Study of Potential in vitro Antidiabetic Activities of Methanolic Extracts of Memordica charantia, Nyctanthes arbor, and Tinospora cordifolia from Dang Nepal
DOI:
https://doi.org/10.3126/jist.v30i1.70937Keywords:
Antioxidant assay, GC-MS, N. arbor, Phytochemicals, T. cordifolia, α-amylase, M. charantiaAbstract
A wide diversity of medicinal plants rich in phytochemicals are the potential source of drugs. The phytochemical composition of plants varies with the geographical location. These selected medicinal plants containing phytochemicals inhibit the catalytic action of α-amylase to ameliorate the complications of diabetes. The main goal of this work is to compare the phytochemical composition and biological activities such as antioxidant, toxicity, and α-amylase inhibitory activity of Memordica charantia, Nyctanthes arbor, and Tinospora cordifolia. The study employed qualitative analysis through phytochemical screening, followed by quantitative measurement of total phenolic and flavonoid content by using the Folin-Ciocalteu reagent and colorimetric method. Additionally, biological activities were assessed using the 2,2 diphenyl-1-picrylhydrazyl antioxidant assay, α-amylase starch iodine method, and brine shrimp lethal test. The study revealed that the total phenolic contents in T. cordifolia, M. charantia, and N. arbor were measured as 140.49, 101.69, and 98.76 mg GAE/g, respectively. Consequently, N. arbor, T. cordifolia, and M. charantia showed strong antioxidant properties, with IC50 values of 48.16, 45.07, and 69.34 μg/mL, respectively. Furthermore, in the brine shrimp lethal test, all the extracts exhibited low toxicity, with the LC50 value of M. charantia (316.22 μg/mL), N. arbor (275.42 μg/mL), and T. cordifolia (275.42 μg/mL), respectively. GC-MS analysis of hexane fraction of N. arbor methanol extract reveals the presence of compounds like Hexanoic acid, 6-amino-6-oxo-, and Benzo[b]thiophene-2- carboxamide,3-chloro-N-(2-bromophenyl). Therefore, in all the aspects of the study, the methanolic extract of M. charantia, N. arbor, and T. cordifolia were potent, which concludes that these extracts contain abundant phytochemicals and possess diverse biological activities.
Downloads
References
Abdillah, S., Tambunan, R.M., Farida, Y., Sandhiutami, N.M.D., & Dewi, R.M. (2015). Phytochemical screening and antimalarial activity of some plants traditionally used in Indonesia. Asian Pacific Journal of Tropical Disease, 5(6), 454–457. https://doi.org/10.1016/S2222-1808(15)60814-3.
Abubakar, A.R., & Haque, M. (2020). Preparation of Medicinal Plants: Basic Extraction and Fractionation Procedures for Experimental Purposes. Journal of Pharmacy & Bioallied Sciences, 12(1), 1–10. https://doi.org/10.4103/jpbs.JPBS_175_19.
Ahmed, S., Mundhe, N., Borgohain, M., Chowdhury, L., Kwatra, M., Bolshette, N., Ahmed, A., & Lahkar, M. (2016). Diosmin modulates the NF-kB signal transduction pathways and downregulation of various oxidative stress markers in alloxan-induced diabetic nephropathy. Inflammation, 39(5), 1783–1797. https://doi.org/10.1007/s10753-016-0413-4.
Ainsworth, E.A., & Gillespie, K.M. (2007). Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nature Protocols, 2(4), 875–877. https://doi.org/10.1038/nprot.2007.102.
Alam, N., & Sharma, K. (2020). Estimation of phenolic content, flavovoid content, antioxidant, and alpha-amylase inhibitory activity of some selected plants from Siraha District Nepal. Asian Journal of Pharmaceutical and Clinical Research, 13, 28–35. https://doi.org/10.22159/ajpcr.2020.v13i4.36734.
Albert, A., Sareedenchai, V., Heller, W., Seidlitz, H.K., & Zidorn, C. (2009). Temperature is the key to altitudinal variation of phenolics in Arnica montana L. cv. ARBO. Oecologia, 160(1), 1–8.
Amin, N.I., Rana, M.R., Naser, A.A., & Islam, N. (2017). Bioactive potentials of Ficus racemosa L. and Momordica charantia L. through brine shrimp lethality, insect dose-mortality and repellent activity tests. Journal of Pharmacognosy and Phytochemistry, 6(3), 601–605.
Aryal, P., & Shakya, B. (2023). Synthesis, cytotoxicity, antibacterial and antioxidant activity of new 2-substituted benzimidazole containing 1,2,4-triazoles. Journal of Nepal Chemical Society, 43(2), 2. https://doi.org/10.3126/jncs.v43i2.53339.
