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ABSTRACT 
The landslide is a major and common natural hazard in the Nepalese Himalayas. This phenomenon is because of its 
active tectonic setting, extensively deformed rock formation, steep mountain terrain, frequent seismic events, high-
intensity rainfall during monsoons, and high rate of weathering it occurs every year, especially during the monsoon 
season. The landslide susceptibility assessment using the Geographic Information System (GIS) and remote sensing 
tools helps to display the hazards, and vulnerable zones providing the required knowledge of the susceptibility of 
landslides in a specific region. Landslide susceptibility with vulnerability assessment covering the comprehensive 
parameters provides an important understanding of the areas that are more likely to the damaging effect of the 
landslide hazards and is useful for mitigation, management, and avoiding threats. A total of 339 landslides were 
identified in the Badigad watershed from the satellite images on Google Earth, out of which 20% were used for model 
validation. The study was carried out using the Weight of Evidence (WoE) model. Eleven factors were considered as 
possible causative factors for the hazard assessment. Based on the landslide susceptibility map, 11% to 29 % of the 
study area is found to be in the range of very high to shallow landslide susceptibility. From the final map prepared it 
is found that many areas of Satyawati Rural Municipality (RM), Ruru RM, Chandrakot RM, and Chhatrakot RM, along 
with Musikot Municipality in Gulmi and Badigad RM in Baglung district, exhibit a notable high hazard level. The 
Receiver Operating Characteristics (ROC) graph with the Area under the curve (AUC) value was used to check the 
performance of the WoE model which shows that the model has 80.4% prediction accuracy for future events which 
means, the model shows very good performance. The vulnerability within the study area is assessed by obtaining 
vulnerability scores. To obtain the vulnerability score, fourteen indicators were analyzed following the Local Disaster 
and Climate Resilience Planning (LDCRP) guideline. The result obtained from the vulnerability assessment showed 
that two wards, namely Thulolumpek in Satyawati RM of Gulmi and Bobang in Dhorpatan Municipality of Baglung 
are highly vulnerable. By analyzing and comparing the vulnerability obtained from susceptibility mapping (using GIS) 
and social methods (using LDCRP guideline), it is observed that they do not converge based on the factors studied.  
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INTRODUCTION 
Landslide, a synonym of the terms like “mass 
movement”, and “slope movements”, is the movement 
of rocks, debris, or earth materials down the slope 
(Cruden, 1991). The basics of landslide causes, locations, 
forms, mechanisms, and processes were reported by 
several scientific studies on Nepal Himalaya ( Hasegawa 
et al., 2008; Dahal, 2012; Van Tien et al., 2021; Singh et 
al., 2022).  Seismic activity, fragile geology, high-intensity 
rainfalls and weathering, and toe erosion make Nepal 
highly vulnerable to landslides (Baruwal, 2014). 
Additionally, human-induced actions, such as improper 
land use, intrusion into susceptible land slopes, and 
poorly planned development activities like constructing 
roads and irrigation canals without sufficient safeguards 
in mountainous areas, further exacerbate the likelihood 
of landslide occurrence (Acharya et al., 2017). This 
heightened risk contributes to human and infrastructure 
losses in the mountain and hilly areas especially during 
the monsoon (Petley et al., 2007). Every year a total of 
about 12,000 small and large-scale landslides occur in 

Nepal most of which often remain ignored and 
unreported mainly because of an inadequate information 
system, little economic impact, or little harm to humans 
and national infrastructure (Bhattarai et al., 2002). 
Despite their often-overlooked nature, landslides alone 
are responsible for causing annual human deaths of over 
300 in Nepal (Hearn et al., 2003). Consequently, there is 
a critical need to conduct landslide susceptibility 
mapping to identify the potential landslide areas. 
 
Landslide susceptibility is the tendency or preference to 
answer where the future landslide can occur over an area 
without explaining the exact time of occurrence and 
intensity (Rabby & Li, 2020). It is based on the 
assumption that “the past is the key to the future,” where 
historical landslides and their relationship with causative 
factors can be used to predict future events (Van Westen 
et al., 2008). Various methods, including statistical 
techniques (Mersha & Meten, 2020), deterministic 
analyses, and heuristic approaches (Zorgati et al., 2019), 
can be employed to create landslide susceptibility maps. 
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However, all these methods are not equally taken in 
landslide mapping and analysis due to technical and cost 
constraints (Soeters & Van Westen, 1996). For assessing 
landslide susceptibility over a large area, statistical 
methods are typically favored because they offer 
prediction without requiring the detail and extensive data 
for parameterizing and assessing physically based 
approaches (Woodard et al., 2023).  In contrast, 
deterministic analysis in landslide susceptibility involves 
slope stability models by calculating the factor of safety 
in individual slopes which requires detailed geometrical 
data, angle of friction, and pore water pressure (Terlien 
et al., 1995; Aleotti & Chaudhary, 1999; Regmi et al., 
2014). Therefore, this method is normally applied only 
in small areas at detailed scales.  Heuristic approaches are 
employed using ranking methods based on experts’ 
opinions and experience (Zhu et al., 2018), including 
methods such as the Analytical Hierarchical process 
(AHP) (Abedini et al., 2017), and the fuzzy logic 
approach (Kayastha et al., 2012). A significant drawback 
of this approach is its dependency on subjective 
judgments which leads to the failure to quantify the 
importance of each factor (Chen & Song, 2023). Despite 
their differences, all these approaches use GIS tools, 
which are suitable tools for Landslide susceptibility 
mapping.  
 
