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ABSTRACT 
We have defined a modified form of the inverse NHE distribution in this study. The suggested distribution's hazard 
function might be shaped like a constant or increasing. Some of the suggested distribution's statistical properties are all 
clearly derived. Maximum likelihood, Least squares, and Cramer-Von-Mises methods are applied to determine the novel 
distribution's parameters. For estimators, the asymptotic confidence intervals have been determined as well. The fit of 
the new distribution is evaluated using an actual data set. We've found that the suggested distribution has proven to be 
effective in modeling real data set.  
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INTRODUCTION 
Almost all probability and applied statistics literatures 
show that probability models are frequently utilized in 
the research of failure-time analysis in numerous 
domains of statistics, engineering and biological 
disciplines. Existing models don't always yield a better 
fit when it comes to modeling reliability data. As a 
result, the majority of academics are drawn to altering 
traditional distributions and exploring their applicability 
and adaptability. These novel modified distributions, 
which are created by adding extra shape parameter(s) to 
the baseline model, usually provide good fit when 
compared to standard classical distributions.  
 
 In the recent couple of decades, it has been discovered 
that the exponential distribution is used as the basis for 
creating a novel family of distributions. A number of 
researchers made reforms to the exponential 
distribution. Distribution of exponential extension 
(EE) (Kumar, 2010), distribution of generalized 
inverted exponential (Abouammoh and Alshingiti 
,2009) and gamma EE by (Ristic and Balakrishnan, 
2012), are some of the modified exponential 
distributions. Lemonte (2013) introduced a novel 
exponential-type distribution, and its hazard function 
might be constant, upside-down bathtub, decreasing, 
bathtub-shaped, or increasing. A novel expansion of 
the exponential model was presented by (Gomez et al., 
2014). Rasekhi et al. (2017) created the modified 
exponential distribution by merging the distribution of 
extended exponential with the distribution of 
generalized exponential (Gupta & Kundu, 2001).The 

four-parameter ( ), , , c d  CDF of a modified 

exponential distribution with 0x  is 

𝐻(𝑥) = 1 − {1 −
𝑐𝑑

𝑐+𝑑
𝑙𝑛[1 − [1 − 𝑒−𝜆𝑥]𝜃]} {1 −

[1 − 𝑒−𝜆𝑥]𝜃}
𝑐
                                (1) 

 
In this article, we have created the new distribution by 
modifying the inverse NHE, which is the inversion of 
exponential distribution's extension (Nadarajah & 
Haghighi, 2011) and is also known as NHE (Chaudhary 
& Kumar, 2020a) distribution. Using this NHE 
distribution the inverse NHE was defined by (Tahir et 
al., 2018) with CDF and PDF having scale parameter 

(β)  and shape parameter   (θ ) with { 0,( , ) 0}  x  

are 

{1 (1 / ) }( ) e
− += xG x          (2) 

( ) ( ) 1

2
( ) 1 / exp 1 1 /

 
 

−
= + − +g x x x

x
    (3) 

 
It is possible to simulate positive real data sets using 
this distribution, and for numerous values of α, the 
HRF can be formed as a decreasing or upside-down 
bathtub. Hence, we select this inverse NHE 
distribution for this study. By using similar approach, 
we have generated the new distribution as used by (Lai 
et al., 2003). They had used the Weibull model as the 
base distribution to define the modified Weibull 
distribution. The Weibull distribution's CDF with 

( )0, , 0  x  is 

( ) 1 exp( )= − −G x x .         (4) 
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By adding one parameter λ to (4), the modified Weibull 
distribution has been defined by (Lai et al.,2003)  with

( ), , 0 , 0    x , having CDF as 

'( ) 1 e
 −= −

xx eG x .         (5) 

 
Khan (2014) has been modified the inverse Rayleigh 
distribution and called it as the modified inverse 
Rayleigh distribution having CDF with  

2( ) exp / /  = − −
 

G x x x . ( )0, , 0  x  (6)   

