In-situ Assessment of Natural Radioactivity Concentrations and Hazard Indicators in the Mining Area of Lalitpur, Nepal

Authors

  • Devendra Raj Upadhyay Central Department of Physics, Institute of Science and Technology, Tribhuvan University, Kirtipur, Nepal; Department of Physics, Amrit Campus, Tribhuvan University, Thamel, Nepal https://orcid.org/0000-0001-6558-6880
  • Pramod Adhikari Department of Physics, Patan Multiple Campus, Tribhuvan University, Lalitpur, Nepal
  • Bal Vikram Khatri Central Department of Physics, Institute of Science and Technology, Tribhuvan University, Kirtipur, Nepal; Department of Physics, Amrit Campus, Tribhuvan University, Thamel, Nepal
  • Suffian Mohamad Tajudin Faculty of Health Sciences, Sultan Zainal Abidin University, Terengganu, Malaysia https://orcid.org/0000-0002-7698-2659
  • Himali Kalakhety Department of Physics and Geosciences, Hill Hall 211, MSC 175 Texas A&M University-Kingsville, Kingsville, Texas, USA
  • Raju Khanal Central Department of Physics, Institute of Science and Technology, Tribhuvan University, Kathmandu, Nepal https://orcid.org/0000-0001-8450-4692

DOI:

https://doi.org/10.3126/jist.v29i1.60793

Keywords:

Hazards, in situ spectroscoy, mining area, NORMs, statistics

Abstract

Urban construction materials predominantly originate from mining sites, raising concerns about the associated natural radioactivity and its potential health impacts. This work focuses on assessing the distribution of three natural radionuclides and associated radiological indicators in the South Lalitpur mining area in Nepal. A portable gamma spectrometer information system (PGIS-2) was employed for in-situ measurement of natural radionuclide concentrations. The mean activity concentrations of 238U, 232Th, and 40K were found to be 85.82 ± 40.63 Bq kg1, 104.87 ± 30.42 Bq kg1, and 1257.47 ± 304.36 Bq kg1, respectively. Radiological hazard parameters were computed and compared with global averages, revealing a radium equivalent activity (Raeq) mean of 332.62 ± 63.08 Bq kg1, slightly below the global average. The average absorbed gamma radiation dose rate in the air was 155.94 ± 29.09 nSv hr-1, over twice the world average. Indoor and outdoor annual effective dose rates, excess lifetime cancer risks, and annual gonadal dose equivalents were slightly higher than world averages. Additional radiological indices were computed, indicating that most estimated parameters exceeded global averages. Multivariate statistical analysis was applied to the dataset. The study suggests that in-situ measurements of these radiological parameters in mining areas are essential, as most mean values were above global averages, emphasizing the need for environmental safety and awareness in mining regions.

Downloads

Download data is not yet available.
Abstract
203
PDF
211

References

Ainsworth, E.A., & Gillespie, K.M. (2007). Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nature Protocols, 2(4), 875-877. https://doi.org/10.1038/nprot.2007.102

Akhter, F., Hashim, A., Khan, M.S., Ahmad, S., Iqbal, D., Srivastava, A.K., & Siddiqui, M.H. (2013). Antioxidant, α-amylase inhibitory, and oxidative DNA damage protective property of Boerhaavia diffusa (Linn.) root. South African Journal of Botany, 88, 265-272. https://doi.org/10.1016/j.sajb.2013.06.024

Apu, A.S., Liza, M.S., Jamaluddin, A.T.M., Howlader, Md. A., Saha, R.K., Rizwan, F., & Nasrin, N. (2012). Phytochemical screening and in vitro bioactivities of the extracts of aerial part of Boerhavia diffusa Linn. Asian Pacific Journal of Tropical Biomedicine, 2(9), 673-678. https://doi.org/10.1016/S2221-1691(12)60208-1

Ardalani, H., Hejazi Amiri, F., Hadipanah, A., & Kongstad, K.T. (2021). Potential antidiabetic phytochemicals in plant roots: A review of in vivo studies. Journal of Diabetes & Metabolic Disorders, 20(2), 1837-1854. https://doi.org/10.1007/s40200-021-00853-9

Bag, G.C., Devi, P.G., & Bhaigyabati, T. (2015). Assessment of total flavonoid content and antioxidant activity of methanolic rhizome extract of three Hedychium species of Manipur Valley. International Journal of Pharmaceutical Sciences Review and Research, 28, 154-159.

Balkrishna, A., Sakat, S.S., Ranjan, R., Joshi, K., Shukla, S., Joshi, K., & Varshney, A. (2020). Polyherbal medicine Divya Sarva-Kalp-Kwath ameliorates persistent carbon tetrachloride induced biochemical and pathological liver impairments in Wistar rats and in HepG2 cells. Frontiers in Pharmacology, 11, 288. https://doi.org/10.3389/fphar.2020.00288

Bhattarai, K., Dhakal, D., Pandey, I., Subba, B., & Sharma, K. R. (2023). Phytochemistry, biological activities, and chemical profiling of Berberis asiatica. Bibechana, 20(3), 236-247. https://doi.org/10.3126/bibechana.v20i3.57711

Borrelli, F., Milic, N., Ascione, V., Capasso, R., Izzo, A.A., Capasso, F., Taglialatela-Scafati, O. (2005). Isolation of new rotenoids from Boerhavia diffusa and evaluation of their effect on intestinal motility. Planta Medica, 71(10), 928-932. https://doi.org/10.1055/s-2005-871282

Chaudhary, G., & Dantu, P. (2011). Morphological, phytochemical, and pharmacological, studies on Boerhavia diffusa L. Journal of Medicinal Plants Research, 5(11), 2125-2130.

