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ABSTRACT 

An attempt is made to study an unsteady, two-dimensional, laminar, mixed convective Magnetohydrodynamic (MHD) 
flow of an incompressible visco-elastic fluid (Walters Bfluid model) past an infinite vertical plate. The reduced 
governing equations are solved analytically using two-term harmonic and non-harmonic functions. The effects of 
different pertinent parameters are discussed with the help of graphs and tables. The novelty of the present study is to 
account for the effects of viscous and joules dissipative heat and a linear first-order chemical reaction of diffusive 
species and mixed convective flow phenomena on an infinite vertical plate subjected to time-dependent suction 
velocity and a transverse magnetic field acting at a distance. The important findings reported herein are: increasing 
values of chemical reaction parameter cause low velocity and concentration, a decline in concentration profile is seen 
for the higher values of Schmidt number, Prandtl number contributes to more active convection. The application of 
the present study may be seen in combustion systems, nuclear reactors, and chemical processes. Before concluding 
the considered problem, our results are validated with previous results and are found to be in good agreement. 
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INTRODUCTION 
Viscous dissipation changes the temperature distributions 
by playing a role like an energy source, which leads to affect 
heat transfer rates. The merit of the effect of viscous 
dissipation depends on whether the plate is being cooled 
or heated. Apart from the viscous dissipation in viscous 
fluid flow, the joules dissipation also acts as a volumetric 
heat source in MHD heat transfer. Heat transfer analysis 
over porous surface is of much practical interest due to its 
abundant applications. To be more specific, heat treated 
materials travelling between a feed roll and wind-up roll or 
materials manufactured by extrusion, glass-fibre and paper 
production, cooling of metallic sheets or electronic chips, 
crystal growing just to name a few. In these cases, the final 
product of desired characteristics depends on the rate of 
cooling as well as the process of stretching. In view of these 
aspects, the present work deals with the effect of viscous 
dissipation and joules dissipation on MHD flow. 
 
The mixed convection boundary layer flow of a non-
Newtonian fluid in the presence of strong magnetic field 
has wide range of applications in nuclear engineering and 
industries. In astrophysical and geophysical studies, the 
MHD boundary layer flows of an electrically conducting 
fluid through porous media have also numerous 
applications for modelling and simulation. Many 
researchers have studied the transient laminar natural 
convection flow past a vertical porous plate for the 
application in the branch of science technology such as in 
the field of agriculture engineering and chemical 
engineering. 
 

The problem of heat and mass transfer combined with 
chemical reaction is very important due to its industrial 
application. It has been the subject of many works in recent 
years. Heat and mass transfer occur simultaneously in 
processes such as drying, evaporation at the surface of a 
water body, energy transfer in a wet cooling tower and the 
flow in a desert cooler. Other examples of industrial 
applications are curing of plastic, cleaning and chemical 
processing of materials relevant to the manufacture of 
printed circuitry, manufacture of pump-insulated cables 
etc. Two types of chemical reaction can take place; 
homogeneous reaction which occurs uniformly 
throughout a given phase, while a heterogeneous reaction 
takes place in a restricted region or within the boundary of 
a phase. Heat and mass transfer with chemical reaction has 
attracted of many authors because of its applications. 
 
An analysis of thermal boundary layer in an electrically 
conducting fluid over a linearly stretching sheet in the 
presence of a constant transverse magnetic field with 
suction or blowing at the sheet was carried out by Chaim 
(1977). The viscous and joules dissipation and internal heat 
generation was taken into account in the energy equation. 
A mathematical analysis has been carried out on 
momentum and heat transfer characteristics in an 
incompressible, electrically conducting viscoelastic 
boundary layer fluid flow over a linear stretching sheet 
(Abel et al., 2008). Chen (2004) examined the effect of 
combined heat and mass transfer on MHD free convection 
from a vertical surface with ohmic heating and viscous 
dissipation. The effect of viscous dissipation and joules 
heating on MHD free convection flow past a semi-infinite 
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vertical flat plate in the presence of combined effect of Hall 
and non-slip currents for the case of power-law variation 
of the wall temperature is analyzed (Eldahab and Aziz, 
2005). The flow and heat transfer in a second grade fluid 
have been studied by many researchers in different 
contexts. For example, Parida et al. (2011) have examined 
the magnetic effect on the flow and heat transfer of second 
grade fluid in a channel with porous wall and later 
Bhargava and Singh (2012) have numerically analysed the 
flow and heat transfer of a second grade fluid over an 
oscillatory stretching sheet including viscous dissipation 
and joule heating. A boundary layer analysis for Newtonian 
conducting fluid over an infinite vertical porous plate has 
been carried out (Singh and Gorla, 2009). In this 
investigation they studied the effect of viscous dissipation, 
joule heating, thermal diffusion and Hall current. The study 
of heat dissipation on the flow of visco-elastic fluid past an 
infinite vertical plate is studied by Uwanta et al. (2011). 
Mahanta and Choudhury (2012) reported the analysis of 
mixed convective MHD flow of second grade fluid past a 
vertical infinite plate with mass transfer. The MHD free 
convection and mass transfer flow of Newtonian fluid over 
an infinite vertical porous plate with viscous dissipation 
have been investigated by Poonia and Choudhary (2010). 
Barletta and Celli (2008) investigated the mixed convection 
MHD flow in a vertical channel with joules and viscous 
dissipation effects. 
 
