Water Adsorption on Pristine and Vacancy Defected h-BN Monolayer: First-principles Study

Authors

DOI:

https://doi.org/10.3126/jist.v30i1.68879

Keywords:

DFT, monolayer, orbitals, spin states, supercell

Abstract

The adsorption of liquid or gas molecules on pristine or structurally defective systems exhibits unique properties. They have budding uses in the field of device applications. So, in this work, we have studied the structural, electronic, and magnetic properties of water adsorbed h-BN (w-hBN), and water adsorption on: 1B atom vacancy defect in h-BN (w-1B-hBN), 1N atom vacancy defect in h-BN (w-1N-hBN), nearest neighbours of 1B &1N atoms vacancies defect in h-BN (w-nBN-hBN), and alternate zone of 1B &1N atoms vacancies defect in h-BN (w-aBN-hBN), monolayer supercell structures using density functional theory (DFT) method by employing Quantum ESPRESSO computational tool. For the structural properties, we have estimated the bond length between B & N atoms, and ground state energy of materials. They are found to be compact form of stable two-dimensional materials. Material’s compactness is increased by decreasing number of vacancy defects 8in the material. Electronic properties of considered materials are studied by the analysis of their band structure and density of states (DOS) calculations. It is found that w-1B-hBN is a p-type semiconductor, and w-hBN, w-1B-hBN, w-1N-hBN, w-nBN-hBN, w-aBN-hBN are n-type semiconductors. Magnetic properties of considered materials are examined from their DOS and partial density of states (PDOS) plots, it is found that w-hBN is non-magnetic material, and w-1B-hBN, w-1N-hBN, w-nBN-hBN & w-aBN-hBN are magnetic materials. Magnetic properties are generated due to the arrangement of unpaired up or down spin states of electrons in the individual orbitals of atoms present in the materials.

Downloads

Download data is not yet available.
Abstract
44
PDF
39

References

Bhimanapati, G.R., Lin, Z., Meunier, V., Jung, Y., Cha, J., Das, S., Xiao, D., Son, Y., Strano, M.S., Cooper, V.R., et al. (2015). Recent advances in two-dimensional materials beyond graphene. ACS Nano, 9(12), 11509–11539.

Butler, S.Z., Hollen, S.M., Cao, L., Cui, Y., Gupta, J.A., Gutiérrez, H.R., Heinz, T.F., Hong, S.S., Huang, J., Ismach, A.F., et al. (2013). Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano, 7(4), 2898–2926.

Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., & Dal Corso, A. (2009). Quantum ESPRESSO: modular and open-source software Project for quantum simulations of materials. Journal of Physics: Condensed Matter, 21(39), 395502.

He, W., Kong, L., Zhao, W., & Yu, P. (2022). Atomically thin 2D van der Waals magnetic materials: Fabrications, structure, magnetic properties and applications. Coatings, 12(2), 122.

Head, J.D., & Zerner, M.C. (1985). A Broyden-Fletcher-Goldfarb-Shanno optimization procedure for molecular geometries. Chemical Physics Letters, 122(3), 264–270.

Kohn, W., & Sham, L.J. (1965). Self-consistent equations including exchange and correlation effects. Physical Review, 140(4A), A1133–A1138.

Kokalj, A. (2003). Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale. Computational Materials Science, 28(2), 155–168.

Kresse, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59(3), 1758.

Liu, Y.J., Gao, B., Xu, D., Wang, H.M., & Zhao, J.-X. (2014). Theoretical study on Si-doped hexagonal boron nitride (h-BN) sheet: Electronic, magnetic properties, and reactivity. Physical Letters A, 378(40), 2989–2994.

Mali, K.S., Greenwood, J., Adisoejoso, J., Phillipson, R., & De Feyter, S. (2015). Nanostructuring graphene for controlled and reproducible functionalization. Nanoscale, 7(5), 1566–1585.

Marzari, N., Vanderbilt, D., De Vita, A., & Payne, M.C. (1999). Thermal Contraction and disordering of the Al (110) surface. Physical Review Letters, 82(16), 3296.

Nepal, M., Paudel, G., Aryal, S., Devkota, A., & Neupane, H.K. (2024). Adsorption of water on vacancy defective h-BN bilayer at B and N sites: First-principles calculation. Bibechana, 21(2), 129-141.

Neupane, H.K., & Adhikari, N.P. (2020). Structure, electronic and magnetic properties of 2D Graphene-Molybdenum diSulphide (G-MoS2) Heterostructure (HS) with vacancy defects at Mo sites. Computational Condensed Matter, 24, e00489.

Neupane, H.K., & Adhikari, N.P. (2021a). Effect of vacancy defects in 2D vdW graphene/h-BN heterostructure: First-principles study. AIP Advances, 11(8), 085218.