Chemjong, K., & Subba, B. (2022). Scientific evaluation of Buddleja asiatica, Camellia sinensis, and Polygala arillata of Nepal. Journal of Institute of Science and Technology, 27(2), 2. https://doi.org/10.3126/jist.v27i2.51325.
Cho, N.H., Shaw, J.E., Karuranga, S., Huang, Y., da Rocha Fernandes, J.D., Ohlrogge, A.W., & Malanda, B. (2018). IDF diabetes atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Research and Clinical Practice, 138, 271–281. https://doi.org/10.1016/j.diabres.2018.02.023.
Chokki, M., Cudălbeanu, M., Zongo, C., Dah-Nouvlessounon, D., Ghinea, I.O., Furdui, B., Raclea, R., Savadogo, A., Baba-Moussa, L., Avamescu, S.M., Dinica, R.M., & Baba-Moussa, F. (2020). Exploring antioxidant and enzymes (A-Amylase and B-Glucosidase) inhibitory activity of Morinda lucida and Momordica charantia leaves from Benin. Foods, 9(4), 4. https://doi.org/10.3390/foods9040434.
Choudhry, N., Singh, S., Siddiqui, M.B., & Khatoon, S. (2014). Impact of seasons and dioecy on therapeutic phytoconstituents of Tinospora cordifolia, a rasayana drug. BioMed Research International, 2014, 902138. https://doi.org/10.1155/2014/902138.
Das, A., Karmakar, P., Kibria, M.G., Debnath, P.C., Islam, M.S., & Sattar, M.M. (2014). Comparative phytochemical screening and in vitro evaluation of biological activities between aqueous and ethanolic extract of Momordica charantia L. fruits. Journal of Pharmaceutical Research International, 4(6), 739–750. https://doi.org/10.9734/BJPR/2014/7364.
Das, K., Dang, R., Sivaraman, G., & Ellath, R.P. (2018). Phytochemical screening for various secondary metabolites, antioxidant, and anthelmintic activity of Coscinium fenestratum fruit pulp: A new biosource for novel drug discovery. Turkish Journal of Pharmaceutical Sciences, 15(2), 156–165. https://doi.org/10.4274/tjps.54376.
Fahim, N., & Karmakar, P. (2018). Evaluation of phytochemical, antimicrobial and cytotoxic activity of Nyctanthes arbortristis Methanolic leaf extract. Pharmacologyonline, 3, 433–439.
Forman, H.J. (2016). Redox signaling: An evolution from free radicals to aging. Free Radical Biology & Medicine, 97, 398–407. https://doi.org/10.1016/j.freeradbiomed.2016.07.003.
Gaurav, Zahiruddin, S., Parveen, B., Ibrahim, M., Sharma, I., Sharma, S., Sharma, A.K., Parveen, R., & Ahmad, S. (2020). TLC-MS bioautography-based identification of free-radical scavenging, α-Amylase, and α-Glucosidase inhibitor compounds of antidiabetic tablet BGR-34. ACS Omega, 5(46), 29688–29697. https://doi.org/10.1021/acsomega.0c02995.
Ghosh, K., Ray, S., Bera, K., & Ray, B. (2015). Isolation and structural elements of a water-soluble free radical scavenger from Nyctanthes arbor-tristis leaves. Phytochemistry, 115, 20–26. https://doi.org/10.1016/j.phytochem.2015.02.007.
Haque, M., Sultana, N., Abedin, S., Hossain, N., & Kabir, S. (2020). Fatty acid analysis, cytotoxicity, antimicrobial and antioxidant activities of different extracts of the flowers of Nyctanthes arbor-tristis L. Bangladesh Journal of Scientific and Industrial Research, 55, 207–214. https://doi.org/10.3329/bjsir.v55i3.49394
Jamdar, P., Mishra, P., Desai, S., Dhara, P., & Meshram, D. (2014). Phytochemical analysis and assessment of invitro antifungal activity of Tinospora cordifolia. International Journal of Pharmacy and Integrated Life Sciences, 2(5), 30-46.
Kapil, A., & Sharma, S. (1997). Immunopotentiating compounds from Tinospora cordifolia. Journal of Ethnopharmacology, 58(2), 89–95. https://doi.org/10.1016/s0378-8741(97)00086-x.
