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ABSTRACT 
In this article, we have suggested the three-parameter half-Cauchy Chen distribution which has been derived by 
compounding a continuous Chen distribution with the half-Cauchy family of distribution. The hazard rate function 
(HRF), quantile function, reversed hazard rate function, survival function,  cumulative distribution function (CDF), 
probability density function (PDF), kurtosis, and skewness of the suggested distribution are some of its statistical 
properties and characteristics that are explored. Utilizing the methods of LSE, CVM, and MLE, the parameters of the 
new distribution are computed. All the calculations are performed with the aid of R programming software. To assess 
the application of the new distribution, two real data sets are analyzed and performed the goodness-of-fit. It is found 
that the half-Cauchy Chen distribution outperformed a few other existing distributions. We hope that this distribution 
will contribute to the field of real data analysis. 
 
Keywords: Chen distribution, half-Cauchy distribution, hazard function, MLE 
 
INTRODUCTION  
Last few decades several classical probability models have 
been used to model the real datasets related to finance, 
engineering, medicine, geology, climatology, biology, 
hydrology, reliability, ecology, risk analysis, and life 
testing, etc. do not provide a good fit. Therefore, it would 
seem necessary to expand the existing distributions in 
order to address the problems in these areas. By 
performing some change or inserting one or more 
parameters to the baseline model we can develop more 
flexible distributions which can provide a better fit as 
compared to existing classical models. 
 
In this study we have considered the Chen distribution as 
parent distribution which was defined by (Chen, 2000) 
having increasing failure rate (IFR) function or bathtub 
shaped. The Chen distribution's cumulative distribution 
function (CDF) is 

     ( ; , ) 1 exp (1 ) ;  0,  , 0 


    = − −  xG x e x   (1) 

 
And the corresponding probability density function 
(PDF) is          

  1( ; , ) exp (1 )
    −= −x xg x x e e                  (2)                                      

 
Introducing a more adaptable model that can show the 
many varied shapes of the density and hazard functions 
inspired the modification of the Chen distribution. The 
Bayesian analysis of the Chen model was introduced by 
(Srivastava & Kumar, 2011).  Bhatti et al. (2019) have 
defined the extended Chen (EC) distribution as derived 

from the nexus between the gamma and exponential 
variable. The Weibull–Chen (WC) distribution has been 
defined by Tarvirdizade and Ahmadpour (2019) having 
increasing, decreasing or bathtub-shaped hazard rate 
function. Joshi and Kumar (2020) have developed the 
Lindley-Chen distribution. Also, another extension of 
Chen distribution was introduced by Joshi and Kumar 
(2021a) called Logistic Chen distribution. The Poisson 
Chen distribution has been defined by (Joshi & Kumar, 
2021b). In this study, we have taken into consideration 
the half-Cauchy distribution that results from the Cauchy 
distribution by folding the curve on the origin so that 
only positive values may be seen. As an alternative to 
modeling spreading distances, Shaw (1995) employed the 
half-Cauchy distribution with a strong tail since it can 
predict more frequent long-distance scattering events. In 
addition, the half-Cauchy model is also used by (Paradis et 
al., 2002) to model ringing data on tits having two species 
in Ireland and Britain. If a non-negative random variable 
X follows the half-Cauchy distribution, then its 
cumulative distribution function can be written as

( ) 12
; tan ,   0, 0.  

 

−  
=   

 

x
G x x                  (3) 

and the probability density function (PDF) corresponding 

to (3) is, ( )
2 2

2
; ,   0, 0. 