The effects of viscous and joules dissipation on MHD 
flow, heat and mass transfer past a stretching porous 
surface embedded in a porous medium has been studied 
by Anjali Devi and Ganga (2009). Barik et al.(2013) have 
been studied the MHD flow and heat transfer over a 
stretching porous sheet subject to power law heat flux in 
the presence of chemical reaction and viscous 
dissipation. The mass transfer effect on a free convective 
visco-elastic fluid over an infinite vertical porous plate 
with viscous dissipation has been investigated by Barik 
et al. (2012). Nayak and Panda (2013) studied the mixed 
convective MHD flow of second grade fluid with 
viscous dissipation and joule heating past a vertical 
infinite plate with mass transfer. Swain and Senapati 
(2015) inspected the aftermath of mass transfer on free 
convective flow set in a porous medium. Mabood and 
Shateyi (2019) studied radiative MHD unsteady flow 
with multiple slips. Sekhar et al. (2018) illustrated the 
multiple slips impacts on MHD flow through porous 
medium. Swain et al. (2020) studied viscous dissipation 
and joule heating effect on MHD flow and heat transfer 
past a stretching sheet embedded in a porous medium. 
Nadeem et al. (2022) analyzed the second grade fuzzy 
hybrid nanofluid stagnation point flow and heat transfer 
over a permeable stretching/ shrinking sheet 
incorporating viscous dissipation and nonlinear thermal 
radiation. Swain et al. (2021) reported the unsteady 
electrically conducting viscous fluid, flowing in 
permeable capillary, subjected to magnetic field and 
temporal deformation with radiative and dissipative heat, 
representing the blood flow incorporating the second-
order slip at the capillary surface. Khan et al. (2022) 
observed the free convection flow of second grade dusty 
fluid between two parallel plates using Fick’s and 

Fourier’s laws as a fractional model taking heat and mass 
transfer into account. Biswal et al.(2022) elucidated the 
MHD boundary layer free convective stagnation-point 
flow toward an inclined nonlinearly stretching sheet 
embedded in a porous medium discussing the effect of 
dissipative heat, nonuniform space dependent 
volumetric heat power, and a linear first order chemical 
reaction of diffusive species. 
 
Due to techonological applications of heat and mass 
transfer problems in hydrometallurgical and chemical 
industries, it is very important to investigate the 
thermodynamic behaviour of the chemical reaction 
process. In Practice, there are a large number of 
transport phenomena occurring in solar collectors, 
chemical engineering, nuclear reactors etc. are governed 
by the mutual action of buoyancy forces owing to both 
heat and mass diffusions under the action of chemical 
reaction effects. This motivates the present study to 
perform the fluid flow, heat and mass transfer analysis 
of a visco-elastic fluid with mixed MHD flow. 
 
The novelty of the present study is to analyze the mixed 
convective MHD flow of second grade fluid 
incorporating the chemical reaction in the mass transfer 
phenomena along with a transverse magnetic field act at 
a distance. The effect of viscous dissipation is also taken 
into account. The analytical solution of the problem is in 
good agreement with the numerical solution obtained by 
Nayak and Panda (2013) in the absence of chemical 
reaction which is the main feature of the problem. The 
flow phenomena have been characterized with the help 
of flow parameters and their effects on the velocity field, 
temperature and concentration have been analysed and 
results are presented graphically. 
  