Landslide susceptibility mapping activities determine the 
areas prone to landslides based on various causative 
factors (Dou et al., 2015; Roy & Saha, 2019) while 
vulnerability assessment evaluates the potential damage 
and loss of life from extreme natural events suggesting 
the best-engineered approach to hazard reduction 
(Cutter, 1996). In the field of disaster risk reduction 
planning, it is essential not only to conduct landslide 
susceptibility mapping using the GIS tool but also to 
assess the vulnerability of the community by evaluating 
the community’s exposure, sensitivity, and adaptive 
capacity to landslides via an integration approach 
(Rahman et al., 2022). Vulnerability is the probability that 
a human-environmental system, or any one of its 
components, is likely to experience damage as a result of 
exposure, sensitivity, and adaptive capacity to hazard 
(Turner et al., 2003; Cannon, 2006; Fussel, 2007). 
Vulnerability assessment embraces the inherent qualities 
and conditions of the community, system, or asset that 
make it susceptible to the detrimental effects of hazards. 
Unfortunately, there is no universal method for assessing 
vulnerability across various locations and hazard levels 
(Papathoma-Kohle et al., 2007). However, according to 
several kinds of literature, vulnerability assessment of the 
community involves a method based on the integration 
of physical, social, and environmental aspects (Glade, 
2003; Arrogante-Funes et al., 2021; Nor Diana et al., 
2021). The research conducted by Arrogante-Funes et al., 
(2021) on landslide socio-economic vulnerability 
assessment involves the integration method that 
incorporates data from the marginalization index, 
population density, and building density by collecting 
data from different sources. Similarly, the study 
conducted by Banuzaki & Ayu (2021) utilized a GIS tool 
for landslide vulnerability assessment. The methodology 

employed in assessing vulnerability assessment in this 
research aligns with the guidelines outlined in the 
LDCRP framework developed by GoN to 
comprehensively assess the communities’ vulnerability 
to the landslides, providing insight into the degree of 
vulnerability they face.  
 
The main rationale beyond this is that the study of the 
landslide susceptibility and vulnerability assessment 
within the Badigad watershed, encompassing mostly the 
parts of Gulmi and Baglung districts (The District is the 
geographical administrative area greater than 
municipalities, and smaller than provinces) has not been 
still carried out. Paudyal and Maharjan (2022) studied 
landslide susceptibility in the Tinau-Mathagadi section of 
the Palpa district using the Frequency Ratio method, and 
Budha et al., (2020) studied the landslide susceptibility 
map of the Panchase area covering the parts of the 
Kaski, Parbat, and Syangja district. However, no study 
has specifically focused on landslide susceptibility 
including the vulnerability assessment in the Badigad 
watershed. This area experienced a significant loss of life 
due to a massive landslide in 2019 in Gulmi, resulting in 
13 fatalities, and 2020 in Baglung, resulting in 14 
fatalities. The main purpose of this study is to prepare 
the landslide susceptible map in a GIS environment 
which can predict the probability of potential landslide 
occurrence over an area in the future. Additionally, the 
study aims to assess the vulnerability of the wards under 
the study by analyzing the potential impact of loss from 
the event in the human-environment system. This, in 
turn, assists the concerned authorities in developing 
suitable land use planning to mitigate the occurrence of 
disaster and its impacts aiming to foster the resilience of 
vulnerable communities. 
 
MATERIALS AND METHODS 
Study area 
The Badigad watershed is selected as the study area as 
shown in Fig. 1. It is mostly located in the western part 
of Nepal in the Baglung and Gulmi districts under the 
Lesser Himalaya covering an area of 1965 km2 whose 
altitude ranges from 415 m to 3985 m. The Badigad 
River is a major tributary of the Kaligandaki River. 
 