 

 

 
=   

+ 
g x x

x
     (4) 

 
Last some decades many researchers have been used the 
half-Cauchy distribution as a parent distribution. The 
modification of the half-Cauchy distribution was 
introduced by (Cordeiro & Lemonte, 2011) called the 
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beta-half-Cauchy distribution, Jacob and Jayakumar 
(2012) has presented the modification of half-Cauchy 
distribution applying Marshall-Olkin transformation  and 
studied the autoregressive process of first order and 
Polson and Scott (2012) have been used the half-Cauchy 
distribution as prior for a universal scale parameter for 
Bayesian analysis. The Kumaraswamy-half-Cauchy 
distribution is a further development of the half-Cauchy 
model that was introduced by (Ghosh, 2014).The gamma 
half-Cauchy model has introduced by (Alzaatreh et al., 
2016). Cordeiro et al. (2017) has developed the family of 
distribution using half-Cauchy distribution as generalized 
odd half-Cauchy family of distribution. Chaudhary and 
Kumar (2022) have developed three parameter half-
Cauchy modified exponential distribution which has been 
derived by combing modified exponential distribution 
with half -Cauchy family of distribution. Chaudhary et al., 
(2022) have also presented half-Cauchy extended 
exponential distribution which has been derived by 
compounding extended exponential distribution with half 
-Cauchy family of distribution.  
 
Therefore, utilizing the half-Cauchy family of distribution, 
we are interested in creating new distributions. Zografos 
and Balakrishnan (2009) created the generating family of 
distribution, and its CDF can be derived as 

( ) ( )
( )ln 1

0

 

− −  

= 
G x

F x r t dt ,      (5) 

Here, ( )G x  stands for the CDF of any baseline 

distribution and ( )r t  stands for the PDF of any 

distribution. Using ( )r t  as the PDF of the half-Cauchy 

distribution defined in formula (4), the family of half-
Cauchy distribution whose CDF may be defined as 

( )
( )

( )

ln 1

2 2

0

2
 

2 1
        arctan ln 1 ; 0, 0



 


 

− −  

=
+

 
= − −     

 


G x

F x dt
t

G x x

  (6) 

 
The PDF corresponding to (6) can be expressed as 

 

1
2

2 ( ) 1
( ) 1 log 1 ( )

1 ( ) 

−

  
= + − −  

−    

g x
f x G x

G x
  (7) 

 
The remaining section of this article is arranged as 
follows. We define half-Cauchy Chen distribution and 
also, we derive the statistical and mathematical properties 
of the suggested model such as revised hazard rate 
function, hazard function, survival function, probability 
density function, cumulative distribution function, 
cumulative hazard function, quantiles, the measures of 
skewness based on quartiles and kurtosis based on octiles.  
The estimation of the parameters of the proposed model 
is carried out using the three widely used estimation 

techniques namely least-square (LSE), maximum 
likelihood estimators (MLE) and Cramer-Von-Mises 
(CVM) methods. The application of the proposed model 
is presented using two real –life data sets. Finally, some 
explanatory remarks are made. 
 
Half-Cauchy Chen (HCC) distribution 
In this section we have introduced a new distribution 
called half-Cauchy Chen (HCC) distribution having three 
parameters (α, λ, θ) which is the extension of Chen 
distribution. If a positive random variable X follows HCC 
distribution, then its CDF can be obtained by substituting 
equation (1) in (6) as 

2
( ) arctan (1 ) ;  0,  , , 0


  

 

 
= − −   

 

xF x e x    (8)   

The PDF of HCC (α, λ, θ) corresponding to (8) can be 
written as 

 
1

2
1 22

( ) (1 )
   



−

−  
= + − −

  

x xf x x e e            (9) 

 
Reliability function  
The reliability function of HCC (α, λ, θ) distribution is 

( ) 1 ( )= −R x F x                  

2
1 arctan (1 ) ;  0,  , , 0


  

 

 
= − − −   

 

xe x       (10) 

 
Hazard rate function (HRF) 
The HRF of HCC (α, λ, θ) can be obtained as 

( )
( )

( )
=

f x
h x

R x
                             

 

1

1

1
2

2

2 2arctan (1 )

  (1 )

 



 
 



 

−

−

−

  
= − − −  

  

 
= + − −
  

x x

x

x e e A

Where A e

           (11) 

 
The reverse hazard function (RHR) 
The reverse failure rate function is, 

RHR 
( )

( )
=

f x

F x
 

1

1

1
2

2

2
2 arctan (1 )

