Diurnal Cycle of Precipitation and Extremes in Nepal
DOI:
https://doi.org/10.3126/jist.v29i2.66620Keywords:
Extreme precipitation events, hourly precipitation, IMERG, monsoon, spatio-temporal distributionAbstract
This study examines the spatio-temporal distribution of hourly precipitation across Nepal using Integrated Multi-Satellite Retrievals for Global Precipitation Measurement (IMERG) data from 2015 to 2021. The findings indicate that hourly precipitation intensity during the monsoon season can reach up to 0.7 mm/hr, while pre-monsoon intensities peak at 0.2 mm/hr. These intensities are predominantly concentrated in mid- and low-elevation areas of central and eastern Nepal. Post-monsoon and winter seasons exhibit high-intensity precipitation patches over high-elevation regions in the western, central, and eastern peripheries of the country. The annual distribution of hourly precipitation shows a pronounced peak during the monsoon season, indicating that a significant portion of the total annual precipitation occurs during this period. Extreme precipitation events follow a similar seasonal distribution, with monsoon extremes exceeding 15 mm/hr. The diurnal cycle of monsoonal precipitation shows unique characteristics, peaking at 0.65 mm/hr around midnight and decreasing to 0.2 mm/hr by late morning, then increasing steadily in the afternoon and evening. Additionally, the study contrasts hourly heavy precipitation extremes (≥10 mm/hr or day) with daily extremes, noting that hourly extremes, despite being accumulated into daily measures, present a higher frequency, and pose greater short-term hazard risks. This analysis over a seven-year period suggests the need for continued research to determine spatial and temporal trends in hourly versus daily extreme precipitation patterns, particularly in the context of climate change and its impacts on regional hydrology and meteorology.
Downloads
References
Alexander, L.V., Zhang, X., Peterson, T.C., Caesar, J., Gleason, B., Klein Tank, A., Haylock, M., Collins, D., Trewin, B., & Rahimzadeh, F. (2006). Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research: Atmospheres, 111(D5). https://doi.org/10.1029/2005JD006290
Almazroui, M., Ashfaq, M., Islam, M.N., Rashid, I.U., Kamil, S., Abid, M.A., O’Brien, E., Ismail, M., Reboita, M.S., & Sörensson, A.A. (2021). Assessment of CMIP6 performance and projected temperature and precipitation changes over South America. Earth Systems and Environment, 5, 1-29. https://doi.org/10.1007/s41748-021-00233-6
Anders, A.M., Roe, G.H., Hallet, B., Montgomery, D.R., Finnegan, N.J., & Putkonen, J. (2006). Spatial patterns of precipitation and topography in the Himalaya. Special Papers-Geological Society of America, 398, 39. https://doi.org/10.1130/2006.2398(03)
Chen, Y., Sharma, S., Zhou, X., Yang, K., Li, X., Niu, X., Hu, X., & Khadka, N. (2021). Spatial performance of multiple reanalysis precipitation datasets on the southern slope of central Himalaya. Atmospheric Research, 250, 105365. https://doi.org/10.1016/j.atmosres.2020.105365
Dalagnol, R., Gramcianinov, C.B., Crespo, N.M., Luiz, R., Chiquetto, J.B., Marques, M.T., Neto, G.D., de Abreu, R.C., Li, S., Lott, F.C., Anderson, L.O., & Sparrow, S. (2022). Extreme rainfall and its impacts in the Brazilian Minas Gerais state in January 2020: Can we blame climate change? Climate Resilience and Sustainability, 1(1), e15. https://doi.org/10.1002/cli2.15
Dawadi, B. (2017). Climatic records and linkage along an altitudinal gradient in the southern slope of Nepal Himalaya. Journal of Nepal Geological Society, 53, 47-56. https://doi.org/10.3126/jngs.v53i0.23804
Dawadi, B., Acharya, R. H., Lamichhane D., Pudasainee S., & Shrestha, I.K. (2020). A short note on linkage of climatic records between Terai and Mid-mountain of Central Nepal. Journal of Geographical Research, 3(04). https://doi.org/10.30564/jgr.v3i4.2323