Chinnappan, B., Sivamani, P., & Bai, V. (2012). Evaluation of phytochemical and antimicrobial activities of Boerhavia diffusa. Journal of Pharmacy Research, 4, 434-436.

Chiou, S.-Y., Sung, J.-M., Huang, P.-W., & Lin, S.-D. (2017). Antioxidant, antidiabetic, and antihypertensive properties of Echinacea purpurea flower extract and caffeic acid derivatives using in vitro models. Journal of Medicinal Food, 20(2), 171-179. https://doi.org/10.1089/jmf.2016.3790

Fouotsa, H., Lannang, A.M., Mbazoa, C.D., Rasheed, S., Marasini, B.P., Ali, Z., & Sewald, N. (2012). Xanthones inhibitors of α-glucosidase and glycation from Garcinia nobilis. Phytochemistry Letters, 5(2), 236-239. https://doi.org/10.1016/j.phytol.2012.01.002

Diabetes Atlas. (2021). IDF Diabetes Atlas. Retrieved April 17, 2023, from https://diabetesatlas.org/atlas/tenth-edition/

Jain, G.K., & Khanna, N.M. (1989). Punarnavoside: A new antifibrinolytic agent from Boerhaavia diffusa Linn. ChemInform, 20(34), 353. https://doi.org/10.1002/chin.198934353

Kalita, D., Holm, D.G., LaBarbera, D.V., Petrash, J.M., & Jayanty, S.S. (2018). Inhibition of α-glucosidase, α-amylase, and aldose reductase by potato polyphenolic compounds. PLOS ONE, 13(1), e0191025. https://doi.org/10.1371/journal.pone.0191025

Kaur, H. (2019). Boerhaavia diffusa: Bioactive compounds and pharmacological activities. Biomedical and Pharmacology Journal, 12(4), 1675-1682. https://doi.org/10.13005/bpj/1797

Kaviya, M., Balasubramanian, B., Bharathi, K., Malaisamy, A., Al-Dhabi, N.A., Mariadhas, V.A., Anand, A.V., & Liu, W. (2022). Evaluation of nutritional substances and investigation of antioxidant and antimicrobial potentials of Boerhavia diffusa with in Silico Molecular Docking. Molecules, 27(4), 1280. https://doi.org/10.3390/molecules27041280

Kumar, S., Narwal, S., Kumar, V., & Prakash, O. (2011). α-glucosidase inhibitors from plants: A natural approach to treat diabetes. Pharmacognosy Reviews, 5(9), 19-29. https://doi.org/10.4103/0973-7847.79096

Lami, N., Kadota, S., Kikuchi, T., & Momose, Y. (1991). Constituents of the roots of Boerhaavia diffusa L. III. Identification of Ca2+ channel antagonistic compound from the methanol extract. Chemical & Pharmaceutical Bulletin, 39(6), 1551-1555. https://doi.org/10.1248/cpb.39.1551

Lankatillake, C., Huynh, T., & Dias, D.A. (2019). Understanding glycaemic control and current approaches for screening anti-diabetic natural products from evidence-based medicinal plants. Plant Methods, 15(1), 105. https://doi.org/10.1186/s13007-019-0487-8

Mishra, S., Aeri, V., Gaur, P.K., & Jachak, S.M. (2014). Phytochemical, therapeutic, and ethnopharmacological overview for a traditionally important herb: Boerhavia diffusa Linn. BioMed Research International, 2014, 808302. https://doi.org/10.1155/2014/808302

Nayak, P., & Thirunavoukkarasu, M. (2016). A review of the plant Boerhaavia diffusa: Its chemistry, pharmacology and therapeutical potential. The Journal of Phytopharmacology, 5(2), 83-92. https://doi.org/10.31254/phyto.2016.5208

Nowicka, P., Wojdyło, A., & Samoticha, J. (2016). Evaluation of phytochemicals, antioxidant capacity, and antidiabetic activity of novel smoothies from selected Prunus fruits. Journal of Functional Foods, 25, 397-407. https://doi.org/10.1016/j.jff.2016.06.024

Ojewole, J.A.O., & Adesina, S.K. (1985). Isolation, identification, and some cardiovascular actions of a purine nucleoside from the roots of Boerhavia diffusa. Fitoterapia, 56, 31-36.