 (1 )

 



 


 

 

−

−

−

  
= − −  

  

 
= + − −
  

x x

x

x e e T

Where T e

   (12) 

 
Cumulative hazard function (CHF) 
The Cumulative hazard function of the proposed model 
is defined as 

( ) ( )

         log 1 ( )

−

= 

= − −

x

H x h y dy

F x

 

2
log 1 arctan (1 )



 

  
= − − − −  

  

xe     (13) 
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Quantile function (QF) of the HCC distribution 
The QF can be obtained by taking the inverse function of 
(8) as   

 ( ) ( )1−=Q u F u  

Hence QF is obtained as, 

( )
1/

ln 1 tan ;0 1
2



 



   
= +     

   

u
Q u u      (14) 

where u stands for the uniform random variable of  
U (0,1). 
For the HCC distribution, the random deviates can be 
produced using (14) as

1/

ln 1 tan ;0 1
2



 



   
= +     

   

v
x v . 

The median of HCC distribution can be calculated using 
relation 

1/

ln 1






  
= +  

  
median . 

 
Skewness of HCC distribution  
The Bowley’s coefficient of skewness based on quantiles 
can be obtained as 

( ) ( ) ( )

( ) ( )

0.75 2 0.5 0.25

3 / 4 1/ 4

− +
=

−

Q Q Q
S

Q Q
.  

 
Kurtosis of HCC distribution 
Moors (1988) defined the coefficient of kurtosis using 
octiles as 

( )
( ) ( ) ( ) ( )

( ) ( )

0.875 0.375 0.625 0.125

3 / 4 1/ 4

+ − −
=

−
u

Q Q Q Q
K M

Q Q

For various parameter values of the HCC distribution, we 
have presented the PDF and HRF graphs in figure 1 
keeping lambda=1 as constant. 
The shapes of PDF can have decreasing, right skewed or 
symmetrical and HRF is increasing, decreasing or uni-
modal hazard rate.   

 

 
Figure 1.  The  PDF’s graph (upper section) and HRF’s 
(lower section) for various values of β and θ keeping λ=1 as 
constant. 

 
Parameter estimation 
Maximum Likelihood Estimation (MLE) 
Here, the MLE method is applied to evaluate the ML 
estimators (MLE's) of the HCC distribution. Let a 

random sample ( )1  , ,=  nx x x  of size ‘n’ be drawn 

from ( , , )  HCC  then the log likelihood function can 

be written as, 

( )

  

1

1

2
2

1

1 1

( , , | ) ln(2 / ) ln ( 1) ln

 ln (1 )


     

 

=

= =

= + + − +

= − + − −



  i

n

i

i

n n
x

i

i i

x n n x T

Where T x e

       (15) 

After differentiating (15) with respect to  β, λ and θ, we 

get  
1

2
2

1

2 (1 ) (1 )
 

  
 

−

=

   
= − − + − −     

 i i

n
x x

i

n
e e  

 
1

2
2

1

2 (1 )


  
 

−

=

  
= − + − −

   
 i

n
x

i

n
e  

Equating 0
  

  
= = =

  
 and solving simultaneously 

for the β, λ and θ we obtain the corresponding ML 

estimators of the ( , , )  HCC  model. But normally, it 

is not possible to solve non-linear equations above so one 
can solve them easily with the aid of suitable computer 

software. If  = (𝛽, 𝜆, 𝜃) represent the parameter vector 

of ( , , )  HCC  and the corresponding MLE of  

as𝛩̂ = (𝛽̂, 𝜆̂, 𝜃), then the asymptotic normality results in, 

(𝛩̂ − ) → 𝑁3 [0, (𝐼(𝛩))
−1

] where ( )I  stands for 

the Fisher’s information matrix which is defined by, 
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( )

2 2 2

2

2 2 2

2

2 2 2

2

   

   

    

        
      

         
 

         = −      
         
 

        
                

l l l
E E E

l l l
I E E E

l l l
E E E

 

 