To model positive data sets, Khan (2015) defined a 
modified beta Weibull probability distribution with five 
parameters that is ideal. The upside down bathtub 
hazard rate function can be used in this distribution. By 
extending the ordinary Rayleigh and exponential 
distributions, Iriarte, et al. (2018) announced 
distribution of the modified slashed-Rayleigh. Gillariose 
et al. (2020) has defined the distribution of Marshall-
Olkin modified Lindley. Many writers have also used 
the NHE distribution to create flexible models, such as 
the Burr-X Nadarajah Haghighi distribution, which was 
established by (Elsayed & Yousof, 2019). The Poisson 
inverse NHE distribution was defined by (Chaudhary 
& Kumar, 2020b) using the inverse NHE as the base 
model. 
 
The study's main goal is to provide a more adaptable 
model for the inverse NHE distribution by adding a 
single additional parameter described by (Tahir et al., 
2018). The modified inverse NHE distribution's 
statistical and distributional features are explored, as 
well as its applicability. The following are the remaining 
sections of the intended study. The modified inverse 
NHE distribution and its different statistical and 
distributional features are defined in second section. 
CVM, LSE, and MLE are applied for calculating the 
parameters of the suggested model in third section. In 
section four a real data set is considered to understand 
how the proposed model may be used to investigate 
the potentiality. The estimated values of the parameters 
and fit statistics such as log-likelihood, AIC, BIC, and 
CAIC criteria are calculated. It is discovered that the 
suggested distribution outperforms than some well-
known distributions. Final section includes some 
concluding remarks. 
 
The modified inverse NHE (MINH) distribution 
Assume X is a positive random variable having three 

parameters ( ), ,   >0 & 0x  with MINH 

distribution if it’s CDF is 
 

( ) exp 1 1 .


 −

   
= − +  

   

xF x e
x

.             (7) 

 

The associated PDF of (7) is 
 

( ) ( )

( )

1
2 1

1

1
1

( ) 1 1

 exp 1 1


 




  



−
− − − −

− −

= + +

 
= − + 

 

x x

x

f x x x e x e T

where T x e

         (8) 

 
 
Survival function of MINH distribution 

( ); , , 1 exp 1 1 e xS x
x


 

   −
  

= −  − +  
   

    (9) 

 
MINH distribution's failure rate function (HRF). 
The HRF is, 

( )
1

22

1

2

( ) 1 1 exp( )

 exp 1 1 exp( ) 1






 
 




−
−

−

 
= + + − 

 

       
 = − + − −    
        

xh x x e x T
xx

where T x
x

 (10)  

 
The reverse hazard function of MINH distribution 
The reverse failure rate function is, 

( ) ( )
1

2 11 exp( ) 1 e  


   
−

− − −= + − + x
hfR x x x x (11) 

 
Cumulative hazard function (CHF) 

The CHF of ( ),  ,     MINH model defined by 

( )1( ) log 1 exp 1 e 1


 − −  
= − − − +  

  

xH x x     (12) 

 
Quantile function:  

Assume T is a positive r.v. with ( )TF t  as its 

distribution function. Let{ [0,1]}p , then  T's pth-

quantile can be defined as 

( )1( ) −=T TQ p F p  

( ) 
1/

1 1 log e 0 
  −− − + =xp

x
   (13) 

 
Random Deviation Generation 
The MINH's random deviation generation with [
0 1 u ] can be obtained as the solution of (14),

( ) 
1/

1 1 ln exp( ) 0 
 

− − + − =u x
x

 (14) 

 
The MINH distribution's kurtosis and skewness  
Coefficient of skewness using quartiles is, 

( )
( ) ( ) ( )

( ) ( )

1/ 4 3 / 4 2 1/ 2
,

3 / 4 1/ 4

+ −
=

−
k

Q Q Q
S Bowley

Q Q
 and 
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Moors (1988) calculated the coefficient of kurtosis 
using octiles as 

( )
( ) ( ) ( ) ( )

( ) ( )

0.375 0.125 0.875 0.625

6 / 8 2 / 8

− + −
=

−
u

Q Q Q Q
K Moors

Q Q

 
With various parameter values, Fig. 1 presents PDF 

and HRF charts for ( ),  ,     MINH  

 

 
Figure 1.  For various values of λ and β and for fixed α, 
charts of the PDF (upper section) and the hazard 
function (lower section). 

