.07% 
and a landslide percentage of 29.11%. Lastly, the Very High 
susceptibility class has the lowest area percentage at 4.846%, 
but the highest percentage of landslides at 30.38%.

The ROC curve has been used to estimate the model’s accuracy, 
which is used as a quantitative measurement. The ROC curves 
of the model built in this study are shown in Fig. 12. It can be 
seen that the AUC of the training dataset in the PLS model 

Fig. 11: Terrain percentage and number of landslides.

Fig. 12: AUC of training dataset and test dataset.
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is 0.82. Thus, the accuracy rate of the PLS model fell within 
the ‘‘outstanding’’ classification category. The AUC for the test 
set exhibits 0.74, which fell within the “good” classification 
category.

DISCUSSION

This study investigated the key factors influencing landslide 
susceptibility using a PLS model. The findings highlight the 
critical role of topography, particularly TWI and Elevation, 
in landslide occurrence within the study area. These variables 
exhibited the highest importance scores in the PLS model, 
indicating their strong influence on landslide susceptibility.

The positive coefficients observed for Elevation, TWI, 
and Faultprox suggest a direct relationship with landslide 
likelihood. Higher elevations often experience increased 
precipitation and lower temperatures, potentially leading to 
increased soil saturation and weathering, thus weakening slope 
stability. Similarly, higher TWI values indicate areas prone to 
water accumulation, increasing pore pressure and reducing 
the shear strength of slopes, making them more susceptible 
to landslides. The proximity to faults also elevates landslide 
susceptibility due to the potential for ground shaking during 
seismic events.

Conversely, Slope and Curvature exhibited a negative 
relationship with landslide susceptibility. While counterintuitive 
at first glance, this finding suggests that gentler slopes and more 
convex terrain in our study area might be associated with more 
stable geological formations or land cover types, potentially 
mitigating landslide risk. However, further investigation into 
the specific geomorphological and geological characteristics 
of these areas is needed to confirm this hypothesis.

The study findings strongly resonate with existing literature 
on landslide susceptibility mapping. Chicas et al. (2024)   
emphasized the importance of slope, elevation and lithology 
as consistently significant predictors. Notably, they highlighted 
the consistent ranking of elevation and slope across various 
studies, aligning with their importance in the model. 
Nevertheless, among the significant predictors of LSM as 
mentioned above, they highlighted, that road density, elevation, 
and slope exhibited the least ranking variability as LSM 
predictors. Furthermore, Emberson et al. (2022) underscored 
the predictive power of the average upstream angle and 
compound topographic index, both closely related to slope 
steepness and water accumulation potential, reinforcing the 
significance of TWI in the study area. Migoń and Michniewicz 
(2016) further validated the utility of TWI in landslide studies, 
emphasizing its role in identifying preferential drainage 
pathways within landslide bodies. 

The model demonstrated strong performance with a training 
ROC, indicating the model’s effective learning from the 
training dataset and its ability to capture the key factors driving 
landslides in the study area. The model also showed a good 
generalization ability with a testing AUC of 0.740, suggesting 
its potential for practical applications in predicting landslide 
susceptibility in unseen data. These results underscore 
the model’s strong performance and its ability to handle 
complex datasets characterized by high dimensionality and 
multicollinearity, often encountered in landslide susceptibility 
studies. Unlike traditional statistical methods, such as Logistic 
Regression, which often struggle with such datasets, PLS 

effectively manages correlated predictors while simultaneously 
considering their relationship with the response variable.

CONCLUSIONS

This study has successfully demonstrated the use of the 
PLS model to assess landslide susceptibility in the Khotang 
District, Koshi Province, Nepal. The region, characterized by 
its challenging topography, active geology and heavy monsoon 
rainfall, frequently experiences landslides. The research 
focused on understanding the influence of geomorphic, 
hydrologic and geologic factors on landslide occurrences. The 
PLSR model demonstrated strong performance with a training 
AUC of 0.82. This indicates the model’s effective learning from 
the training dataset and its ability to capture the key factors 
driving landslides in the study area. The model also showed 
a good generalization ability with a testing AUC of 0.74, 
suggesting its potential for practical applications in predicting 
landslide susceptibility in unseen data. The PLS model shows 
promising potential for landslide susceptibility mapping, 
achieving good predictive performance on both training and 
testing datasets. Hence, the study underscores the robust 
influence of topographic factors on landslide susceptibility 
and validates the effectiveness of the PLS method in handling 
complex datasets characterized by high dimensionality and 
multicollinearity, often encountered in landslide susceptibility 
studies. 
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