The Badigad watershed predominantly comprises 22 
local governments (here, local government refers to the 
municipalities divided administratively) from Baglung 
and Gulmi districts, including 5 municipalities and 17 
rural municipalities covering major residential areas like 
Burtibang, Hatiya, Kharbang, Wamitaksar, Bhuwachidi, 
Majuwa, Shantipur, Khaireni and Rudrabeni. Local 
government refers to the institutional units responsible 
for governing defined territories within the country 
(Acharya, 2018). Local government constitutes the wards 
(the smallest unit of the local government). The primary 
drainages in the study area include Chaldi Khola, Hugdi 
Khola, Gidi Khola, Bharse Khola, Lumdi Khola, Daram 
Khola, Taman Khola, Nisi Khola, and Bhuji Khola. 
Additionally, this watershed extends into the minor parts 
of other districts like Arghankhanchi, Pyuthan, Rukum, 
Rolpa, and Myagdi. 
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Figure 1. The Study area map (Badigad watershed) 

 
 
Data preparation for landslide susceptibility  
Landslide inventory is the most important step in 
landslide susceptibility mapping, and this includes: 

• Identifying and interpreting landslide distribution 
through Google Earth was carried out. Landslides 
are identified from satellite images with the help of 
many attributes including color, tone, surface 
roughness, and texture (Mihir & Malamud, 2014).  

• A Field visit for the verification and recognition of 
the inventoried landslide was conducted. The 
Global Positioning System (GPS) locations 
recorded on the field are subjected to Google Earth 
for verification. 

 
Factors for landslide susceptibility assessment 
This study utilizes ArcGIS 10.3 to map landslide 
susceptibility by considering various factors expected to 
contribute to potential future sliding based on the 
literature review. These factors include slope, elevation, 
aspect, profile and plan curvature, relief, geology, 

distance from the road, distance from the river, land use, 
and rainfall.   
 
Landslide susceptibility assessment 
In this process, the total landslide invented through 
Google Earth was randomly selected using the ArcGIS 
tool in training and testing data. Training data occupies 
80% of the entire landslide data to operate the weight of 
the evidence model thereby generating a Landslide 
susceptibility map, whereas the remaining data are the 
testing data employed to test the model’s prediction 
capability for the future event. Specifically, to evaluate 
the landslide susceptibility map generated from the 
model used. In this study, the Bivariate statistical analysis 
method known as the Weight of Evidence (WoE) Model 
was used, which is a data-driven approach that utilizes a 
log-linear variation of Bayesian analysis, operating on the 
basis that future landslide occurrences will occur due to 
the factors akin to those that led to the past landslides 
(Getachew & Meten, 2021). WoE involves computing 
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two fundamental parameters: positive weight (W+ ) and 
negative weight (W-), which analyze the spatial 
relationship between the causative factors and the 
distribution of landslides (Pamela et al., 2018). This is 
achieved by overlaying the landslide inventory map with 

individual causative factor maps to establish spatial 
statistical correlations (Cao et al., 2021). The positive 
(W+) and negative (W-) weight values are determined by 
the following equation.

 
 

W+ = ln 

Npix1

Npix1+Npix2
Npix3

Npix3+Npix4

 … (1)       and W- =  ln 

Npix2

Npix1+Npix2
Npix4

Npix3+Npix4

  … (2) (Van Westen, 2002) 

 
Where Npix1 is the number of pixels representing the 
presence of both potential landslide predictive factor and 
landslides, Npix2 is the number of pixels representing 
the presence of landslides and absence of potential 
landslide predictive factor, Npix3 is the number of pixels 
representing the presence of potential landslide 
predictive factor and absence of landslides, Npix4 is the 
number of pixels representing the absence of both 
potential landslide predictive factor and landslides. 
 
The final weight is then calculated as  

Wmap = W+ + W- - W-   … (3). 
 
According to Bonham-Carter (1994), the spatial 
association between the map class and the occurrence of 
landslide can be calculated as:  
Contrast factor (C) = W+ - W- … (4)  
 
The resulting total weights directly indicate the 
importance of each factor. If the total weight is positive, 
the factor is favorable for the occurrence of landslides, 
and if it is negative, it is not favorable. 
 
The weightage values of all factor classes were combined 
using the formula below to Figure out the Landslide 
Susceptibility Index (LSI) map of the study area where 
N is the total number of factor maps (Sifa et al., 2020). 
 

LSI = ∑ 𝑊mapN
i=1

⬚
 … (5) 

 

Finally, the preparation of the susceptibility map was 
carried out by integrating various factor maps stored in 
raster format, each assigned with specific weights. The 
susceptibility map was then classified into different 
classes of susceptibility; very low, low, medium, high, 
and very high based on the natural break classification 
method in ArcMap. Later on, this susceptible map 
prepared from the WoE model was verified by the ROC 
AUC graph by calculating the prediction rate.  
 