 
Some useful expansion of MINH distribution 
Here, to expand the CDF and PDF of the MINH 
model, we've used the following series expansions.  

( )
0

1  
=

 
+ =   

 

nn k

j

n
x x

k
 

0

 
!



=

= 

n
x

n

x
e

n
 

 

The CDF of MINH distribution with 0x  defined in 

(7) is 

  ( ) ( )1  exp 1 1 e  
 − − = − +

  
xF x x  

( )1

0

1 1

 
!

 − −


=

 − +
  

= 

i
x

i

x e

i
 

  
( )

( )1

0 0

1
  1

!


 

− −

= =

−  
= + 

 


j
j

x

i j

i
x e

ji
 

       
( )

( )1

0 0 0

1
 ,

!

j
n

k
x

i j k

i n
x e

j ki


 

− −

= = =

−    
=    

   
   

     where n j=  

( )
0

1 ,  
=

  
+ =   

  


n
n k

k

n
a a n o

k
  

( )
( )

0 0 0

1
  

!


 

− −

= = =

−   
=       

   

j
n

k k kx

i j k

n i
F x x e

k j i
  (15) 

Differentiating (15) w. r. t. x we get PDF as, 

      

( )
( )

( )

3
0 0 0

1
3

1
( ) '   

!

 





 

= = =

− − −

−   
= =      

  

 = − +
  

j
n

k

i j k

k kx

i n
f x F x T

j ki

where T kx e x

 
( ) ( )

1
1

0 0 0

1
  

!

 

+
 

− − −

= = =

−   
= +     

  

j
n

k k kx

i j k

i n
k x e x

j ki
 

( )1

0 0 0

   
 

− − −

= = =

= +  
n

k kx
ijk

i j k

Z x e x   (16) 

( )
1

1
,    

!


+
−   

=   
  

j
k

ijk

i n
where Z k

j ki
 

 
Moments of MINH Distribution 
About the origin, the MINH distribution's rth moment 
is  

( )'
0               = 

r
r x f x dx   

      ( )1
0

0 0 0

    
 

 − − −

= = =

= +  
n

r k kx
ijk

i j k

x Z x e x dx         

1

0 0
0 0 0 0 0 0

   
    

− − − − −

= = = = = =

= +  
n n

r k kx r k kx

ijk ijk

i j k i j k

Z x e dx Z x e dx

 
( ) ( )

1/2 1/2

1
0 0 0 0 0 0

( 1) ( )
 

 

   

− + −
= = = = = =

− + −
= + 

n n

ijk ijkr k r k
i j k i j k

r k r k
Z Z

k k
(17) 

where 
1

0

1


−

+

+
=

n ax

n

n
x e dx

a
is a standard gamma integral. 

 
MINH distribution’s moment generating function 
(mgf):   
The mgf is 

( ) ( ) '

0 !




=

= =
l

tx

x r

l

t
M t E e

l
 

( ) ( )
1

0 0 0 0 0 0 0

1

!