Neupane, H.K., & Adhikari, N.P. (2021b). First-principles study of structure, electronic, and magnetic properties of C sites vacancy defects in water adsorbed graphene/MoS2 van der Waals heterostructures. Journal of Molecular Modeling, 27(3), 82.

Neupane, H.K., & Adhikari, N.P. (2022). Adsorption of water on C sites vacancy defected graphene/h-BN: First-principles study. Journal of Molecular Modeling, 28(4), 107.

Neupane, H.K., & Adhikari, N.P. (2020). Tuning structural, electronic, and magnetic properties of C sites vacancy defects in graphene/MoS2 van der Waals heterostructure materials: A first‐principles study. Advances in Condensed Matter Physics, 2020(1), 8850701.

Neupane, H.K., & Adhikari, N.P. (2022). Adsorption of water on C sites vacancy defected graphene/h-BN: First-principles study. Journal of Molecular Modeling, 28(4), 107.

Neupane, H.K., & Adhikari, N.P. (2021). First-Principles Study of Vacancy and Impurities Defects in Graphene. Amrit Research Journal, 2(01), 93-102.

Novoselov, K.S., Mishchenko, A., Carvalho, A., & Castro Neto, A. (2016). 2D materials and van der Waals heterostructures. Science, 353(6298), aac9439.

Oli, D. (2024). Adsorption of HCN and H₂S over ZnO and Al-ZnO monolayer [M.Sc. Thesis]. Amrit Campus.

Patra, A.S., Chauhan, M.S., Keene, S., Gogoi, G., Reddy, K.A., Ardo, S., Prasad, D.L., & Qureshi, M. (2018). Combined experimental and theoretical insights into the synergistic effect of cerium doping and Oxygen vacancies in BaZrO3- δ Hollow nanospheres for efficient photocatalytic hydrogen production. The Journal of Physical Chemistry C, 123(1), 233–249.

Paudel, G., Nepal, M., Aryal, S., Devkota, A., & Neupane, H. (2023). Effect of water adsorption on bilayer h-BN: First-principles study. Journal of Nepal Physical Society, 9(2), 56–62.

Pierucci, D., Zribi, J., Henck, H., Chaste, J., Silly, M.G., Bertran, F., Le Fevre, P., Gil, B., Summerfield, A., Beton, P.H., et al. (2018). Van der Waals epitaxy of two-dimensional single-layer h-BN on graphite by molecular beam epitaxy: Electronic properties and band structure. Applied Physics Letters, 112(25), 253102.

Perdew, J.P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple, Physical Review Letters, 77(18), 3865.

Ren, G., Han, W., Deng, Y., Wu, W., Li, Z., Guo, J., Bao, H., Liu, C., & Guo, W. (2021). Strategies of modifying spiro-OMeTAD materials for perovskite solar cells: A review. Journal of Materials Chemistry A, 9(8), 4589–4625.

Turner, P. (2005). XMGRACE, Version 5.1. 19. Center for Coastal and Land-Margin Research, Oregon Graduate Institute of Science and Technology, Beaverton, OR, 2.

Uddin, M.M., Kabir, M.H., Ali, M.A., Hossain, M.M., Khandaker, M.U., Mandal, S., Arifutzzaman, A., & Jana, D. (2023). Graphene-like emerging 2D materials: Recent progress, challenges and future outlook. RSC Advances, 13(47), 33336–33375.

Vu, T.V., Hieu, N.V., Phuc, H.V., Hieu, N.N., Bui, H. D., Idrees, M., Amin, B., & Nguyen, C.V. (2020). Graphene/WSeTe van der Waals heterostructure: Controllable electronic properties and Schottky barrier via interlayer coupling and electric field. Applied Surface Science, 507, 145036.

Xu, M., Liang, T., Shi, M., & Chen, H. (2013). Graphene-like two-dimensional materials. Chemical Reviews, 113(5), 3766–3798.

Zhang, J., Liu, X., Neri, G., & Pinna, N. (2016). Nanostructured materials for room-temperature gas sensors. Advanced Materials, 28(5), 795–831.

Zhang, X., & Zhang, L. (2010). Electronic and band structure tuning of ternary semiconductor photocatalysts by self doping: The case of BiOI. The Journal of Physical Chemistry C, 114(42), 18198–18206.

Downloads

Published

2025-03-03

How to Cite

Aryal, S., Paudel, G., Nepal, M., Oli, D., Rijal, O. S., & Neupane, H. K. (2025). Water Adsorption on Pristine and Vacancy Defected h-BN Monolayer: First-principles Study. Journal of Institute of Science and Technology, 30(1), 73–81. https://doi.org/10.3126/jist.v30i1.68879

Issue

Section

Research Articles