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ABSTRACT 
In a network with capacitated arcs, the maximum capacity path problem is to find the bottleneck path between two nodes 
that has the maximum capacity among all the paths between the nodes. In this work, a problem of identification of such 
a path is considered allowing arc reversals in a directed graph where the capacity of the reversed arc can be added to the 

capacity of its counterpart. We propose an 𝑂(𝑚) algorithm to solve the problem in a directed graph with 𝑚 arcs. 
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INTRODUCTION 
Network flow problems constitute an important class of 
combinatorial optimization problems. They arise in the 
various areas of study including applied mathematics, 
engineering, operations research,  management, and 
computer science with numerous practical applications 
(Ahuja et al., 1993). The problems are formulated in a graph 
(or network) consisting of nodes and arcs connecting the 
nodes. The basic problems are to find the shortest distance 
between the nodes, the maximum amount of flow from 
some nodes to the other nodes, and the flow of the 
minimum cost. The cost related to an arc can be its length, 
time for the flow to traverse the arc, or any other weight. 
The flow in an arc is also limited by its capacity. 
 
In the applications related to the optimization of traffic 
flow, the streets are taken as the arcs and their 
intersections, the nodes of a directed graph. The direction 
of an arc is taken as the direction of the the traffic flow in 
it. Various applications related to the traffic optimization 
in emergency evacuation planning are reviewed in 
Hamacher and Tjandra (2001); Dhamala (2015); Dhamala 
et al. (2018). One of the research interests in such problems 
is to optimize the traffic flow by finding the ideal direction 
of the traffic flow, reversing the usual direction of traffic 
flow in appropriate road segments (see Kim et al. (2008), 
Rebennack et al. (2010), Pyakurel (2016), Pyakurel and 
Dhamala (2017); Pyakurel et al. (2018), Pyakurel et al. 
(2019), and Gupta et al. (2021)). 
 
Among all the network flow problems, identification of a 
path between two nodes, especially the shortest path is the 

simplest and a basis to many other network flow problems. 
There are numerous variants of the problem, e.g. finding 
the shortest path between two specific nodes, to all the 
nodes from a specific node, between all pairs of nodes 
(Ahuja et al., 1993), and shortest paths with multiple criteria 
(Hansen, 1980; Tarapata, 2007; Nath et al., 2021). Apart 
from shortest paths, the research interests also include 
finding a path with other objectives, e.g. the quickest path 
problem (Chen & Chin, 1990), maximum capacity path 
problem (Punnen, 1991; Kaibel & Peinhardt, 2006). 
 
The present work extends the maximum capacity path 
problem to the one with arc reversals in a directed graph. 
Section 2 sets basic graph theoretic ideas required for the 
development of the paper. Section 3 describes the 
maximum capacity path problem, Section 4 presents the 
main results, and Section 5 concludes the paper. 
 
BASIC NOTIONS 
For the formal treatment, we consider a graph or network 

𝐺 =  (𝑁, 𝐴) consisting of a set of nodes 𝑁 and a set of 

arcs 𝐴. The elements of 𝐴 are pairs of distinct nodes in 𝑁. 

Each arc (𝑖, 𝑗) ∈ 𝐴 has an associated non-negative capacity 

𝑢𝑖𝑗 . We call an arc (𝑖, 𝑗) directed from 𝑖 to 𝑗, if it is ordered, 

i.e. (𝑖, 𝑗) ≠ (𝑗, 𝑖), and undirected if (𝑖, 𝑗) = (𝑗, 𝑖). An 

undirected arc between two nodes 𝑖 and 𝑗 can be 

represented by (𝑖, 𝑗) or (𝑗, 𝑖). We call 𝐺 directed if all the 

arcs in 𝐴 are directed (Figure 1(i)), undirected if the arcs in 

𝐴 are undirected (Figure 1(ii)), and mixed if some arcs are 
directed and some are not. We denote the number of nodes 

|𝑁| by 𝑛 and the number of arcs |𝐴| by 𝑚. 
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(i)       (ii) 