 

    

− + −
= = = = = = =

 − + −
= + 

  
  

l n n

ijk ijkr k r k
l i j k i j k

t r k r k
Z Z

l k k
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Mean Residual Life (MRL) Function: 
MINH's MRL function is: 

( ) ( )

 ( )

/
1 ( )





= −  = −
−


t

x f x dx

x E X t X t x
F x

 

( )

( )

( )

( )
2 1

0 0 0 0 0 0

2 , 1 ,

1 ( )

 


 

   

− −
= = = = = =

− −
+

= −
−

 
n n

ijk ijkk k
i j k i j k

k kt k kt
Z Z

k k
x

F x
 

 
Mean past life time 
Random variable X's mean past life time is  

( ) ( )* 0

t ( )

/
( )

 = −  = −

x

f t dt

x E x X X x x
F x

 

( )

( )

( )

( )
1 2

0 0 0 0 0 0

1 , 2 ,

1 ( )

   


 

   

− −
= = = = = =

− −
+

= −
−

 
n n

ijk ijkk k
i j k i j k

k kt k kt
Z Z

k k
x

F x
 

where ( ), a b  is lower incomplete gamma function. 

 
Order Statistics for MINH distribution 

For 1  ,..., nX X iid random variables from CDF F(x), let 

:k nX signify the kth order statistic and 
:k nf  denote kth 

order statistic’s PDF and defined by  

( ) ( ) ( ) ( )
1

: . 1
− −

= −      
k n k

k n nkf x T f x F x F x  

( ) ( )
1

1

−
+ −

=

− 
=     

 

n k

j k

nk

j

n k
T f x F x

j
 

1

*

0 0 0 1 0 0 0

1  

+ −
  −  

− − − −

= = = = = = =

  
= +    

   
  

l k
n n k n

k kx k kx

ijk ijkl

i j k l i j k

Z x e x e
x

 

Where
( )

!

!( 1)!
=

− −
nk

n
T

n k k
,

( )* 1
 and 

!
 

− −    
=  =     

    

j

k

ijk ijk nk ijkl

n k i n
Z Z T

l j ki
 

 
Estimation Methods  
MLE method 
The MLE approach is the most often used method for 
estimating a model's parameter. If   a random sample 

drawn from ( ),  ,     MINH be 1,..., nx x , and 

( ), ,  L be the likelihood function with 0x  and 

then, it is given by
 

( ) ( )1 2 1 2

1

; , ... , ,... / ( / )  

=

= =
n

n n i

i

L x x x f x x x f x  

( ) ( ) ( ) ( )

( )

1
2 1

4
1

1
4

, , 1 1

                                       exp 1 1

nn x xi i
i i i

i

xi
i

L x x e x e T

where T x e


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


     



−
− −− −

=

−−

= + +

 
= − + 

 

 

The density of log-likelihood is now is 

( ) ( )

( )

5
1

5
1 1 1

ln 2ln 1 ln 1

, ln 1 1







 


 

−

=

−

= = =

 
= − + − + +  

 

 
= + + − + −   

 

n
xi

i
i i

n n n
xi

i i
i i ii

n x e T
x

where T x n e x
x

 (18) 

Differentiating (18) w.r. to , ,and   , we get, 

( ) ( )

( )

1 1
6

1 1

1
6

log 1 exp( ) log 1

1 1 exp( )





  
 

 

−− −

= =

−


= + + − + + 



 
= − + − 
 

n n
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i i i
i i

i i

n
x x x e T
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1 1

1 1 1

1

1 1 1


     


− −
− − −− − −
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1
7

1 1

1 1
1 1 1
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1 1 1 exp( )
 


 

     

−

= =

− −
− −− − −

=


= + + − − 



  
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i i i
i i
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x xi i
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n
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whereT x e x x x e

 
Set the previous 3 equations to zero and solve for 

, ,and    all at the same time, we acquire the ML 

estimates ˆ ˆˆ ,      and of , ,and   . The ML 

estimates of , ,and    can be determined by 

utilizing software such as Matlab, R, Mathematica, and 
others to maximize (18). For hypothesis testing and the 

confidence interval estimate of , ,and   , the 

observed information matrix (OIM) must be calculated. 
The OIM for three parameters are calculated in the 
following way: 

11 12 13

21 22 23

31 32 33

 
 

=
 
  

M M M

M M M M

M M M

 

Where                                 
2 2 2

11 12 132
, ,  

   

  
= = =

   

l l l
M M M  

2 2 2

21 22 232
,  ,  

   

