Comparative Antioxidant Activity of The Synthesized (E)-Chalcones

Authors

  • Pradeep Thapa-Magar Laboratory of Catalysis and Frontier Molecules, Faculty of Science, Nepal Academy of Science and Technology (NAST), Khumaltar, Lalitpur, Nepal; Department of Chemistry, Tri-Chandra Multiple Campus, Tribhuvan University, Ghantaghar, Kathmandu, Nepal
  • Najma Bajracharya Laboratory of Catalysis and Frontier Molecules, Faculty of Science, Nepal Academy of Science and Technology (NAST), Khumaltar, Lalitpur, Nepal https://orcid.org/0009-0005-0882-0083
  • Ganga Ram Upadhayay Laboratory of Catalysis and Frontier Molecules, Faculty of Science, Nepal Academy of Science and Technology (NAST), Khumaltar, Lalitpur, Nepal
  • Gan B. Bajracharya Laboratory of Catalysis and Frontier Molecules, Faculty of Science, Nepal Academy of Science and Technology (NAST), Khumaltar, Lalitpur, Nepal https://orcid.org/0000-0002-3061-6557

DOI:

https://doi.org/10.3126/jist.v29i2.64789

Keywords:

Anticancer, 1,3-Diaryl-2-propene-1-one, Crossed-Aldol condensation, Flavonoid, IC50, Oxidative stress

Abstract

Depletion of dietary antioxidants has been related to rising of oxidative stress that causes chronic and degenerative diseases such as cancers, Alzheimer and aging. Therefore, finding of a readily available antioxidant is essential to offer potential chemotherapeutics. In this study, (E)-1,3-diphenylprop-2-en-1-one (1), (E)-1-(3-nitrophenyl)-3-phenylprop-2-en-1-one (2), (E)-3-(furan-2-yl)-1-(3-nitropheyl)prop-2-en-1-one (3), (E)-1-(2-hydroxyphenyl)-3-phenylprop-2-en-1-one (4), (E)-3-(furan-2-yl)-1-(2-hydroxyphenyl)prop-2-en-1-one (5), (E)-1-(2-hydroxyphenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (6) and (E)-3-(4-(dimethylamino)phenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one (7), that readily obtained through the Crossed-Aldol condensation between arylmethyl ketones and aromatic aldehydes, were evaluated for the antioxidant activity by using the 2,2-Diphenyl-1-picrylhydrazyl (DPPH), 2,2′-Azinobis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and Nitric oxide (NO) assays. Among the chalcones investigated, compound 7 has displayed antioxidant activity in the ABTS assay with IC50 value of 464 μM (calcd. 124 µg/mL) indicating a para-dimethylamino substitution in the B ring of chalcone enhances reduction of cationic free radical ABTS•+.

Downloads

Download data is not yet available.
Abstract
10
PDF
5

References

Anto, R.J., Sukumaran, K., Kuttan, G., Rao, M.N.A., Subbaraju, V., & Kuttan, R. (1995). Anticancer and antioxidant activity of synthetic chalcones and related compounds. Cancer Letters, 97(1), 33‒37. https://doi.org/10.1016/0304-3835(95)03945-S

Bajracharya, G.B., Paudel, M., K. C., R., & Shyaula, S.L. (2020). Structure-activity relationship and MM2 energy minimized conformational analysis of quercetin and its derivatives in the DPPH• radical scavenging capacity. Bibechana, 17, 20‒27. https://doi.org/10.3126/bibechana.v17i0.25208

Barclay, L.R.C., Edwards, C.E., & Vinqvist, M.R. (1999). Media effects on antioxidant activities of phenols and catechols. Journal of the American Chemical Society, 121(26), 6226‒6231. https://doi.org/10.1021/ja990878u

Belsare, D.P., Pal, S.C., Kazi, A.A., Kankate, R.S., & Vanjari, S.S. (2010). Evaluation of antioxidant activity of chalcones and flavonoids. International Journal of ChemTech Research, 2(2), 1080‒1089.

Biskup, I., Golonka, I., Gamian, A., & Sroka, Z. (2013). Antioxidant activity of selected phenols estimated by ABTS and FRAP methods. Advances in Hygiene and Experimental Medicine, 67, 958‒963. https://doi.org/10.5604/17322693.1066062

Brand-Williams, W., Cuvelier, M., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25‒30. https://doi.org/10.1016/s0023-6438(95)80008-5

Díaz-Rubio, L., Hernández-Martínez, R., Estolano-Cobián, A., Chávez-Velasco, D., Salazar-Aranda, R., de Torres, N.W., Rivero, I.A., García-González, V., Ramos, M.A., & Córdova-Guerrero, I. (2019). Synthesis, biological evaluation and docking studies of chalcone and flavone analogs as antioxidants and acetylcholinesterase inhibitors. Applied Sciences, 9(3), 410. https://doi.org/10.3390/app9030410

Gaonkar, S.L., & Vignesh, U.N. (2017). Synthesis and pharmacological properties of chalcones: a review. Research on Chemical Intermediates, 43(11), 6043‒6077. https://doi.org/10.1007/s11164-017-2977-5