Figure 1: (i) A directed network, (ii) an undirected network (each arc label represents its capacity) 
 

For a sequence of nodes 𝑖1,· · · , 𝑖𝑘 ∈ 𝑁, a path 𝑃 denoted 

by 𝑖1–· · · – 𝑖𝑘  is a sequence of arcs {(𝑖1, 𝑖2),· · ·
 , (𝑖𝑘−1, 𝑖𝑘)}. A path with a starting node 𝑖1 and end node 

𝑖𝑘 is also known as 𝑖1-𝑖𝑘   path. If all the arcs in 𝑃 are 

directed, then 𝑃 is called a directed path or a chain. We 

define the capacity of a path 𝑃 as 𝑢𝑃 = min{𝑢𝑖𝑗 : (𝑖, 𝑗) ∈

𝑃}. 

 
Example 1. In Figure 1(i), the capacity of the path s–a–b–
t is  

 

min{𝑢𝑠𝑎 , 𝑢𝑎𝑏 , 𝑢𝑏𝑡} = min{1, 2, 3}  =  1  
and that of 𝑠–𝑏–𝑡 is 

min{𝑢𝑠𝑏 , 𝑢𝑏𝑡}  = min{5, 3} =  3. 
 

 
MAXIMUM CAPACITY PATH PROBLEM 
Among all the paths between two distinct nodes in a 
network, a path with the maximum capacity is called the 
maximum capacity path. Given a network with arc 
capacities, the problem of identification of such a path is 
called the maximum capacity path problem or the 

bottleneck path problem (Punnen, 1991; Kaibel & 
Peinhardt, 2006). 
 
Example 2. Consider the network given in Figure 1(i). The 

following table gives all the 𝑠-𝑡 paths and their respective 
capacities.

 
 

Path Capacity 

𝑠 – 𝑎 – 𝑡 1 

𝑠 – 𝑎 – 𝑏 – 𝑡  1 

𝑠 – 𝑏 – 𝑡 3 

𝑠 – 𝑏 – 𝑎 – 𝑡 2 

 
 
 

The maximum capacity 𝑠 – 𝑡 path is 𝑠 – 𝑏 – 𝑡 with capacity 
3. 

Definition 1. Let 𝐺 =  (𝑁, 𝐴) be a network and 𝑠, 𝑡 ∈ 𝑁 

be two distinct nodes. Suppose 𝒫(𝑠, 𝑡) be the collection of 

all 𝑠 – 𝑡 paths in 𝐺. If 𝑢𝑃 is the capacity of path 𝑃, then a 
maximum capacity path is the path with the capacity 

max{𝑢𝑃 ∶ 𝑃 ∈ 𝑃(𝑠, 𝑡)}. 
 

According to Punnen (1991), then the maximum capacity 

path problem can be stated as max
𝑃 ∈ 𝒫(𝑠,𝑡)

min
(𝑖,𝑗)∈𝑃

𝑢𝑖𝑗 . 

 
In fact, the above problem finds the maximum capacity of 

an arc through which there exists at least one 𝑠 – 𝑡 path. 

Any 𝑠 – 𝑡 path considering only the arcs of capacity not 
less than this capacity is a maximum capacity path. 
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Let 𝑢𝑖𝑗 = 𝑈0 ∀(𝑖, 𝑗) ∈ 𝐴, and suppose that there exists an 

𝑠 – 𝑡 path. Then it is clear that max
𝑃 ∈ 𝒫(𝑠,𝑡)

min
(𝑖,𝑗)∈𝑃

𝑢𝑖𝑗 =

𝑈0. 
 
This gives the following result. 

Proposition 1. In a network 𝐺 =  (𝑁, 𝐴) with the 

capacity 𝑢𝑖𝑗 = 𝑈0 ∀(𝑖, 𝑗) ∈ 𝐴 with at least one 𝑠 – 𝑡 path, 

each 𝑠 –𝑡 path is a maximum capacity 𝑠 – 𝑡 path with 

capacity 𝑈0. 
 