  
= = =
   

l l l
M M M  

2 2 2

31 32 33 2
,  ,  

    

  
= = =
    

l l l
M M M  

If ( , , )   =  and the associated MLE is

ˆ ˆˆ ˆ{ ( , , )}   = , then ( )( )
1

3
ˆ{ } 0,

− − → 
 

N M  

where Fisher's information matrix is ( )M . The 

variance-covariance matrix is derived from OIM using 
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the Newton-Raphson technique to optimize the 
probability which is defined through 

( )

ˆ ˆˆ ˆ ˆvar( ) cov( , ) cov( , )

1 ˆ ˆ ˆ ˆˆcov( , ) var( ) cov( , )

ˆ ˆ ˆ ˆˆcov( , ) cov( , ) var( )

    

    

    

 
 −
    = 
 
 
 

M (19) 

As a result of MLEs' asymptotic normality, nearly (1-ϑ) 
× 100 percent confidence intervals for three 

parameters with a standard normal variate /2Z are 

calculated by 

/2
ˆ ˆ{ . .( )}Z S E   , ˆ ˆ{ . .( ) }/2 S EZ      and, 

/ 2
ˆ ˆ{ . .( ) }Z S E     

 
LSE method 
Swain et al. (1988) developed weighted and simple LS 
estimators for calculating the Beta distribution's 
parameters. Minimizing (20) with regard to β, λ and α, 
and yields the LS estimators of β, λ and α for MINH 
distribution.  

( )
2

1

; , , ( )
1

  
=

 
= − + 


n

i

i

i
M X F X

n
                     (20) 

Consider ( )iF X , which represent the distribution 

function of the ordered random variables 

( ) ( )1
 

n
X X and  1, , nX X  represents a random 

sample of size n drawn from a distribution function. 

Then LS estimators { ˆ ˆ ˆ( ,   )  and } for are found by 

minimizing (20) with regard to , ,and   . 

( ) ( )
2

1

1

; , , exp 1 1  
1


    −−

=

  
= − + −   

+  

n
xi

i
i

i
M X x e

n
(21) 

 

Differentiating (21) with regard to , ,and   .we 

have, 
 

( ) ( ) ( )
1[1 ] [1 ]

1

2 1 e e
1

  


−− −−

=

 
= − −  

 + 

n J x J xxi ii
i

i

M i
e J x

n

 

( ) ( ) ( )1 [1 ] [1 ]1

1

2 e 1 e
1

 


− − −−−

=

 
= − −  

 + 

n J x J xx i ii
i i

i

M i
x e J x

n

 

( )  ( ) ( ) ( )[1 ] [1 ]

1

2 ln e 1 e
1

 



− −

=

 
= − −  

 + 

n J x J xi i
i i

i

M i
J x J x

n

 

where ( ) 1
 −

= +
xi

i
i

J x e
x

 

Minimizing K w. r. t. λ, β and α and yields the weighted 
LS estimators. 

( ) ( )

2

1

.
; , , .( )

1
  

=

 
= −  + 

n

i i
i

i
K X w F X

n
 

 

Here, wi represents the weights which are denoted by 

( )( ) ( )( ) ( ) 
1 12

( ) 2 1 1
− −

= = + + − +i i
w Var X n n i n i  

 
As a result, by minimizing (22) w.r. to { λ, β and α }, 
weighted LS estimators of { λ, β and α } can be 
produced. 

( )
( )( )
( )

2
2

1

2 1
; , , exp 1 1

1 1




   −

=

  + +    = − + −    
 − + +    

n
xi

i i

n n i
B X e

n i i x n
(22) 

 
CVME method 
By minimizing the function (23), it is possible to obtain 
the CVM estimators of { λ, β and α }.  
 