Ghasemzadeh, A., Jaafar, H.Z.E., Juraimi, A.S., & Tayebi-Meigooni, A. (2015). Comparative evaluation of different extraction techniques and solvents for the assay of phytochemicals and antioxidant activity of Hashemi rice bran. Molecules, 20(6), 10822‒10838. https://doi.org/10.3390/molecules200610822

Granato, D., Shahidi, F., Wrolstad, R., Kilmartin, P., Melton, L.D., Hidalgo, F.J., Miyashita, K., van Camp, J., Alasalvar, C., Ismail, A.B., Elmore, S., Birch, G.G., Charalampopoulos, D., Astley, S. B., Pegg, R., Zhou, P., & Finglas, P. (2018). Antioxidant activity, total phenolics and flavonoids contents: should we ban in vitro screening methods? Food Chemistry, 264, 471‒475. https://doi.org/10.1016/j.foodchem.2018.04.012

Griess, P. (1864). XVIII. On a new series of bodies in which nitrogen substituted for hydrogen. Philosophical Transactions, 154, 667‒731. https://doi.org/10.1098/rstl.1864.0018

Grossi, L., & D’Angelo, S. (2005). Sodium nitroprusside: mechanism of NO release mediated by sulfhydryl-containing molecules. Journal of Medicinal Chemistry, 48(7), 2622‒2626. https://doi.org/10.1021/jm049857n

Gupta, R.K., Thakuri, G.M.S., Bajracharya, G.B., & Jha, R.N. (2021). Synthesis of antioxidative anthraquinones as potential anticancer agents. Bibechana, 18(2), 143‒153. https://doi.org/10.3126/bibechana.v18i2.31234

Hetrick, E.M., & Schoenfisch, M.H. (2009). Analytical chemistry of nitric oxide. Annual Review of Analytical Chemistry, 2, 409‒433. doi: 10.1146/annurev-anchem-060908-155146

Huang, D., Ou, B., & Prior, R.L. (2005). The chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry, 53(6), 1841‒1856. https://doi.org/10.1021/jf030723c

Jasim, H.A., Nahar, L., Jasim, M.A., Moore, S.A., Ritchie, K.J., & Sarker, S.D. (2021). Chalcones: synthetic chemistry follows where nature leads. Biomolecules, 11(8), 1203. https://doi.org/10.3390/biom11081203

Kohler, E.P., & Chadwell H.M. (1922). Benzalacetophenone [chalcone]. Organic Syntheses, 2, 1. https://10.15227/orgsyn.002.0001

Kumari, R., Varghese, A., George, L., & Sudhakar Y.N. (2017). Effect of solvent polarity on the photophysical properties of chalcone derivatives. RSC Advances, 7(39), 24204‒24214. https://doi.org/10.1039/C7RA01705G

Lalhminghlui, K., & Jagetia, G.C. (2018). Evaluation of the free-radical scavenging and antioxidant activities of Chilauni, Schima wallichii Korth in vitro. Future Science OA, 4(2), FSO272. https://doi.org/10.4155/fsoa-2017-0086

Lee, K.J., Oh, Y.C., Cho, W.K., & Ma, J.Y. (2015). Antioxidant and anti-inflammatory activity determination of one hundred kinds of pure chemical compounds using offline and online screening HPLC assay. Evidence-Based Complementary and Alternative Medicine, 2015, 165457. https://doi.org/10.1155/2015/165457

Mai, J., Hoxha, E., Morton, C.E., Muller, B.M., & Adler, M.J. (2013). Towards a dynamic covalent molecular switch: substituent effects in chalcone/flavanone isomerism. Organic and Biomolecular Chemistry, 11(21), 3421‒3423. https://doi.org/10.1039/C3OB40467F

Magalhães, L.M., Segundo, M.A., Reis, S., & Lima, J.L.F.C. (2008). Methodological aspects about in vitro evaluation of antioxidant properties. Analytica Chimica Acta, 613(1), 1‒19. https://doi.org/10.1016/j.aca.2008.02.047

Miller, N.J., Rice-Evans, C., Davies, M.J., Gopinathan, V., & Milner, A. (1993). A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clinical Science, 84(4), 407‒412. https://doi.org/10.1042/cs0840407

Murti, Y., Goswami, A., & Mishra, P. (2013). Synthesis and antioxidant activity of some chalcones and flavanoids. International Journal of PharmTech Research, 5(2), 811‒818.