The MLE's asymptotic variance ( )( )
1−

I  is meaningless 

since we don't know . As a result, we use the estimated 
parameter values to try and approximate the asymptotic 

variance. An estimation of the information matrix ( )I  

provided by the observed fisher information matrix 

( )O  is employed. The observed fisher information 

matrix ( )O is given by 

 

( )

( )
( )

ˆ ˆ ˆ, ,

2 2 2

2

2 2 2

|2

2 2 2

2

|

ˆ ˆ ˆ ˆ ˆ

( )
ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ
  

    

    

    

=

   
 
     

   
  = − = − 
     
 
   

      

l l l

l l l
O H

l l l

   (16) 

where H stands for the Hessian matrix. 
 
The observed information matrix is generated by the 
Newton-Raphson method with the goal of maximizing 
likelihood. Consequently, the variance-covariance matrix 
is represented by 

( )
( )

1

|

ˆ ˆ ˆ ˆ ˆvar( ) cov( , ) cov( , )

ˆ ˆ ˆ ˆ ˆcov( , ) var( ) cov( , )

ˆ ˆ ˆ ˆ ˆcov( , ) cov( , ) var( )

    

    

    
=

−
 
  
 −  = 
  
 
 

H     (17) 

Hence, approximate 100(1-𝛼) % confidence intervals for 

estimating β, λ and θ of ( , , )  HCC  from the 

asymptotic normality of MLEs can be constructed as, 

/ 2
ˆ ˆvar( )  Z , /2

ˆ ˆvar( )  Z  and

/2
ˆ ˆvar( )  Z . 

where / 2Z stands for the upper percentile of standard 

normal variate. 
 
Method of Least-Square Estimation (LSE) 
In order to estimate the unknown parameters β, λ and θ 
of the HCC distribution, we also used the least-square 
estimation approach, which can be derived by minimizing 
(18) with respect to the unknown parameters β, λ and θ.  

( )
2

1

; , , ( )
1

  
=

 
= − + 


n

i

i

i
B X F X

n
                     (18) 

 

Assume that a random sample  1 2, ,  , nX X X is drawn 

size n from a distribution function F, where ( )iF X  

denote the CDF of the ordered random variables

( ) ( ) ( )1 2 n
X  X   X   , then least-square estimators of β, λ 

and θ, denoted respectively as ˆ ˆ ˆ,     and , can be 

produced by minimizing (19) with respect β, λ and θ. 

( )
2

1

2
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1


  

 =

  
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n
x

i
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B X e

n
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Differentiating (19) with respect to λ ,β and θ, we get 
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where ( ) (1 )



= − − ix

iU x e  

 
The weighted least square estimators are calculated 
similarly by minimizing (20) with respect to β, θ and λ. 

( ) ( )
1
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1

  
=

 
= − + 


n
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Here, 
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( ) ( )
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2
1 21

( ) 1
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= = =
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i

i

n n
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Var X i n i
 

 
As a result, by minimizing (21) with regard to β, λ and θ 
respectively, we can obtain the weighted least square 
estimators of β, λ and θ. 

( )
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1
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     (21) 

 
Method of Cramer-Von-Mises estimation (CVME) 
By minimizing the function (22) with respect to β, λ and 
θ, the Cramer-Von-Mises estimators for each of these 
parameters are respectively derived. 
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Differentiating (22) with respect to β, λ and θ we get,  
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We will get the CVM estimators after solving non-linear 

equations = 0, = 0  0
  

  
=

  

J J J
and  at the same time. 

 
Applications to real dataset 
In this part, we have used two real datasets from previous 
works to show the applicability and suitability of the HCC 
distribution. We have taken into account the four 
distributions namely Generalized exponential distribution 
(Gupta & Kundu, 1999), Chen distribution (Chen, 2000), 
Weibull extension (WE) distribution (Tang et al., 2003) 
and Gompertz distribution (Murthy et al., 2003)    to 
compare the potential of the suggested model.  
 