Vulnerability Assessment 
This assessment utilized the Local Disaster and Climate 
Resilience Planning (LDCRP) guideline, developed by 
the Government of Nepal (GoN), which incorporates 14 
diverse indicators covering physical, economic, social, 
and environmental aspects. In this research, twenty 
wards within the watershed were visited based on 
previous landslide events to carry out vulnerability 
assessment using LDCRP indicators. Data for all of the 
indicators mentioned in the guideline were gathered 
through direct observation, Key Informant Interviews 
(KII), Focus Group Discussions (FGD), and existing 
published data. Each of the indicators was assigned a 
specific score as outlined in the guideline, and these 
scores were summed up to calculate the total score of 
the individual ward. This total score was then used to 
classify the vulnerability of the wards into high, medium, 
and low categories based on the guidelines’ instructions. 
The scoring methods for each indicator, as 
recommended by the guideline, are presented in Table 1.

  
Table 1. Indicators and the methods of assigning scores using LDCRP guideline 

S.N. 
Indicators for 
Vulnerability 
Assessment  

Methods of assigning scores Score 

1 Human death 
0 to 1 people died  = low 2 
2 to 5 people died = Medium  4 
more than 5 people died = High 6 

2 Impacted households 
50 Households = low 1 
51 to 100 Households = Medium 2 
Greater or equal to 101 = High 3 

3 Damaged houses 
0 to 10 damaged houses = low 1 

11 to 50 damaged houses = medium 2 
More than 50 damaged houses = high 3 

4 Economic loss  
0 to 1 lakhs = low 1 
1 to 50 lakhs loss = medium 2 
More than 50 lakhs = high 3 

5 
Agricultural and forest 
area loss  

5 Bigha land loss = low 1 
5 to 50 Bigha land loss = medium 2 
More than 50 Bigha land loss = high 3 

6 Social impact 
Occurrences of any one of the events among disappearance of people, children, 
cases of violence against women, cases of robbery, or any other incident = low 

1 
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Occurrences of any one of the events among disappearance of people, children, 
cases of violence against women, cases of robbery, or any other incident = medium 

2 

Occurrences of all of the events such as the disappearance of people, or children, 
cases of violence against women, cases of robbery, or any other incident = high 

3 

7 
Disastrous events in the 
past 

1 to 2 disastrous events occurred = low 1 
2 to 5 disastrous events occurred = medium 2 
More than 5 disastrous events occurred = high 3 

8 
Changes in the season 
calendar 

Changes occurred within less than 10 days = low 1 
Changes occurred within 10 to 20 days = medium 2 
Changes occurred within more than 20 days = high 3 

9 Changes in temperature  
Only felt = low 1 
felt but less impact = medium 2 
Extinction of crops and vegetation= high 3 

10 
The future effect of the 
risk  

The population of Settlements near river and landslide is Less than 10 percent = 
low 

1 

Settlements having excessive or shortage of water, no proper management of 
sewage, or the population of settlements near river and landslide is Less than 10 to 
30 percent = medium 

2 

Settlements having excessive or shortage of water, no proper management of 
sewage, or the population of settlements near rivers and landslides is Less than 10 
to 30 percent = high 

3 

11 
Access to resource 
availability 

Adequate and accessible resources = low 1 
Adequate but not accessible resources = medium  2 
Shortage of resources = high  3 

12 Institutional capability 

The presence of an organization that is capable of working during disastrous events 
= low 

1 

The presence of an organization that is not capable  of working during disastrous 
events or communities are not informed about the organization = medium 

2 

The organization is too far away or there is no organization at all  = high 3 

13 
Access to population 
analysis 

If less than 20 percent of the population constitutes  disabled  persons, pregnant 
women, children below 5 years, and elderly people over the age of 60 = low  

1 

If 20 to 40 percent of the population constitutes disabled persons, pregnant 
women, children below 5 years, and elderly people over the age of 60 = medium 

2 

If more than percent of the population constitutes disabled persons, pregnant 
women, children below 5 years, and elderly people over the age of 60 = high 

3 

14 
Knowledge, skill, capacity, 
and technology    

Availability and Use of local knowledge, skills, abilities, and technology to minimize 
the effects of disasters and climate change = low 

1 

Availability of local knowledge, skills, abilities, and technology to minimize the 
effects of disasters and climate change but not in use = medium 

2 

No availability of skill, abilities, and technology = high  3 

 
 
Source of Data for Landslide Susceptibility 
Mapping 
The different data sources that were used for mapping 
different factors for developing landslide susceptibility 
are tabulated in Table 2. The PALSAR (Phased Array 
type L-band Synthetic Aperture Radar), Digital 

Elevation Model (DEM) data was used in this research 
which was extracted and downloaded from the Alaska 
Satellite Facility (ASF) having spatial resolution (Size of 
the smallest feature that can be detected by a satellite 
sensor) of 12.5 m.