( ) ( )
2

:

1

1 2 1
| , ,

12 2
  

=

− 
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 


n

i n

i

i
T X F x

n n
 

       
2

1{1 (1 ) }

1

2 1 1
e

2 12

  −−− +

=

 −
= − +  

 

xn ix ei

i

i

n n
         (23) (23) 

 

Differentiating (23) w.r. to , ,and   , we get, 
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+ =
xi
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e J x
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The CVM estimators are obtained by solving 

= 0,  = 0  0
  

  
=

  

T T T
and simultaneously. 

 
Applications 
We consider a real data set described by (Ghitany et al., 
2008) that reflects waiting times (in minutes) for 100 
bank clients to demonstrate the MINH distribution's 
adaptability.  
 
[38.5, 33.1, 31.6, 27.0,0.8, 0.8, 1.3, 1.5, 3.3, 3.5, 3.6, 4.0, 
6.3, 6.7, 6.9, 7.1, 7.1, 7.1, 7.1, 7.4, 7.6, 5.0, 5.3, 5.5, 5.7, 
5.7, 6.1, 7.7, 8.0, 8.2, 8.6, 8.6, 12.5, 12.9, 13.0, 13.1, 13.3, 
13.6, 8.6, 8.8, 8.8, 1.8, 1.9, 1.9, 2.1, 2.6, 2.7, 2.9, 3.1, 3.2, 
8.9, 8.9, 9.5, 9.6, 9.7, 10.7, 10.9, 11.0, 11.0, 11.1, 11.2, 
11.2, 11.5, 11.9, 12.4, 4.1, 4.2, 4.2, 4.3, 4.3, 4.4, 4.4, 4.6, 
4.7, 4.7, 4.8, 4.9, 4.9, 6.2, 6.2, 6.2, 9.8, 13.7, 13.9, 14.1, 
18.4, 21.3, 21.4, 18.9, 19.0, 19.9, 15.4, 15.4, 17.3, 18.2, 
17.3, 18.1, 20.6, 21.9, 23.0]  
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We’ve approximated the MLEs of the MINH 
distribution using the optim function in R - software 
described by (R Core Team, 2021) & (Ming Hui, 2019) 
by optimizing (18). l = -317.0699 is the calculated Log-
Likelihood value. Table 1 shows the MLEs for alpha, 
beta and lambda, and together with their 95 percent 
asymptotic confidence interval (ACI) and standard 
errors (S.E.).  
 
  

Table 1. S.E. and MLE, , ,and   of MINH  

(Parameters) MLE SE 95% ACI 

α 0.48581     0.04153   (0.4044, 0.5672) 

β 0.10987     0.01603    (0.0784, 0.1413) 

λ 37.51293     6.47677 (24.8185, 50.2074) 

 
 

Fig. 2 shows that the ML estimates for , ,and    are 

derived individually. 
 

 
Figure 2. Graphs of Profile log-likelihood function 

, ,and    

 

The(Q-Q) chart and (P-P) chart are shown in Fig. 3, 
and the MINH distribution fits the data quite well. 
 
 
 

 
 
 
 

 
 
Figure 3. The (P-P) chart (right section) and (Q-Q) 
chart (left section) of the MINH distribution 
 

 
Table 2 shows the estimated parameters values of 
suggested distribution using the LSE, MLE, and CVE 
techniques, as well as the associated AIC, negative log-
likelihood, and KS statistics with p-values.  
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Table 2. Log-likelihood, AIC and KS statistics for estimates of LSE, MLE, and CVE techniques  

Estimation Method  ̂  ̂  ̂  LL AIC KS(p-value) 

MLE 0.4858 0.1099 37.5129 -317.0699 640.1398 0.0457(0.9850) 

LSE 0.5264 0.1014 31.1105 -317.2991 640.5982 0.0400(0.9972) 

CVE 0.5317 0.1040 31.2640 -317.3453 640.6907 0.0363(0.9994) 

 

  
 

Figure 4. MLE, LSE, and CVM estimation methods' density function and histogram of fitted distributions (left section) 
and Q-Q plot (right section) 