Data set I: BP data 
The third data set that represent the fibre and bundle 
strength in hybrid composites (Bader & Priest, 1982). 

1.312, 1.314, 1.479, 1.552, 1.700, 1.803, 1.861, 1.865, 
1.944, 1.958, 1.966, 1.997, 2.006, 2.021, 2.027, 2.055, 
2.063, 2.098, 2.14, 2.179, 2.224, 2.240, 2.253, 2.270, 2.272, 
2.274, 2.301, 2.301, 2.359, 2.382, 2.382, 2.426,2.434, 
2.435, 2.478, 2.490, 2.511, 2.514, 2.535, 2.554, 2.566, 2.57, 
2.586, 2.629, 2.633, 2.642, 2.648, 2.684, 2.697, 2.726, 
2.770, 2.773, 2.800, 2.809, 2.818, 2.821, 2.848, 2.88, 2.954, 
3.012, 3.067, 3.084, 3.090, 3.096, 3.128, 3.233, 3.433, 
3.585, 3.585. 
 
By maximizing the likelihood function (15), we have 
estimated the MLEs of the HCC distribution using the R 
software's optim() function (R Core Team, 2020). The log 
likelihood value that we have determined is l = -50.1663. 
For β, λ and θ, we have displayed the MLEs and 
associated standard errors (SE) in Table 1. 
 

Table 1. MLE and SE for β, λ and θ  

Parameter MLE SE 

beta 1.6394     0.07402   

lambda 0.0287     0.09691    

theta 2.2594     7.58837 

 

 
The profile log-likelihood function for the three parameters β, λ and θ is depicted graphically in figure 2. It is possible to 
compute the ML estimates uniquely, as we have found. 

Figure 2. Profile log-likelihood function of the parameters β, λ and θ. 

 
The HCC distribution successfully fits the data, as shown by figure 3's graphs for the P-P plot and Q-Q plot. 

 
Figure 3. The P-P plot (left panel) and Q-Q plot (right panel) of the HCC distribution. 

 
In Table 2, we have shown the HCC distribution's estimated parameters values along with their accompanying negative 
log-likelihoods and AIC criteria. We have used the MLE, LSE and CVE methods to arrive at these results. 
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Table 2. Estimated parameters values, AIC and log-likelihood 

Estimation methods ̂  ̂  ̂  LL AIC 

MLE 1.6394 0.0287 2.2594 -50.1663 106.3325 

LSE 1.5904 0.0286 1.8603 -50.3817 106.7633 

CVE 1.6060 0.0319 2.2001 -50.2668 106.5335 

 
The A2, KS, and W statistics, as well as the related p-value, are shown in Table 3 for the MLE, LSE, and CVE 
estimations. 

Table 3. The KS, A2 , and W statistics with p-value 

Estimation methods KS(p-value) W(p-value) A2(p-value) 

MLE 0.0489(0.9965) 0.0220(0.9951) 0.1855(0.9939)  

LSE 0.0449(0.9991) 0.0187(0.9982) 0.1990(0.9907)  

CVE 0.0425(0.9996) 0.0178(0.9987) 0.1800(0.9950) 

 
In figure 4, we have shown the graphs of the Q-Q plot, the histogram, and the density function of fitted distributions of 
the HCC model using estimation methods LSE, MLE, and CVM. It turns out that the HCC model is good fitted to the 
BP data set. 

Figure 4. The fitted distributions’ histogram and density function (left panel) and Q-Q plot (right panel)of the HCC 
distribution LSE, MLE, and CVM estimation methods 

 
The Hannan-Quinn information criterion (HQIC), Bayesian information criterion (BIC), Corrected Akaike information 
criterion (CAIC), Akaike information criterion (AIC), and all of which are shown in Table 4, have been demonstrated 
for the assessment of the applicability and adaptability of the HCC distribution. 