 
 
  Table 2. Source of data used 

S.N. Factors Data Source and Spatial Resolution 

1 Slope DEM PALSAR/12.5m 
2 Elevation DEM PALSAR/12.5m 
3 Aspect DEM PALSAR/12.5m 
4 Profile curvature DEM PALSAR/12.5m 
5 Plan curvature DEM PALSAR/12.5m 
6 Relief DEM PALSAR/12.5m 
7 Geology Geological formation Department of Mines and Survey, 2020 
8 Distance from Road Road Open street map, 2020 
9 Distance from River DEM PALSAR/12.5m 
10 Land Use Satellite image (Landsat 8) United States Geological Survey, 2020 
11 Rainfall Annual rainfall data DHM Nepal, 2020 
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RESULTS AND DISCUSSION 
Landslide Inventory Map 
Using the Google Earth image, a total of 339 landslides 
from the year 1985 to 2021 are mapped where landslides 
are located very near to the confluence of the Badigad 
River and its drainage network, on the middle slope and 
in the foot slope close to the river. Out of the total 

mapped landslides, 80% were randomly selected using 
the GIS tool as a training sample for the mapping and 
analysis by running the model while remaining of the 
landslides mapped were testing landslides as shown in 
Fig. 2. These testing landslides were employed to assess 
the accuracy of the model through which the susceptible 
map is prepared.

 
 

 
Figure 2. Landslide inventory map showing the distribution of landslides 

 
 
Factor maps and the weighted values 
Factor maps are thematic maps that represent the 
different causative variables contributing to the 
likelihood of landslides occurring in a specific area. 
There is no standard or guideline for selecting the factors 
in landslide susceptibility mapping (Ayalew & 
Yamagishi, 2005; Sato & Harp, 2009). However, the 
causative factors in this study were taken into account 
from the literature review. All of the factor maps 
considered in this study were categorized into distinct 
classes within a GIS, assigned with weightage values (W+ 
and W-). Subsequently, Wmap and contrast were 
calculated and tabulated in Table 3 to assess the 
individual contributions of each factor class to the spatial 
occurrence of landslides. 
 
The weightage values computed using the WoE model 
as shown in Table 3 are crucial for understanding the 

significance of each factor class in landslide occurrence. 
A brief description of the results of each evaluated 
thematic map in this study is given below. 
 
The Slope factor is the most significant in the occurrence 
of landslides as it affects the soil water content (surface 
and subsurface), formation of soil, erosion potential, and 
so on (Poudel & Regmi, 2016). Among the four different 
classes of slope, as shown in Fig. 3a, the slope class of 
30-45° has the maximum positive weightage and 
contrast value identical to Thapa and Esaki (2007) and 
differs from that of Kayastha et al. (2012, 2013) and 
Sarkar et al. (2006). This particular slope class 
predominately features major cultivated lands and 
grasslands devoid of trees, thus increasing the likelihood 
of landslides.
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Table 3. Weighted value for each factor class 

Factors Class 
No. of pixels of 
landslides 

No. of the pixel of 
subclass 

Wmap Contrast 

Slope (°) <15° 291 1053632 -1.68 -1.3 
 15-30° 2942 4751905 -1.00 -0.62 
 30-45° 7026 5556404 0.21 0.59 

 >45° 1671 1215271 0.04 0.42 
Elevation (m) <1000 5157 1193376 1.88 1.99 

 1000-1500 4275 3447560 0.29 0.39 
 1500-2000 2031 3194481 -0.61 -0.51 
 2000-2500 409 2582545 -2.09 -1.99 
 >2500 58 2159250 -3.85 -3.75 
 
 
 
 

Aspect 
 
 
 
 

Flat 2 3639 -0.58 -0.54 
North (N) 480 1585507 -1.24 -1.24 
Northeast(NE) 224 1488117 -1.95 -1.95 
East (E)  399 1492505 -1.36 -1.43 
Southeast (SE) 1953 1656600 0.25 0.31 
South (S) 2376 1709657 0.45 0.46 
Southwest (SW) 2546 1763137 0.50 0.51 
West (W) 2255 1411006 0.61 0.61 
Northwest (NW) 1712 1443256 0.25 0.26 

 Convex 3003 2159702 0.14 0.10 
Profile curvature Planar 6134 6969632 -0.12 -0.16 

 Concave 2793 3447878 -0.17 -0.21 
Plan curvature Concave 10607 2135828 0.57 0.48 

 Planar 670 8226328 -0.18 -0.26 
 Convex 608 2215056 -0.04 -0.13 

Relief (m) < 50 295 1605193 -1.78 -1.74 
 50-70 1171 2441753 -0.82 -0.78 
 70-100 4695 4470397 0.14 0.18 
 100-120 3090 2216738 0.46 0.50 
 >120 2679 1964875 0.42 0.46 