Olukoya, D.K., Idika, N., & Odugbemi, T. (1993). Antibacterial activity of some medicinal plants from Nigeria. Journal of Ethnopharmacology, 39(1), 69-72. https://doi.org/10.1016/0378-8741(93)90051-6

Pari, L., & Amarnath Satheesh, M. (2004). Antidiabetic activity of Boerhaavia diffusa L.: Effect on hepatic key enzymes in experimental diabetes. Journal of Ethnopharmacology, 91(1), 109-113. https://doi.org/10.1016/j.jep.2003.12.013

National Center for Biotechnology Information (2023). PubChem compound summary for CID 75203510, 3,9,10-trimethoxy-13-methyl-5,6-dihydroisoquinolino[2,1-b]isoquinolin-7-ium-2-olate. Retrieved December 18, 2023 from https://pubchem.ncbi.nlm.nih.gov/ compound/75203510.

National Center for Biotechnology Information (2023). PubChem compound summary for CID 5280537, N-Trans-feruloyltramine. Retrieved December 18, 2023 from https://pubchem.ncbi.nlm.nih.gov/compound/N-Trans-feruloyltramine.

National Center for Biotechnology Information (2023). PubChem compound summary for CID 52916229, PubChem. (2023). 11,12-Dihydro-2,3-(methylenedioxy)-7,8 dimethox ybenzo [c]phe nanthridine. Retrieved May 20, 2023, from https://pubchem.ncbi.nlm.nih.gov/compou nd/52916229

National Center for Biotechnology Information (2023). PubChem Compound Summary for CID 134313, n-Feruloyl-3-methoxytyramine. Retrieved December 18, 2023 from https://pubchem.ncbi.nlm.nih.gov/compound/n-Feruloyl-3-methoxytyramine.

Sasidharan, S., Chen, Y., Saravanan, D., Sundaram, K.M., & Yoga Latha, L. (2010). Extraction, isolation, and characterization of bioactive compounds from plants extracts. African Journal of Traditional, Complementary, and Alternative Medicines, 8(1), 1-10. https://doi.org/10.4314/ajtcam.v8i1.60483

Sathiyaseelan, A., Park, S., Saravanakumar, K., Mariadoss, A.V.A., & Wang, M.H. (2021). Evaluation of phytochemicals, antioxidants, and antidiabetic efficacy of various solvent fractions of Gynura procumbens (Lour.) Merr. Process Biochemistry, 111, 51-62. https://doi.org/10.1016/j.procbio.2021.08.028

Senger, M.R., Gomes, L. da C.A., Ferreira, S.B., Kaiser, C.R., Ferreira, V.F., & Silva, F.P. (2012). Kinetics studies on the inhibition mechanism of pancreatic α-amylase by glycoconjugated 1H-1,2,3-triazoles: A new class of inhibitors with hypoglycemiant activity. Chembiochem: A European Journal of Chemical Biology, 13(11), 1584-1593. https://doi.org/10.1002/cbic.201200272

Sharma, K.R., & Adhikari, S. (2023). Phytochemical analysis and biological activities of Artemisia vulgaris grown in different altitudes of Nepal. International Journal of Food Properties, 26(1), 414-427. https://doi.org/10.1080/10942912.2023.2166954

Sharma, P., Bhardwaj, R., Yadav, A., & Sharma, R.A. (2014). Antioxidant properties of methanolic extracts of Boerhavia diffusa. Research Journal of Phytochemistry, 8(3), 119-126. https://doi.org/10.3923/rjphyto.2014.119.126

Sirou, M., Ibrahima, A., Attakpa, E., Gbèssohélè, B., Amoussa, A.M., Lagnika, L., Baba-Moussa, L. (2018). Antioxidant and free radical scavenging activity of various extracts of Boerhavia diffusa Linn. (Nictaginaceae). The Pharmaceutical and Chemical Journal, 5(2), 62-71

Sofiane, I., Seridi, R., Miguel, C., & Nuria, C. (2017). Phytochemical composition and evaluation of the antioxidant activity of the ethanolic extract of Calendula suffruticosa subsp. Suffruticosa Vahl. Pharmacognosy Journal, 10, 64-70. https://doi.org/10.5530/pj.2018.1.13

Umamaheswari, A., Nuni, A., & Shreevidya, R. (2010). Evaluation of antibacterial activity of Boerhaavia diffusa L. leaves. International Journal of Green Pharmacy (IJGP), 4(2), 75-78. https://doi.org/10.4103/0973-8258.63879

Yadav, M., Chatterji, S., Gupta, S.K., & Watal, G. (2014). Preliminary phytochemical screening of six medicinal plants used in traditional medicine. International Journal of Pharmacy and Pharmaceutical Sciences, 6(5), 539-542.

Downloads

Published

2024-07-12

How to Cite

Upadhyay, D. R., Adhikari, P., Khatri, B. V., Tajudin, S. M., Kalakhety, H., & Khanal, R. (2024). In-situ Assessment of Natural Radioactivity Concentrations and Hazard Indicators in the Mining Area of Lalitpur, Nepal. Journal of Institute of Science and Technology, 29(1), 1–11. https://doi.org/10.3126/jist.v29i1.60793

Issue

Section

Research Articles