Kaur, G., Prabhakar, P.K., Lal, U., & Suttee, A. (2016). Phytochemical and biological analysis of Tinospora cordifolia. Retrieved July 12, 2024 from https://www.semanticscholar.org/paper/Phytochemical-and-Biological-Analysis-of-Tinospora-Kaur-Prabhakar/901ff519bc083cfef61759411be01502a396ac99.
Khan, T.A., Ipshita, A.H., Mazumdar, R.M., Abdullah, A.T.M., Islam, G.M.R., & Rahman, M.M. (2020). Bioactive polyphenol profiling and in-vitro antioxidant activity of Tinospora cordifolia Miers ex Hook F and Thoms: A potential ingredient for functional food development. Bangladesh Journal of Scientific and Industrial Research, 55(1), 23-34. https://doi.org/10.3329/bjsir.v55i1.46729.
Kırca, A., & Arslan, E. (2008). Antioxidant capacity and total phenolic content of selected plants from Turkey. International Journal of Food Science & Technology, 43(11), 2038–2046. https://doi.org/10.1111/j.1365-2621.2008.01818.x.
Koes, R., Verweij, W., & Quattrocchio, F. (2005). Flavonoids: A colorful model for the regulation and evolution of biochemical pathways. Trends in Plant Science, 10(5), 236–242. https://doi.org/10.1016/j.tplants.2005.03.002.
Kumar, V. (2016). A clinical trial to assess the antidiabetic, antidyslipidemic and antioxidant activities of Tinospora cordifolia in management of Type-2 diabetes mellitus. Journal of Pharmaceutical Sciences and Research, 7, 757–764. https://doi.org/10.13040/IJPSR.0975-8232.7(2).757-64.
Lin, K.-W., Yang, S.-C., & Lin, C.-N. (2011). Antioxidant constituents from the stems and fruits of Momordica charantia. Food Chemistry, 127(2), 609–614. https://doi.org/10.1016/j.foodchem.2011.01.051.
Meyer, B.N., Ferrigni, N.R., Putnam, J.E., Jacobsen, L.B., Nichols, D.E., & McLaughlin, J.L. (1982). Brine shrimp: A convenient general bioassay for active plant constituents. Planta Medica, 45(5), 31–34. https://doi.org/10.1055/s-2007-971236.
Moniruzzaman, M., Jinnah, M.M., Islam, S., Biswas, J., Al-Imran, Pramanik, M.J., Uddin, M.S., Saleh, M.A., & Zaman, S. (2022). Biological activity of Cucurbita maxima and Momordica charantia seed extracts against the biofilm-associated protein of Staphylococcus aureus: An in vitro and in silico studies. Informatics in Medicine Unlocked, 33, 101089. https://doi.org/10.1016/j.imu.2022.101089.
Nawaz, H., Shad, M.A., Rehman, N., Andaleeb, H., & Ullah, N. (2020). Effect of solvent polarity on extraction yield and antioxidant properties of phytochemicals from bean (Phaseolus vulgaris) seeds. Brazilian Journal of Pharmaceutical Sciences, 56, e17129. https://doi.org/10.1590/s217597902019000417129.
Nhiem, N.X., Kiem, P.V., Minh, C.V., Ban, N.K., Cuong, N.X., Tung, N.H., Ha, L.M., Ha, D.T., Tai, B.H., Quang, T.H., Ngoc, T.M., Kwon, Y.-I., Jang, H.-D., & Kim, Y.H. (2010). Alpha-glucosidase inhibition properties of cucurbitane-type triterpene glycosides from the fruits of Momordica charantia. Chemical & Pharmaceutical Bulletin, 58(5), 720–724. https://doi.org/10.1248/cpb.58.720.
Panchabhai, T.S., Kulkarni, U.P., & Rege, N.N. (2008). Validation of therapeutic claims of Tinospora cordifolia: A review. Phytotherapy Research: PTR, 22(4), 425–441. https://doi.org/10.1002/ptr.2347.
Patel, M.B., & Mishra, S. (2011). Hypoglycemic activity of alkaloidal fraction of Tinospora cordifolia. Phytomedicine, 18(12), 1045–1052. https://doi.org/10.1016/j.phymed.2011.05.006.
Paudel, P., & Gyawali, R. (2014). Phytochemical screening and antimicrobial activities of some selected medicinal plants of Nepal. International Journal of Pharmaceutical & Biological Archives, 5(3), 84–92.
Pereira, G.E., Gaudillere, J.P., Pieri, P., Hilbert, G., Maucourt, M., Deborde, C., Moing, A., & Rolin, D. (2006). Microclimate influence on mineral and metabolic profiles of grape berries. Journal of Agricultural and Food Chemistry, 54(18), 6765-6775. https://doi.org/10.1021/jf061013k.