MATHEMATICAL FORMULATION 
We consider an unsteady two dimensional mixed 
convective boundary layer flow of an incompressible and 
electrically conducting non-Newtonian second grade 
visco-elastic fluid along an infinite vertical heated plate 
in the presence of thermal and solutal buoyancy effects. 
The x-axis is taken in the upward direction of the plate 
and y-axis is normal to it. A constant magnetic field of 
strength B0 is applied in the direction perpendicular to 
the plate.  
The following assumptions are made during the course 
of present analysis. 

(i) An infinite vertical heated plate is subjected to 
space dependent transverse magnetic field in the 
presence of thermal and solutal buoyancy effects.  

(ii) The magnetic number is so small that the induced 
magnetic field can be neglected in comparison with 
the appeared space dependent applied one. 

(iii) The suction velocity is assumed to be time 
dependent.  

(iv) It is also assumed that no polarization voltage 
exists. This then corresponds to the case when no 
energy is added to or extracted from the fluid by 
the electric field. 

(v) The diffusive species is chemically reactive with 
variable concentration at the surface. 
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Now under the usual Boussinesq approximation, the governing boundary layer equations (cf.[15]) are 
Equation of Continuity: 

0
v

y


=


           (1) 

Equation of Motion : 
3 32

0
2 2 3

ku u u u u
v v

t y y t y y



 

 
 
 
 

    
+ = − +

     

2
0( - ) + ( - )T C

B
g T T g C C u


 


 + −  (2) 

Equation of Energy: 
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Equation of Mass Transfer: 

2

2
( )c

C
D

y

C C
v k C C

t y



=



 
+ − −

 
                (4) 

From Eq. (1), it is clear that v is a constant or function of time only, so we consider it in the following form: 

( )0 1 i tv v Ae = − + ,                (5) 

where A is the suction parameter (real positive constant) ,  ω-the frequency of the suction velocity, v0 is a suction 

velocity which is non-zero positive constant,  and A are small  less than unity. The negative sign indicates that the 
suction is towards the plate. 
 
The boundary conditions are given by [15]: 

( ) ( )0 w 0 w =0, = + (t) , = + (t) ,     at =0 
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The subscripts w and  refer to the conditions at wall and far away from the plate respectively. Here, 

( )0 0 1 i tT C e = = + .    

     
Non-dimensional quantities are defined as:  
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In view of (7) and (8), equations (2) to (4) and after dropping the tilde (~), become  
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The boundary conditions corresponding to Eq. (6) are  
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SOLUTION PROCEDURE 
In order to obtain solutions of eqn. (9)-(11) together with boundary conditions (12), The superimposed solutions 
following Poonia and Choudhary [10] are. 
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Substituting Eq. (13) into Eqs.(9) -(11) and equating the coefficient of the powers of  , we obtain  

Zeroth Order: 
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First Order: 
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Solving (16) and (20), under the boundary conditions (17) and (21) we get: 
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0 1
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The equations (14), (15) and (18), (19) are still coupled non-linear, whose analytical solutions are not possible. So we 
apply perturbation method with Ec<<1 as the perturbation parameter and obtain 
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Introducing (24) into (14), (15) and (18), (19) we get 
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The corresponding boundary conditions are: 
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Solving (29) and (31) under the boundary condition (33) , we get 
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The equations (25)-(28), (30) and (32) are still coupled and nonlinear. Hence, we again apply perturbation method 
with elastic parameter Rc<< 1 as the perturbation parameter. Our assumption is justified as we work with a viscoelastic 
model with short memory i.e., slightly elastic fluid. So we can expand u00, u01, u10, u11, in terms of elastic parameter 
(Rc) in the following form:  
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100 101 110 1110,  0, 0, 0,u u u u   → → → →        

 (37) 
 
In view of (36) into equations (25) to (28) are expressed as the following system of equations: 
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Using boundary conditions (37), we obtain the following solutions of the equations (38)-(45) and (27), (28), (30) and 
(32): 
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The physical quantities of second grade fluid which are of more interest: 

(i) Nusselt number (Nu) 

y 0
y

=

 
= − 

 
 

(ii) Sherwood number

y 0
y
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 
= − 

 
 

 
RESULTS AND DISCUSSION 
The effect of different parameters like viscous, 
viscoelastic and magnetic strength on the velocity of the 
fluid, the effects of viscous dissipation and Joule effects 
on temperature field as well as the effect of chemical 
reaction on mass transfer are analysed.  
 