Definition 2 (Critical arc). If 𝑃 is a maximum capacity 𝑠– 𝑡 

path, then (𝑖∗, 𝑗∗) ∈ 𝑃 is called a critical arc if 𝑢𝑖∗𝑗∗ =

min{𝑢𝑖𝑗 ∶ (𝑖, 𝑗) ∈ 𝑃 }. 

 

Punnen (1991) gave an 𝑂(𝑚) recursive procedure to find 
the bottleneck capacity, hence a critical arc, in an 

undirected network with distinct arc capacities. The 
procedure is given in Algorithm 1. Although the arc 
capacities are assumed to be distinct, the algorithm can be 
used for the general case by numbering the arcs arbitrarily 
and using lexicographic order in arc capacity and arc 
number for the purpose of finding median in Line 5 and 

construction of 𝐴𝑘 in Line 6. 
 
To use the algorithm to directed graphs, the connected 
components in Line 11 have to be strongly connected 
because in this way such an algorithm does not have a 
linear running time bound. To solve the maximum capacity 
path problem in directed graphs, Kaibel and Peinhardt 
(2006) devise an algorithm that solves the problem in 

𝑂(𝑚 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑚) time. 

 
 

Algorithm 1  Procedure BottleneckCapacity(𝑮, 𝒔, 𝒕) (Punnen, 1991) 

1: Input: An undirected network G = (𝑁, 𝐴) with arc capacity 𝑢𝑖𝑗 ≥ 0 distinct for each (𝑖, 𝑗) ∈ 𝐴, source 

𝑠 ∈ 𝑉 and sink 𝑡 ∈ 𝑁 
2: if G contains a single edge (s, t) only then 

3: return 𝑢𝑠𝑡 
4: else 

5: 𝑘 ≔ median of {𝑢𝑖𝑗 : (𝑖, 𝑗) ∈ 𝐴} 

6: 𝐴𝑘 ≔ {(𝑖, 𝑗) ∈ 𝐴: 𝑢𝑖𝑗 ≥ 𝑘} 

7: 𝐺𝑘 ≔ (𝑉, 𝐴𝑘) 

8: if 𝑠 and 𝑡 are in the same connected component 𝐺̃ of 𝐺𝑘 then 

9: return BottleneckCapacity(𝐺̃, 𝑠, 𝑡) 

10: else 

11:  Let 𝐺1
𝑘 : = (𝑁1

𝑘 , 𝐴1
𝑘), ⋯ , 𝐺𝑞

𝑘 : = (𝑁𝑞
𝑘 , 𝐴𝑞

𝑘) be the connected components of 𝐺𝑘 

12:  for 1 ≤ 𝑣 ≤ 𝑞 and 1 ≤ 𝑤 ≤ 𝑞 do 

13:   𝑆𝑘(𝑣, 𝑤): = {(𝑖, 𝑗) ∈ 𝐴: 𝑖 ∈ 𝐺𝑣
𝑘 , 𝑗 ∈ 𝐺𝑤

𝑘 } 
14:  end for 

15:  𝑁𝑘 : = {1, ⋯ , 𝑞} 

16:  𝐴̅𝑘 ≔ {(𝑣, 𝑤): 𝑆𝑘(𝑣, 𝑤) ≠ ∅} with 𝑢𝑣𝑤 ≔ max
(𝑖,𝑗)∈𝑆𝑘(𝑣,𝑤)

𝑢𝑖𝑗 

17:  𝐺̅𝑘 : = (𝑁𝑘 , 𝐴̅𝑘) 

18:  Let 𝑥, 𝑦 be such that 𝑠 ∈ 𝑁𝑥
𝑘 , 𝑡 ∈ 𝑁𝑦

𝑘 

19:  return  BottleneckCapacity(𝐺̅𝑘 , 𝑥, 𝑦) 
20: end if 
21: end if 

 
 
MAXIMUM CAPACITY PATH PROBLEM 
ALLOWING ARC REVERSALS IN A DIRECTED 
GRAPH 

In a directed graph 𝐺 = (𝑁, 𝐴), let us assume that the 
direction of each arc can be reversed, and that the capacity 

of an arc (𝑖, 𝑗) ∈ 𝐴 can be increased to 𝑢𝑖𝑗 + 𝑢𝑗𝑖 by 

reversing the direction of (𝑗, 𝑖), where 𝑢𝑥𝑦 represents the 

capacity of the arc (𝑥, 𝑦) ∈ 𝐴. Consequently, the capacity 

of the reversed arc (𝑗, 𝑖) becomes zero or (𝑗, 𝑖) is removed. 