Hamal, K., Khadka, N., Rai, S., Joshi, B.B., Dotel, J., Khadka, L., Bag, N., Ghimire, S.K., & Shrestha, D. (2020a). Evaluation of the TRMM product for spatio-temporal characteristics of precipitation over Nepal (1998-2018). Journal of Institute of Science and Technology, 25(2), 39-48. https://doi.org/10.3126/jist.v25i2.33733
Hamal, K., Sharma, S., Baniya, B., Khadka, N., & Zhou, X. (2020b). Inter-annual variability of winter precipitation over Nepal coupled with ocean-atmospheric patterns during 1987–2015. Frontiers in Earth Science, 8, 161. https://doi.org/10.3389/feart.2020.00161
Hamal, K., Sharma, S., Pokharel, B., Shrestha, D., Talchabhadel, R., Shrestha, A., & Khadka, N. (2021a). Changing pattern of drought in Nepal and associated atmospheric circulation. Atmospheric Research, 105798. https://doi.org/10.1016/j.atmosres.2021.105798
Hamal, K., Sharma, S., Talchabhadel, R., Ali, M., Dhital, Y.P., Xu, T., & Dawadi, B. (2021b). Trends in the diurnal temperature range over the southern slope of Central Himalaya: Retrospective and prospective evaluation. Atmosphere, 12(12), 1683. https://doi.org/10.3390/atmos12121683
Held, I.M., & Soden, B.J. (2006). Robust responses of the hydrological cycle to global warming. Journal of Climate, 19(21), 5686-5699. https://doi.org/10.1175/JCLI3990.1
Huang, D., Dai, A., Zhu, J., Zhang, Y., & Kuang, X. (2017). Recent winter precipitation changes over eastern China in different warming periods and the associated East Asian jets and oceanic conditions. Journal of Climate, 30(12), 4443-4462. https://doi.org/10.1175/JCLI-D-16-0517.1
Huffman, G.J., Stocker, E.F., Bolvin, D.T., Nelkin, E.J., & Tan, J. (2019). GPM IMERG Final Precipitation L3 1 day 0.1 degree x 0.1 degree V06. In Savtchenko, A., Greenbelt, M.D. (Eds.), Goddard Earth Sciences Data and Information Services Center (GES DISC).
Huffman, G.J., Bolvin, D.T., Braithwaite, D., Hsu, K., Joyce, R., Xie, P., & Yoo, S.-H. (2015). NASA global precipitation measurement (GPM) integrated multi-satellite retrievals for GPM (IMERG). Algorithm Theoretical Basis Document (ATBD), 4, 26.
Kansakar, S.R., Hannah, D.M., Gerrard, J., & Rees, G. (2004). Spatial pattern in the precipitation regime of Nepal. International Journal of Climatology, 24(13), 1645-1659. https://doi.org/10.1002/joc.1098
Karki, R., Schickhoff, U., Scholten, T., & Böhner, J. (2017). Rising precipitation extremes across Nepal. Climate, 5(1), 4. https://doi.org/10.3390/cli5010004
Khadka, N., Chen, X., Sharma, S., & Shrestha, B. (2023). Climate change and its impacts on glaciers and glacial lakes in Nepal Himalayas. Regional Environmental Change, 23(4), 143. https://doi.org/10.1007/s10113-023-02142-y
Nepal, B., Shrestha, D., Sharma, S., Shrestha, M.S., Aryal, D., & Shrestha, N. (2021). Assessment of GPM-era satellite products’ (IMERG and GSMaP) ability to detect precipitation extremes over mountainous country Nepal. Atmosphere, 12(2), 254. https://doi.org/10.3390/atmos12020254
Pokharel, B., Wang, S.Y.S., Meyer, J., Marahatta, S., Nepal, B., Chikamoto, Y., & Gillies, R. (2019). The east–west division of changing precipitation in Nepal. International Journal of Climatology, 40(7), 3348-3359. https://doi.org/10.1002/joc.6401
Sharma, S., Chen, Y., Zhou, X., Yang, K., Li, X., Niu, X., Hu, X., & Khadka, N. (2020a). Evaluation of GPM-era satellite precipitation products on the southern slopes of the Central Himalayas against rain gauge data. Remote Sensing, 12(11), 1836. https://doi.org/10.3390/rs12111836
Sharma, S., Hamal, K., Khadka, N., Ali, M., Subedi, M., Hussain, G., Ehsan, M.A., Saeed, S., & Dawadi, B. (2021a). Projected drought conditions over southern slope of the Central Himalaya using CMIP6 models. Earth Systems and Environment, 1-11. https://doi.org/10.1007/41748-021-00254-1
Sharma, S., Hamal, K., Khadka, N., & Joshi, B.B. (2020b). Dominant pattern of year-to-year variability of summer precipitation in Nepal during 1987–2015. Theoretical and Applied Climatology, 142(3-4), 1071-1084. https://doi.org/10.1007/s00704-020-03359-1