Geological  
Formation 

Lakharpata 2332 3543541 -0.56 -0.48 
Siuri 1276 1493809 -0.2 -0.12 
Kushma 15 325634 -2.75 -2.68 
Galyang 5173 110097 1.65 1.73 
Syangja 1961 225495 -0.21 -0.13 
Ranimatta 994 1505769 -0.83 -0.75 
Sangram 183 2299661 -1.83 -1.75 
Seti 0 2036107 0 0 
Surbang 0 1038146 0 0 

Distance from  
road (m) 

< 50 1418 114997 0.31 0.29 
50 – 100 720 906519 -0.17 -0.19 
100 – 150 559 755887 -0.25 -0.26 
150 – 200 548 650435 -0.11 -0.12 
200 – 250 685 575627 0.25 0.24 
250 < 8000 8539286 -0.02 -0.03 

Distance from  
river (m) 

< 40 596 762608 -0.03 -0.21 
40 – 80 939 740977 0.48 0.31 
80 – 120 1072 715380 0.66 0.49 
120 – 160 983 703128 0.59 0.42 
160 – 200 853 679854 0.47 0.29 
200 < 7487 8975304 -0.22 -0.39 

Land use Agriculture 7039 4170290  0.32 -0.31 
 Forest 3377 7031434 -0.02 -0.02 
 Built-up 1970 449  0 0 
 Grassland 232 1209944 0.54 0.54 
 Barren land 96 42260 1.71 1.71 
 Waterbody 0 113841 -0.16 -0.18 

Rainfall (mm) <1800 5956 1513045 1.88 1.99 
 1800-2000 1812 2844062 -0.60 -0.49 
 2000-2200 1185 2324665 -0.83 -0.72 
 2200-2400 821 2798047 -1.46 -1.35 
 >2400 2156 3097432 -0.50 -0.39 
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Figure 3. Landslides in each class of (a) Slope (b) Elevation (c) Aspect (d) Profile curvature (e) Plan curvature (f) 
Relief (g) Geology and (h) Distance from road 

 
The elevation was categorized into five classes as shown 
in Fig. 3b. Within these categories, the possibility of 
landslides occurring is found to be maximum in the 
elevation class of <1000m, followed by the range of 
1000-1500 m while is minimum in elevation exceeding 

2500 m (Table 3). According to Ghimire (2011), there is 
no significant relationship between the elevation and 
landslides alone, however, elevation is linked with other 
parameters like aspect, and slope shows a significant 
association for causing landslides. 
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The aspect map of this study area was derived from the 
DEM data and categorized into nine classes as shown in 
Fig.3c. Majority of landslides in the aspect class are likely 
to occur in west and south-facing slopes in this study 
area with positive weightage value. This is probably due 
to the prevailing direction of monsoon storms that enter 
through the southeast and slowly move towards the 
Northwest resulting in a lot of precipitation on the south 
and west-facing slopes similar to the study conducted by 
Kayastha et al. (2012). 
 
In this study, the profile and the plan curvature were 
used and classified into three classes, namely, concave, 
planar, and convex as shown in Fig 3d and 3e. Convex 
of profile curvature and concave of plan curvature and 
has the highest probability of occurring landslides in the 
study area. It is because concave curvatures effectively 
preserve water for a longer period favorable for 
landslides whereas external forces like weathering of 
rocks, pore water pressure, infiltration of rainwater, etc. 
in a convex slope lead to its failure. Convex curvature is 
more susceptible to landslide (Lee & Pradhan, 2007) 
while Regmi et al. (2014) concluded that concave 

curvature is more susceptible to landslide occurrence. 
Hence, the curvature is more responsible for triggering 
landslides. 
 
The relief factor of the landslide susceptibility was 
reclassified into < 50m, 50-70m, 70-100m, 100-120m, 
and >120 as shown in Fig. 3f. The probability of event 
occurrence is likely to happen in the relief class of 70-
100 m, 100-120 m and greater than 120m. It may be due 
to the disorderly built road construction activities under 
the relief class favorable to landslides.  
 
In this study, geological data was classified into 9 classes 
based on geological formations as shown in Fig. 3g. The 
Galyang formation is found to have positive weightage 
and contrast values, as tabulated in Table 3, indicating a 
higher probability of slope failure within this class.  This 
geological formation primarily comprises olive green, 
brown, and gray phyllite grey siliceous dolomites, grey 
slates, and phyllitic quartzites (Ojha, 2009; Robinson & 
DeCelles, 2014).  This composition contributes to an 
increased susceptibility to landslide due to its high rate 
of weathering and erosion.