 
To solve various network flow problems with arc reversals, 
an idea is to construct an undirected network by adding the 
capacities of the opposite arcs and solve the corresponding 
problem in the resulting network (Pyakurel & Dhamala, 
2016). Such a network is known as the auxiliary network of 
the original network. 
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Definition 3 (Auxiliary network). Given a directed 

network 𝐺 = (𝑁, 𝐴), with capacity 𝑢𝑖𝑗  for each (𝑖, 𝑗) ∈ 𝐴, 

the auxiliary network is defined as 𝐺̅ = (𝑁, 𝐴̅), where 𝐴̅ =

{(𝑖, 𝑗): (𝑖, 𝑗) ∈ 𝐴 or (𝑗, 𝑖) ∈ 𝐴} and for each (𝑖, 𝑗) ∈ 𝐴̅, the 

capacity 𝑢̅𝑖𝑗  is given by

 

𝑢̅𝑖𝑗 = {
𝑢𝑖𝑗 + 𝑢𝑗𝑖 , if (𝑖, 𝑗), (𝑗, 𝑖) ∈ 𝐴

𝑢𝑖𝑗 , if (𝑖, 𝑗) ∈ 𝐴, (𝑗, 𝑖) ∉ 𝐴.
 

 

Example 3. Consider the directed network 𝐺 as shown in 
Figure 2(i). The arc labels show the corresponding arc 

capacity. Its auxiliary network 𝐺̅ is shown in Figure 2(ii). In 

𝐺̅, the vertices remain the same and the arc pair (𝑖, 𝑗), (𝑗, 𝑖) 

becomes an undirected arc (𝑖, 𝑗) in 𝐺̅. The capacity of the 

edge (𝑖, 𝑗) is defined as 𝑢𝑖𝑗 = 𝑢𝑖𝑗 + 𝑢𝑗𝑖 , e.g., 𝑢𝑎𝑏 = 𝑢𝑎𝑏 +

𝑢𝑏𝑎 = 2 + 3 = 5. 

 
 

   
(i)      (ii) 

Figure 2: (i) A directed network 𝐺 = (𝑁, 𝐴), (ii) Auxiliary network 𝐺̅ = (𝑁, 𝐴̅)  
 

 
Example 4. In the network given in Figure 2(i), a 

maximum capacity 𝑠–𝑡 path is a path of capacity 3 

(𝑠– 𝑑– 𝑏– 𝑡). If we allow arc reversals, we get a maximum 

capacity 𝑠– 𝑡 path of capacity 5 (𝑠– 𝑎– 𝑏– 𝑡), the arcs 

(𝑎, 𝑠), (𝑏, 𝑎) being reversed to enhance the capacities of 

(𝑠, 𝑎), (𝑎, 𝑏) respectively. In the auxiliary network (Figure 

2(ii)) also the maximum path is is also 𝑠– 𝑎– 𝑏– 𝑡 with 
capacity 5. 
 
We design Algorithm 2, that uses the auxiliary network 
construction of the original network to find the maximum 
capacity path with arc reversals and the set of paths to be 
reversed.

 
 

Algorithm 2: Maximum capacity path with arc reversals 

1: Input: Directed graph 𝐺 =  (𝑁, 𝐴) with capacity 𝑢𝑖𝑗  for each (𝑖, 𝑗) ∈ 𝐴, two specific nodes 𝑠 (the source 

node), 𝑡 (the sink node) such that there is at least one 𝑠– 𝑡 path 

2: Construct the undirected auxiliary network 𝐺̅ = (𝑁, 𝐴̅) with capacity 𝑢̅𝑖𝑗  for each (𝑖, 𝑗) ∈ 𝐴̅. 