 
Table 4 Log-likelihood (LL), AIC, BIC, CAIC and HQIC 

Model LL AIC BIC CAIC HQIC 

HCC -50.1663 106.3325 113.0349 106.7018 108.9916 

WE -50.7239 107.4479 114.1502 107.8171 110.1069 

GZ -53.6249 111.2497 115.7179 111.4315 113.0224 

GE -54.6205 113.2409 117.7091 113.4227 115.0136 

Chen -55.0534 114.1069 118.5751 114.2887 115.8796 

 
Figure 5 shows the graph of the HCC distribution's goodness-of-fit as well as a few other chosen distributions.  
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Figure 5. The empirical distribution function with estimated distribution function (right panel) and HCC distribution's 

histogram, density function for fitted distributions (left panel).  

 
We have also shown the Cramer-Von Mises (CVM), Anderson-Darling (AD)  and Kolmogorov-Simnorov (KS) statistics 
values in Table 5 to evaluate the HCC distribution’s goodness-of-fit with other rival models. With a lower test statistic 
value and a higher p-value than the other distributions used as comparisons, we may infer that the HCC distribution has 
a good fit to the BP data set and consistently produces more reliable results.  

 
Table 5. Statistics for goodness-of-fit and the accompanying p-value 

Model KS(p-value) AD(p-value) CVM(p-value) 

HCC 0.0489(0.9965) 0.0220(0.9951) 0.1855(0.9939)  

WE 0.0647(0.9348) 0.0568(0.8357) 0.4431(0.8046)  

GZ 0.0847(0.7048) 0.1268(0.4696) 0.9280(0.3970)  

GE 0.0949(0.5629) 0.1603(0.3603) 1.1235(0.2983)  

Chen 0.0956(0.5537) 0.164(0.3503) 1.2152(0.2617)  

 
 
Data set II: LG data 
59 conductors underwent an accelerated life test, and the 
results are shown below (Nelson & Doganaksoy, 1995). 
Microcircuit failures can be caused by electro-migration, 
which is the movement of atoms within the conductors 
of the circuit. The failure times are given in hours, and the 
observations are uncensored.  
 
9.289, 6.545, 6.956, 7.543, 5.459, 6.492, 4.706,  8.120, 
2.997, 8.687, 6.129,  8.591, 5.381, 11.038,  4.288, 6.958, 
4.137,  6.522, 7.495, 7.459, 6.538, 6.573, 6.087,  5.589, 
6.725, 5.807, 8.532, 6.369,  9.663, 7.024, 9.218, 8.336,  
7.945, 6.869, 4.700,  6.352, 9.254, 6.948, 7.489,  5.009, 
6.033, 7.398, 7.496,  10.092, 7.974, 4.531, 7.683, 8.799, 

7.365, 7.224, 5.640, 6.923, 5.434, 7.937, 6.476, 6.515, 
6.071, 5.923, 10.491. 
 
The log likelihood value that we have determined is l = -
111.7319. For β, λ and θ, we have shown the MLEs in 
Table 6 along with their standard errors (SE). 
 
Table 6. MLE and SE for β, λ and θ  

Parameter MLE SE 

beta 0.9753     0.04004   

lambda 0.0398     0.02643    

theta 29.0272    11.11081 

 

 
 
In figure 6, we have plotted below the graphs of the profile log-likelihood function for β, λ and θ in figure 6 and it is 
obtained that the ML estimates have unique values. 
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Figure 6. Profile log-likelihood function of  β, λ and θ 

 
The graphs of the P-P plot and Q-Q plot are shown in Figure 7.We have found that the data is well fitted by the HCC 
model.  

 

 
Figure 7. The Q-Q plot (right panel) and P-P plot (left panel) of the HCC model 

 
The estimated values of the HCC model's parameters, together with their related negative log-likelihoods and the AIC 
criterion, are shown in Table 7 using the MLE, LSE, and CVE methods.  
 

Table 7. Estimated parameters, log-likelihood, and AIC 

Estimation methods ̂  ̂  ̂  LL AIC 

MLE 0.9753 0.0398 29.0272 -111.7319 229.4638 

LSE 0.9556 0.0090 5.1356 -111.8516 229.7032 

CVE 0.9654 0.0079 5.1424 -111.7644 229.5288 

 
Table 8 shows the KS, W, and A2 statistics along with the related p-value for the MLE, LSE, and CVE estimates. 
 