Narsinghani, T., Sharma, M.C., & Bhargav, S. (2013). Synthesis, docking studies and antioxidant activity of some chalcone and aurone derivatives. Medicinal Chemistry Research, 22(9), 4059‒4068, https://doi.org/10.1007/s00044-012-0413-3

Nemkul, C.M., Bajracharya, G.B., & Shrestha, I. (2022). Assessment of antimicrobial and antioxidant activities of four ethnomedicinal plants used by Magars in Nawalpur district, Nepal. Journal of Plant Resources, 20(2), 146‒155. https://doi.org/10.3126/bdpr.v20i2.57030

Nemkul, C.M., Bajracharya, G.B., Maeda, H., & Shrestha, I. (2021). Ethnomedicinal knowledge verification for the antidiarrheal and antioxidant effects of Rhus chinensis Mill. fruits with identification of thirty constituents. Pharmacognosy Journal, 13(1), 37‒43. https://10.5530/pj.2021.13.6

Ratnavathi, C.V., & Komala, V.V. (2016). Sorghum grain quality. In Ratnavathi, C.V., Patil, J.V., & Chavan, U.D. (Eds.), Sorghum Biochemistry: An Industrial Perspective (pp. 1-61), Academic Press. https://doi.org/10.1016/B978-0-12-803157-5.00001-0

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231‒1237. https://doi.org/10.1016/S0891-5849(98)00315-3

Rubio, C.P., Hernández-Ruiz, J., Martinez-Subiela, S., Tvarijonaviciute, A., & Ceron, J.J. (2016). Spectrophotometric assays for total antioxidant capacity (TAC) in dog serum: an update. BMC Veterinary Research, 12, 166. https://doi.org/10.1186/s12917-016-0792-7

Sadeer, N.B., Montesano, D., Albrizio, S., Zengin, G., & Mahomoodally, M. F. (2020). The versatility of antioxidant assays in food science and safety - chemistry, applications, strengths, and limitations. Antioxidants, 9(8), 709. https://doi.org/10.3390/antiox9080709

Schaich, K.M., Tian, X., & Xie, J. (2015). Hurdles and pitfalls in measuring antioxidant efficacy: a critical evaluation of ABTS, DPPH, and ORAC assays. Journal of Functional Foods, 14, 111‒125. https://doi.org/10.1016/j.jff.2015.01.043

Singh, A.K., Saxena, G., Dixit, S., Hamidullah, Singh, S.K., Singh, S.K., Arshad, M., & Konwar, R. (2016). Synthesis, characterization and biological activities of some Ru(II) complexes with substituted chalcones and their applications as chemotherapeutics against breast cancer. Journal of Molecular Structure, 1111, 90‒99. https://doi.org/10.1016/j.molstruc.2016.01.070

Singh, P., Anand, A., & Kumar, V. (2014). Recent developments in biological activities of chalcones: a mini review. European Journal of Medicinal Chemistry, 85, 758‒777. https://doi.org/10.1016/j.ejmech.2014.08.033

Sivakumar, P.M., Prabhakar, P.K., & Doble, M. (2011). Synthesis, antioxidant evaluation, and quantitative structure-activity relationship studies of chalcones. Medicinal Chemistry Research, 20, 482‒492. https://doi.org/10.1007/s00044-010-9342-1

Sreedevi, P., & Vijayalakshmi, K. (2018). Determination of antioxidant capacity and gallic acid content in ethanolic extract of Punica granatum L. leaf, Asian Journal of Pharmaceutical and Clinical Research, 11(4), 319‒323. https://doi.org/10.22159/ajpcr.2018.v11i4.24378

Thapa, H.B., Bajracharya, N., Thapa, S., & Bajracharya, G.B. (2022). Synthesis, structure-activity relationship and antibacterial activity of some simple (E)-chalcones. Asian Journal of Chemistry, 34(11), 2935‒2641. https://doi.org/10.14233/ajchem.2022.23930

Thapa, S., Thakuri, G.M.S., K. C., P., Shyaula, S.L., & Bajracharya, G.B. (2016). Chalcones bearing hydroxyl substituent in the cinnamyl ring possess antioxidative potentiality. Journal of Nepal Chemical Society, 35, 152‒160.

Thirunavukkarasu, G.K., Nirmal, G.R., Lee, H., Lee, M., Park, I., & Lee, J.Y. (2019). On-demand generation of heat and free radicals for dual cancer therapy using thermal initiator- and gold nanorod-embedded PLGA nanocomplexes. Journal of Industrial and Engineering Chemistry, 69, 405‒413. https://doi.org/10.1016/j.jiec.2018.09.051

Thomas, D.D. (2015). Breathing new life into nitric oxide signaling: a brief overview of the interplay between oxygen and nitric oxide. Redox Biology, 5, 225‒233. https://doi.org/10.1016/j.redox.2015.05.002

Tsikas, D. (2007). Analysis of nitrite and nitrate in biological fluids by assays based on the Griess reaction: appraisal of the Griess reaction in the L-arginine/nitric oxide area of research. Journal of Chromatography B, 851(1-2), 51‒70. https://doi.org/10.1016/j.jchromb.2006.07.054

Zhao, Y., & Song, Q. (2016). Copper-catalyzed tandem A3-coupling-isomerization-hydrolysis reactions of aldehydes and terminal alkynes leading to chalcones. Organic Chemistry Frontiers, 3(3), 294‒297. https://doi.org/10.1039/C5QO00282F

Downloads

Published

2024-10-26

How to Cite

Thapa-Magar, P., Bajracharya, N., Upadhayay, G. R., & Bajracharya, G. B. (2024). Comparative Antioxidant Activity of The Synthesized (E)-Chalcones. Journal of Institute of Science and Technology, 29(2), 29–36. https://doi.org/10.3126/jist.v29i2.64789

Issue

Section

Research Articles