3: Compute the bottleneck 𝑠– 𝑡 path capacity 𝑈. 

4: Construct 𝐺∗ = (𝑁, 𝐴∗) with 𝐴∗ = {(𝑖, 𝑗) ∈ 𝐴̅: 𝑢̅𝑖𝑗 ≥ 𝑈}. 

5: Perform breadth first search in 𝐺∗ to find an 𝑠– 𝑡 path 𝑃 ∶=  𝑠– 𝑥1– · · · – 𝑥𝑘– 𝑡 with ordered edges 

(𝑠, 𝑥1), (𝑥1, 𝑥2),· · · , (𝑥𝑘 , 𝑡). 

6: Set of reversed arcs 𝑅 =  {(𝑗, 𝑖)  ∈  𝐴 ∶ (𝑖, 𝑗) ∈ 𝑃 and  𝑢𝑖𝑗  <  𝑈}. 

7: return 𝑃 (the maximum capacity path with arc reversals), and 𝑅 (the set of reversed arcs) 

 
 
As the capacity of an arc after reversing the opposite arc is 

defined to be 𝑢𝑖𝑗 + 𝑢𝑗𝑖 , the maximum capacity path in the 

auxiliary network is the maximum capacity path with arc 

reversals in the original network. If 𝑈 is the bottleneck 

capacity of 𝑠– 𝑡 paths in the auxiliary network, and if (𝑖, 𝑗) 

is in the bottleneck path with 𝑢𝑖𝑗  <  𝑈 in the original 

network, then (𝑗, 𝑖) has to be reversed so that the capacity 

of (𝑖, 𝑗) becomes at least 𝑈. In this way, we can realize the 
correctness of the algorithm. 
 
Theorem 1. Algorithm 2 computes the maximum capacity path 
with arc reversals correctly. 
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Complexity Analysis of Algorithm 2. The auxiliary 

network construction in Line 2 can be done in 𝑂(𝑚) time. 
The crucial Step in Algorithm is the computation of the 

bottleneck 𝑠– 𝑡 path capacity in Line 3, which can be 
computed using Algorithm 1 if the arc capacities in the 
auxiliary network are distinct. If the arc capacities are not 
all distinct, then we can number the arcs arbitrarily and 
consider the lexicographical order in (arc capacity, arc 
number) to find the median and use the same algorithm. 

In either case, the running time is 𝑂(𝑚). Construction of 

𝐺∗ in Line 4 requires deletion of arcs of 𝐺̅ with capacity 

less than 𝑈. This also takes 𝑂(𝑚) time in the worst case. 
The breadth-first search can be done, in general, in 

𝑂(𝑚 +  𝑛) time. In Line 5, however, it has to be done in 

a connected graph. For a connected graph, 𝑛 ≤ 𝑚 + 1. So, 

the step can also be performed in 𝑂(𝑚) time. Line 6 

requires identification of reversed arcs in the arcs of the 
chosen maximum capacity path only, the running time of 

the step is also dominated by 𝑂(𝑚). Thus we can conclude 
the following. 
Theorem 2. The maximum capacity path problem with arc 

reversals can be solved in 𝑂(𝑚) time. 
 
We illustrate the working of the algorithm 2 in Example 6 
below. As algorithm 2 uses Algorithm 1 as a subroutine, 
we first illustrate its working in Example 5. 
 
Example 5. Consider an undirected network given in 
Figure 3(i). The arc labels represent capacities of the 
corresponding arcs. For simplicity, we take the capacities 
distinct.