  
 

 
 

Figure 4. Landslides in each class of (a) Distance from river (b) Landuse 

 
The distance from the road factor is categorized into 
<50m, 50-100m, <100-150m, 150-200m, 200-250m, and 
>250m as shown in Fig. 3h. The weightage value is 
calculated to be positive in the class very close to the 
road i.e.  < 50 m distance. This indicates the probability 
of landslide occurrence along the roadside is maximum 
because the road construction activities destabilize the 
slope by cutting down vegetation (Dahal, 2017). The 
weightage value decreases while going farther from the 
road having a lesser probability of event occurrence 
similar to the study conducted by (Regmi et al., 2014). 
  
The distance from the river was reclassified into six 
classes with 40m intervals: <40m, 40-80m, 80-120m, 
120-160m, 160-200m, and >200m (Fig. 4a). Negative 
weightage and contrast value is observed in the class very 
closer to the riverside which signifies the occurrence of 

the landslide is in decreasing way as the event occurred 
place is farther from the river. This suggests other factors 
than the distance from the river is responsible for 
landslide occurrence consistent with the study 
performed by (Getachew & Meten, 2021) in their study 
area.  
 
The land use map in this study was classified into six 
classes, namely, agricultural land, forest, built-up area, 
grassland, barren land, and water bodies (Fig. 4b). The 
possibility of the occurrence of landslides was found in 
grassland and barren land. The barren land and grassland 
lacking plant roots could not stabilize the soil and rock 
leading to the landslide failure. The study conducted by 
Kayastha (2012) found barren land as the most 
susceptible areas while Gerrad and Gardner (1999) 
found grassland as highly susceptible areas.
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Figure 5. Landslides in each class of rainfall   Figure 6. Landslide susceptibility map based on WoE model 

 
 
In this study, a negative correlation between the amount 
of precipitation and the landslides is found to be 
maximum in the class 2200-2400 mm. It may be due to 
the strength of materials on the slope like solid rocks 
which cannot be easily eroded by prolonged rainfall. 
However, high intensity of rainfall may make such areas 
susceptible to the event.  In addition, some uncertainties 
in the data provided by the Department of Hydrology 
and Meteorology (DHM) may have resulted in 
unexpected outcomes in this factor. The spatial 
distribution of landslides in different classes of rainfall is 
shown in Fig. 5.  
 
Landslide susceptible map 
The landslide-susceptible map is produced by using the 
WoE method based on the weighted value from the 
eleven causative factors and the training landslides. The 
LSI values for the WoE model were prepared by the 
summing Wmap of all the factors considered whose 
values range from 10 to -13. This range of values was 
categorized into five different susceptibility zones using 
the natural break classification method in ArcMap. The 
five susceptibility zones include very low, low, medium, 
high, and very high classes comprising 29%, 17%, 26%, 
17%, and 11% respectively as shown in Fig.6. In this 
study, the WoE model shows that there is greater 
significance of plan curvature, land use and land cover 
and distance from road in the occurrence of the 
landslide. Based on the landslide susceptible map 
prepared, many areas of Satyawati Rural Municipality 
(RM), Ruru RM, Chandrakot RM, and Chhatrakot RM 
including Musikot Municipality of Gulmi and Badigad 
RM of Baglung district are observed to be very high 
hazard.  
 
Model Validation 
The Receiver Operating Characteristics (ROC) graph 
with Area under Curve (AUC) value is widely used to 
evaluate the performance of the model used in landslide 
hazard and susceptibility analysis (Dahal et al., 2012; 
Wang et al., 2016; Nohani et al., 2019; Zhao & Chen, 

2020). In this study, the evaluation process involves the 
creation of the prediction rate curves from testing data. 
The AUC value of the predictive rate curves was used 
for the evaluation of the landslide susceptibility map 
which explains how well the model used can predict 
future or upcoming events. AUC values equal to or 
below 0.5 suggest ineffective prediction or no 
improvement, whereas values equal to or above 0.7 
indicate the excellent prediction of the model in landslide 
susceptibility (Devkota et al., 2013). The prediction rate 
curve in this study showed 0.804 AUC value which 
means the model had predictability of 80.4%, indicating 
very good performance of the model in landslide 
prediction in the study area (Fig. 7). The study conducted 
by Budha et al. (2016) found that there is 0.76 AUC in 
their model validation that means the model had 
predictability of 76% (good performance of the model 
in landslide prediction) in eastern hills of Rara lake 
western Nepal. 
 
The guideline of LDCRP with 14 different indicators is 
followed for vulnerability assessment. Scores are 
assigned to each indicator according to the criteria 
outlined in the guidelines during the data collection 
process. Based on the guideline the collected scores for 
each indicator are summed up to obtain the total score 
from which the vulnerability class is separated and 
tabulated in Tables 3 and 4. 
 