 
In this segment of fig. 4, we've shown how the MINH 
distribution can be useful for a real dataset. We have 
looked at five models to compare the suggested 
model's goodness of fit to that of other rival models, 
including the distribution of Exponential Extension 
(EE): NHE by (Nadarajah & Haghighi, 2011), 
distribution of Exponentiated Power Lindley (EPL) by 
(Ashour & Eltehiwy, 2015), distribution of Marshall-
Olkin Extended Exponential (MOEE) by (Marshall & 
Olkin, 1997), distribution of  Power Lindley (PL) by 

(Ghitany et al., 2013) and   Generalized Rayleigh (GR) 
distribution by (Kundu & Raqab, 2005).  
 
We use some renowned goodness-of-fit statistics like 
log-likelihood (-LL), HQIC, AIC, BIC, and CAIC to 
compare these models and verify the quality of the fits 
of the suggested model and display in Table 3. The 
model having lowest goodness-of-fit statistics is the 
best at fitting the data. 

 
 
 

Table 3. Log-likelihood (LL), BIC, AIC, CAIC and HQIC 

Model LL AIC BIC CAIC HQIC 

MINH -317.0699 640.1398 647.9553 640.3898 643.3029 

EPL -317.1008 640.2016 648.0171 640.4516 643.3646 

PL -318.3186 640.6372 645.8475 640.7609 642.7459 

MOEE -320.7120 645.4241 650.6344 645.5453 647.5328 

GR -321.5182 647.0364 652.2467 647.1601 649.1451 
NHE -323.4487 650.8973 656.1077 651.0185 653.0060 

Here AIC = Akaike information criterion, HQIC = Hannan-Quinn information criterion, BIC=Bayesian information criterion, CAIC = Corrected 
Akaike information criterion. In Fig. 5, MINH distribution and a few additional distributions' empirical and estimated distribution functions, as well as 

density function and the histogram of fitted distributions, are illustrated. 
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Figure 5. Fitted distributions' histogram and density function (left section) & Empirical distribution function with 

estimated distribution function (right section) 

 
Table 4 shows that the values of Anderson-Darling (AD), 
CVM and Kolmogorov-Smniorov  (KS) statistics to 
evaluate the MINH distribution's goodness-of-fit to other 
competing distributions. Because both the MINH 
distribution and Power Lindley (PL) distribution have the 

largest p-value and the lowest test statistic value, it may 
accomplish that both MINH and PL distributions have a 
far better fit and consistency than the other competing 
distributions. 

 
 

Table 4. The p-values associated with goodness-of-fit statistics 
 

Model KS(p-value) AD(p-value) CVM(p-value) 

MINH 0.0457(0.9850) 0.0197(0.9974) 0.1535(0.9983) 
EPL 0.0375(0.9989) 0.0178(0.9987) 0.1280(0.9996) 
PL 0.0520(0.9498) 0.0458(0.9025) 0.3028(0.9359) 

MOEE 0.0596(0.8690) 0.0760(0.7164) 0.6351(0.6150) 
GR 0.0945(0.3337) 0.2043(0.2595) 1.0911(0.3126) 

NHE 0.1069(0.2028) 0.2096(0.2499) 1.5539(0.1642) 

 
 
 
CONCLUSIONS 
The modified inverse NHE distribution is investigated in 
this paper. The proposed model's distributional and 
statistical properties have been described. The hazard 
function can have a wide range of monotone failure rates, 
increasing, constant, and the MINH distribution's PDF 
curve can be unimodal and positively skewed. The 
suggested distribution fits the real dataset far better, as 
evidenced by the P-P and Q-Q charts. We have used a 
real data set to examine three popular estimation 
procedures: MLE, LSE, and CVM and found that ML 
estimates outperform then LSE and CVM estimates. An 
asymptotic confidence interval for MLEs has also been 
created. The application demonstrates that both the 
MINH distribution and PL distribution r outinely 
outperform rival distributions in terms of fit and 
flexibility. In the fields of probability theory and applied 
statistic, this model is expected to be a viable alternative. 
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