Pietta, P., Simonetti, P., & Mauri, P. (1998). Antioxidant activity of selected medicinal plants. Journal of Agricultural and Food Chemistry, 46(11), 4487–4490. https://doi.org/10.1021/jf980310p.
Prasad, B., & Chauhan, A. (2019). Anti-oxidant and antimicrobial studies of Tinospora cordifolia (Guduchi/Giloy) stems and roots under in vitro condition. International Journal of Advanced Microbiology and Health Research, 3, 1–10.
Rathee, J.S., Hassarajani, S.A., & Chattopadhyay, S. (2007). Antioxidant activity of Nyctanthes arbor-tristis leaf extract. Food Chemistry, 103(4), 1350–1357. https://doi.org/10.1016/j.foodchem.2006.10.048.
Sarkar, A., & Ghosh, U. (2017). Effect of extraction temperature and technique on phenolic compounds and antioxidant activity of. Research Journal of Applied Sciences, 06, 10–15.
Saxena, R.S., Gupta, B., Saxena, K.K., Srivastava, V.K., & Prasad, D.N. (1987). Analgesic, antipyretic and ulcerogenic activity of Nyctanthes arbor tristis leaf extract. Journal of Ethnopharmacology, 19(2), 193–200. https://doi.org/10.1016/0378-8741(87)90041-9.
Sen, C.K., & Packer, L. (1996). Antioxidant and redox regulation of gene transcription. The FASEB Journal, 10(7), 709–720. https://doi.org/10.1096/fasebj.10.7.8635688.
Shivanagoudra, S.R., Perera, W.H., Perez, J.L., Athrey, G., Sun, Y., Wu, C.S., Jayaprakasha, G.K., & Patil, B.S. (2019). In vitro and in silico elucidation of antidiabetic and anti-inflammatory activities of bioactive compounds from Momordica charantia L. Bioorganic & Medicinal Chemistry, 27(14), 3097–3109. https://doi.org/10.1016/j.bmc.2019.05.035.
Shrestha, T., & Lamichhane, J. (2021). Assessment of phytochemicals, antimicrobial, antioxidant and cytotoxicity activity of methanolic extract of Tinospora cordifolia (Gurjo). Nepal Journal of Biotechnology, 9(1), 18-23. https://doi.org/10.3126/njb.v9i1.38646.
Sies, H. (1986). Biochemistry of oxidative stress. Angewandte Chemie International Edition in English, 25(12), 1058–1071. https://doi.org/10.1002/anie.198610581.
Subedi, A., Amatya, M., Maiya, T., Shrestha, Mishra, S., & Pokhrel, B. (2012). Antioxidant and antibacterial activity of methanolic extract of Machilus odoratissima. Kathmandu University Journal of Science, Engineering and Technology, 8(1), 73-80. https://doi.org/10.3126/kuset.v8i1.6045.
Sudha P.S., Zinjarde, S.S., Bhargava, S.Y., & Kumar, A.R. (2011). Potent α-amylase inhibitory activity of Indian Ayurvedic medicinal plants. BMC Complementary and Alternative Medicine, 11(1), 5. https://doi.org/10.1186/1472-6882-11-5.
Taylor, A.O. (1965). Some effects of photoperiod on the biosynthesis of phenylpropane derivatives in Xanthium. Plant Physiology, 40(2), 273–280. https://doi.org/10.1104/pp.40.2.273.
Uddin, M., Hossain, M., & Kawsar, M. (2011). Antimicrobial and cytotoxic activities of Tinospora cordifolia (Fam: Menispermaceae). International Journal of Pharmaceutical Sciences and Research, 2, 656–658.
Wang, Q., Wu, X., Shi, F., & Liu, Y. (2019). Comparison of antidiabetic effects of saponins and polysaccharides from Momordica charantia L. in STZ-induced type 2 diabetic mice. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 109, 744–750. https://doi.org/10.1016/j.biopha.2018.09.098.
Xiao, Z., Storms, R., & Tsang, A. (2006). A quantitative starch-iodine method for measuring alpha-amylase and glucoamylase activities. Analytical Biochemistry, 351(1), 146–148. https://doi.org/10.1016/j.ab.2006.01.036.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Institute of Science and Technology, T.U.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The views and interpretations in this journal are those of the author(s). They are not attributable to the Institute of Science and Technology, T.U. and do not imply the expression of any opinion concerning the legal status of any country, territory, city, area of its authorities, or concerning the delimitation of its frontiers of boundaries.
The copyright of the articles is held by the Institute of Science and Technology, T.U.