Most of the area in the study site was found to have 
medium vulnerability because of the improving 
economic status of the people as consistent with the 
research conducted by Glade (2003) in his study area. 
The only wards taken for assessing vulnerability under 
this study were classified into three different classes: 
highly vulnerable, medium vulnerable, and low 
vulnerability class represented by red, green, and blue 
colors respectively as shown in Fig. 8. These wards were 
chosen for the vulnerability assessment based upon the 
past landslide event.
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Figure 7. ROC graph to validate the model used  

 
 

Table 3. Local administration and their wards under study 

S.N. District Local Administration Ward Number No. of wards Scores 

1 Gulmi Satyawati RM 3, 4 and 6 3 39,36 and 28 
2 Gulmi Chandrakot RM 7 and 8 2 33 and 23 
3 Gulmi Musikot Municipality 2,3,5,6 and 8 5 30,31,38,35 and 34 
4 Baglung Badigad RM 4,5,7,8 and 9 5 34,34,31,31 and 30 
5 Baglung Dhorpatan Municipality 5,6,7,8 and 9 5 35,38,34,38 and 39 
    Total=20  

 
Table 4. Vulnerability class based on LDCRP guideline 

S.N. Vulnerability score Vulnerability Class 

1 < 24 Low 
2 24-38 Medium 
3 38-39 High 

 
 

 
Figure 8. Vulnerability map created following the LDCRP guideline 
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The Bobang of Baglung (Dhorpatan-9), and 
Thulolumpek (Satyawati-3) area of Gulmi is found to be 
highly vulnerable (Fig. 8). This is because the landslides 
have highly affected the indicators used in this research. 
Additionally, the lack of people’s willingness to shift to 
other parts leaving native areas impacted by landslides 
also increases the impact in the study area thereby the 
possibility of increasing the vulnerability. Moreover, 
analyzing and comparing the vulnerability obtained from 
the hazard mapping i.e. landslide mapping using GIS 
tool with the vulnerability extracted from the social 
method i.e. using LDCRP guideline is not convergent. 
For instance, most of the Satyawati RM is highly 
vulnerable from the susceptible map which differs from 
the vulnerable map prepared using LDCRP guidelines.  
This is due to the reason that landslide hazard mapping 
typically focuses on identifying areas that are susceptible 
to landslide based on causative factors like slope, 
geology, land use, distance from the road, rainfall, etc., 
while social vulnerability like LDCRP reveals the areas 
or wards that are proximal to the landslide whose ability 
to prepare for, respond to and recover from the hazards 
are impacted by the factors like demographic 
(population including disabled persons, children, senior 
citizens), socio-economic (low income and 
unemployment, economic loss, agricultural loss), lower 
environmental resources including knowledge, skill, 
capacity and technological factors not accounted by the 
hazard mapping. This illustrates that the degree of 
vulnerability of any area not only entirely depends upon 
their exposure to the hazard but also the socio-
economic, environmental, demographic, and local 
knowledge. Thus, relying on only one approach cannot 
provide complete accessibility of the vulnerability. 
Integrating both methods allows for a complete 
vulnerability assessment addressing both the physical 
and socio-economic dimensions.  
 
CONCLUSIONS 
For the preparation of the landslide susceptible map, 
satellite imageries of the landslide from the Google Earth 
platform were used in the inventory process. Altogether 
339 landslides were identified in the Badigad watershed 
which was divided into training data (80%) and testing 
data (20%). The testing data for this study was used for 
creating a prediction rate curve via ROC graph and 
determining the Area Under Curve value to validate the 
model. Weight of Evidence model (WoE) was used for 
the landslide susceptibility mapping. Based on the 
literature review, landslide-causing factors like slope, 
elevation, aspect, profile and plan curvature, relief, 
geological formation, distance from the road, distance 
from the river, land use, and rainfall are considered for 
landslide susceptibility mapping. The landslide 
susceptible map of the study area shows that 11% to 
29% of the study area has very high to very low landslide 
susceptibility, whereas 26% has a medium, and 17 % has 
low landslide susceptibility. Satyawati Rural municipality 
of Gulmi is found to occupy the maximum landslide 
susceptible zones in this research. The validation of the 
model was done by using AUC, which states the model’s 
prediction accuracy to be 70%. Vulnerability assessment 

of the Badigad watershed includes 5 municipalities and 
20 wards showed that 1 of the wards of Chandrakot RM 
within the watershed is found to be at low vulnerability, 
17 wards lying within the watershed were found under 
medium vulnerability to the landslide, and the other 2 
wards were found to be highly vulnerable. The result 
obtained by analyzing and comparing the vulnerability 
from the physical method tool with the vulnerability 
extracted from the social method is not convergent.  
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