 
 

  
(i)     (ii)    (iii) 

Figure 3: Working of Algorithm 1 
 
 
To identify the critical arc in a maximum capacity path, 
we apply Algorithm 1, that works as follows. 
Iteration 1:  

𝑉 = {𝑠, 𝑎, 𝑏, 𝑐, 𝑑, 𝑡}. 𝑘 = median of 

{1, 2, 3, 4, 5, 6, 7, 8, 9} = 5,  

𝐴𝑘 = {(𝑠, 𝑐), (𝑠, 𝑑), (𝑎, 𝑏), (𝑏, 𝑑), (𝑐, 𝑑)}. 𝐺𝑘 = (𝑉, 𝐴𝑘) 

𝑠, 𝑡 are not in the same connected compont of 𝐺𝑘 (Figure 
3(ii)). There are two connected components. 

𝑁1 = {𝑠, 𝑎, 𝑏, 𝑐, 𝑑}, 𝑁2 = {𝑡}, 𝐴1
𝑘 =

{(𝑠, 𝑐), (𝑠, 𝑑), (𝑎, 𝑏), (𝑏, 𝑑)}, 𝐴2
𝑘 = { }. 

𝐺1
𝑘 = (𝑁1

𝑘 , 𝐴1
𝑘), 𝐺2

𝑘 = (𝑁2
𝑘 , 𝐴2

𝑘). 𝑣 = 1, 2, 𝑤 = 1, 2.  

𝑆𝑘(1,1) = 𝑆𝑘(2,2) = { }, 𝑆𝑘(1, 2) = 𝑆𝑘(2,1) =
{(𝑏, 𝑡), (𝑑, 𝑡)}. 

𝑁𝑘 = {1, 2}, 𝐴̅𝑘 = {(1,2)}, 𝑢12 = max{3, 4} = 4, 𝐺̅𝑘 =
(𝑁𝑘 , 𝐴̅𝑘), 𝑠 ∈ 𝑁1

𝑘 , 𝑡 ∈ 𝑁2
𝑘. 

 
Iteration 2: 

𝐺 = (𝑁, 𝐴) with 𝑁 = 𝑁𝑘 = {1, 2}, 𝐴 = {(1, 2)}. Since 

𝐺 contains only a single edge (1, 2), the maximum 

capacity is 4. The critical arc is (𝑑, 𝑡). 
 
Example 6. To illustrate Algorithm 2, let us consider a 

directed network 𝐺 given in Figure 4(i). Its auxiliary 

network 𝐺̅ constructed in Step 2 is shown in Figure 4(ii). 
Step 3 computes the bottleneck maximum path capactiy 

𝑈 = 4 (See Example 6). 

   
(i)     (ii) 

Figure 4: (i) Directed network, (ii) auxiliary network in Example 6. 
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Figure 5: Newotk 𝐺∗ constructed by Step 4 of Algorithm 2 in Example 6. 

 
 

The network 𝐺∗ constructed in Step 4 of the algorithm is 

depctied in Figure 5. Performing breadth first search in 𝐺∗, 

we obtain the path 𝑃 = 𝑠 − 𝑑 − 𝑡, with ordered edges 

(𝑠, 𝑑), (𝑑, 𝑡), as the maximum capacity path after arc 

reversals. As 𝑢𝑑𝑡 = 2 < 𝑈, (𝑡, 𝑑) is reversed, and thus 

𝑅 = {(𝑡, 𝑑)}. 
 
CONCLUSIONS 
In this work, we have considered a problem of finding the 
path of maximum capacity by allowing arc reversals so that 
the capacities of the arcs can be added towards the 
preferred direction. We have designed an algorithm that 

solves the problem in a graph with 𝑚 arcs in 𝑂(𝑚) time. 
The problem is particularly useful in finding the 
unsplittable maximum flow between two nodes of a 
network with capacitated arcs. For example, the problem 
can be used in transportation planning in urban road 
networks in cases where a single path has to be chosen to 
send a maximum amount of flow allowing reversal of the 
usual direction of the traffic flow in appropriate road 
segments. There are several possible extensions of the 
problem, e.g. maximum capacity paths between a node and 
every other node, between every pair of nodes, maximum 
capacity path with the consideration of costs. Further, we 
are also interested in finding such a path with multiple 
criteria including minimization of the time of the flow and 
the number of reversed arcs. 
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