Table 8. The A2, KS and W statistics with a p-value 

Estimation methods KS(p-value) W(p-value) A2(p-value) 

MLE 0.0577(0.9830) 0.0238(0.9924) 0.1705(0.9965) 

LSE 0.0527(0.9938) 0.0238(0.9924) 0.1695(0.9966)  

CVE 0.0584(0.9808) 0.0231(0.9936) 0.1583(0.9979)  
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We have displayed the graphs of the Histogram and the density function of fitted distributions of HCC distribution and 
Q-Q plot using LSE, MLE and CVM estimation methods in figure 8 and it is found that the LG data set is good fitted 
by the HCC distribution. 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 8. The fitted distributions’ Histogram and the density function (left panel) of MLE, LSE and CVM estimation 

methods of HCC distribution and Q-Q plot (right panel). 

  
We have provided examples of AIC, BIC, CAIC, and HQIC in Table 9 for the appraisal of the applicability and 
suitability of the HCC model.  
 

Table 9. AIC, Log-likelihood (LL), BIC, HQIC and CAIC 

Model LL AIC BIC CAIC HQIC 

HCC -111.7319 229.4638 235.6964 229.9002 231.8968 

WE -113.6745 233.3491 239.5817 233.7855 235.7821 

GE -114.9473 233.8946 238.0497 234.1089 235.5166 

Chen -116.3874 236.7748 240.9299 236.9891 238.3968 

GZ -117.1740 238.3480 242.5031 238.5623 239.9700 

 
In figure 9, we have displayed the graphs of goodness-of-fit of HCC model and some chosen competing models. 

 

 
Figure 9. The fitted distributions’ histogram and the density function (left panel) and Empirical distribution function 

with estimated distribution function (right panel) of HCC distribution. 
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The KS-value, AD-value, and CVM statistic and their related p-values are also shown in Table 10 to allow comparisons 
of the HCC model’s goodness-of-fit with those of rival models. It can be concluded that the HCC distribution has a 
much better fit to the data and more consistent and trustworthy findings from other distributions used as a comparison 
because it has the highest p-value and lowest test statistic value.  
 

Table 10. The goodness-of-fit statistics and their corresponding p-value 

Model KS(p-value) AD(p-value) CVM(p-value) 

HCC 0.0577(0.9830) 0.0238(0.9924) 0.1705(0.9965)  

WE 0.1067(0.4796) 0.1154(0.5160) 0.6800(0.5751) 

GE 0.1042(0.5103) 0.1173(0.5079) 0.7368(0.5282)  

Chen 0.1238(0.3006) 0.1913(0.2855) 1.1741(0.2774) 

GZ 0.1306(0.2464) 0.2160(0.2387) 1.3143(0.2277)  

 
 
CONCLUSIONS  
In this article, we have presented three parameter half- 
Cauchy Chen distribution which has been derived by 
combing a continuous Chen distribution with the half -
Cauchy family of distribution .A thorough analysis of 
some of the new distribution's statistical properties, 
including the precise formulations for its quantile 
function, skewness, kurtosis, hazard rate function, 
survival function, cumulative hazard function and 
reversed hazard rate function, has been offered. Three 
popular estimation techniques namely, MLE, CVME, and 
LSE are employed to estimate the parameters of the 
suggested model for two real data sets. We have 
discovered that MLEs perform relatively better than 
CVM and LSE techniques. The PDF of the suggested 
model's curves have demonstrated that it is versatile for 
modeling real-life data and may take on a variety of 
shapes, including increasing-decreasing and right-skewed. 
According to the values of the model parameters, the 
hazard function graph is also reverse j-shaped, constant, 
or monotonically increasing. Two real-life datasets are 
used to assess the applicability and adaptability of the 
suggested model, and the results showed that it is 

significantly more flexible than some other fitted 
distributions. 
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