Sharma, S., Hamal, K., Pokharel, B., Fosu, B., Wang, S.-Y. S., Gillies, R.R., Aryal, D., Shrestha, A., Marahatta, S., & Hussain, A. (2023). Atypical forcing embedded in typical forcing leading to the extreme summer 2020 precipitation in Nepal. Climate Dynamics, 61(7), 3845-3856. https://doi.org/10.1007/s00382-023-06777-9
Sharma, S., Khadka, N., Hamal, K., Baniya, B., Luintel, N., & Joshi, B.B. (2020c). Spatial and temporal analysis of precipitation and its extremities in seven provinces of Nepal (2001-2016). Applied Ecology and Environmental Sciences, 8(2), 64-73. https://doi.org/10.12691/aees-8-2-4
Sharma, S., Khadka, N., Hamal, K., Shrestha, D., Talchabhadel, R., & Chen, Y. (2020d). How accurately can satellite products (TMPA and IMERG) detect precipitation patterns, extremities and drought across the Nepalese Himalaya? Earth and Space Science, 7(8), e2020EA001315. https://doi.org/10.1029/2020ea001315
Sharma, S., Khadka, N., Nepal, B., Ghimire, S.K., Luintel, N., & Hamal, K. (2021b). Elevation dependency of precipitation over southern slope of Central Himalaya. Jalawaayu, 1(1), 1-14. https://doi.org/10.3126/jalawaayu.v1i1.36446
Shrestha, D., & Deshar, R. (2014). Spatial variations in the diurnal pattern of precipitation over Nepal Himalayas. Nepal Journal of Science and Technology, 15(2), 57-64. https://doi.org/10.3126/njst.v15i2.12116
Shrestha, D., Sharma, S., Hamal, K., Jadoon, U.K., & Dawadi, B. (2021). Spatial distribution of extreme precipitation events and its trend in Nepal. Environmental Sciences, 9(1), 58-66. https://doi.org/10.12691/aees-9-1-8
Talchabhadel, R., Karki, R., Thapa, B.R., Maharjan, M., & Parajuli, B. (2018). Spatio-temporal variability of extreme precipitation in Nepal. International Journal of Climatology, 38(11), 4296-4313. https://doi.org/10.1002/joc.5669
Talchabhadel, R., Nakagawa, H., Kawaike, K., Yamanoi, K., Musumari, H., Adhikari, T.R., & Prajapati, R. (2021a). Appraising the potential of using satellite‐based rainfall estimates for evaluating extreme precipitation: A case study of August 2014 event across the West Rapti River basin, Nepal. Earth and Space Science, 8(8), e2020EA001518.
Talchabhadel, R., Panthi, J., Sharma, S., Ghimire, G.R., Baniya, R., Dahal, P., Baniya, M.B., KC, S., Jha, B., & Kaini, S. (2021b). Insights on the impacts of hydroclimatic extremes and anthropogenic activities on sediment yield of a river basin. Earth, 2(1), 32-50. https://doi.org/10.3390/earth2010003
Talchabhadel, R., Sharma, S., Khadka, N., Hamal, K., Karki, S., & Thapa, B.R. (2022). An outlook on the applicability of satellite precipitation products for monitoring extreme precipitation events in Nepal Himalaya. Weather, 77(5), 174-180. https://doi.org/10.1002/wea.4143
Trenberth, K.E., Dai, A., Rasmussen, R.M., & Parsons, D.B. (2003). The changing character of precipitation. Bulletin of the American Meteorological Society, 84(9), 1205-1218. https://doi.org/10.1175/BAMS-84-9-1205
Utsumi, N., Seto, S., Kanae, S., Maeda, E.E., & Oki, T. (2011). Does higher surface temperature intensify extreme precipitation? Geophysical Research Letters, 38(16). https://doi.org/10.1029/2011GL048426
Wasti, A., Ray, P., Wi, S., Folch, C., Ubierna, M., & Karki, P. (2022). Climate change and the hydropower sector: A global review. WIREs Climate Change, 13(2). https://doi.org/10.1002/wcc.757
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Institute of Science and Technology, T.U.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The views and interpretations in this journal are those of the author(s). They are not attributable to the Institute of Science and Technology, T.U. and do not imply the expression of any opinion concerning the legal status of any country, territory, city, area of its authorities, or concerning the delimitation of its frontiers of boundaries.
The copyright of the articles is held by the Institute of Science and Technology, T.U.