The influence of Eckert number is shown in Fig. 1. It is 
observed that the velocity is the increasing function of

cE . The higher Eckert number implies greater viscous 

dissipative heat and causes an increase in the velocity. 
The presence of frictional heating forces in the second 
grade fluid is converted into heat energy and therefore, 
the velocity profile increases in the boundary layer 
region. 
 

 Figure 2 depicts the effect of chemical reaction 
parameter on velocity profiles. It is observed that the 
velocity of the fluid reduces with an increase of chemical 
reaction parameter. Higher chemical reaction leads to 
lower concentration which results large buoyancy force 
producing lower velocity. 
 
The effect of magnetic strength on the motion of the 
fluid is analysed in Fig. 3. It is seen that the magnetic field 
acts like drag force (Lorentz force) and decelerates the 
motion of the fluid on the boundary layer and then 
finally it approaches to zero.  
 
The effects of Schmidt number on velocity and 
concentration field are explained in Fig. 4 and Fig. 7, 
respectively. Concentration reduces with an increase of 
Schmidt number (Fig. 7) and as a result a large buoyancy 
force produces and it decreases the fluid velocity (Fig. 4). 

 

 
Figure 1 Velocity profiles for Ec when  ∈= 𝟎. 𝟎𝟏, 𝝎 = 𝟏𝟎, 𝝎𝒕 = 𝟎, Sc=0.3, Gr=5, Gm=5, Rc=0.1, Kc=2, Pr=0.7, M=2, 

A=0.5 
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Figure 2 Velocity profiles for Kc when  ∈= 𝟎. 𝟎𝟏, 𝝎 = 𝟏𝟎, 𝝎𝒕 = 𝟎, Sc=0.3, Gr=5, Gm=5, Rc=0.1, Ec=0.001, Pr=0.7, M=2, 
A=0.5 

 
 
 

 
 

Figure 3 Velocity profiles for M when  ∈= 𝟎. 𝟎𝟏, 𝝎 = 𝟏𝟎, 𝝎𝒕 = 𝟎, Sc=0.3, Gr=5, Gm=5, Rc=0.1, Ec=0.001, Pr=0.7, Kc=2, 
A=0.5 
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Figure 4 Velocity profiles for Sc when  ∈= 𝟎. 𝟎𝟏, 𝝎 = 𝟏𝟎, 𝝎𝒕 = 𝟎, M=2, Gr=5, Gm=5, Rc=0.1, Ec=0.001, Pr=0.7, Kc=2, 
A=0.5 

 
 
The Prandtl number defines the ratio of momentum 
diffusivity to thermal diffusivity. It is observed from fig-
5 that an increase in the Prandtl number results a 
decrease of the thermal boundary layer thickness and in 
general lower average temperature within the boundary 
layer. The reason is that increasing values of Prandtl 
number equivalent to increase the thermal conductivities 
and therefore heat is able to diffuse away from the heated 
plate more rapidly. Thus, it is concluded that in case of 
smaller Prandtl number as the thermal boundary layer is 
thicker, the rate of heat transfer is reduced. 

Fig-6 shows the effect of chemical reaction parameter on 
concentration field. It is seen that as the chemical 
reaction parameter increases, the concentration 
decreases. Again concentration is higher at the plate and 
gradually decreases farther away from the plate. The 
reactants consume during chemical reaction proceeds. 
By increasing chemical reaction parameter, the reaction 
proceeds more efficiently in the presence of porous 
media. Hence, a decline in concentration profile is seen. 

 
Figure 5 Temperature profiles for Pr when  ∈= 𝟎. 𝟎𝟏, 𝝎 = 𝟏𝟎, 𝝎𝒕 = 𝟎, M=2, Gr=5, Gm=5, Rc=0.1, Ec=0.0001, Kc=2, 

A=0.5, Sc=0.3 
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Figure 6 Concentration profiles for Kc when  ∈= 𝟎. 𝟎𝟎𝟏, 𝝎 = 𝟏𝟎, 𝝎𝒕 = 𝟎, Sc=0.3 

 
 
Figure 7 indicates the influence of Schimdt number on 
concentration distribution. It is elucidated that higher 
values of Schimdt number reduces the concentration. 
The reason is that Schimdt number is the ratio of 

kinematic viscosity to the molecular diffusivity and 
higher Schimdt number means lower molecular 
diffusion rate which leads lower concentration. 

 

 
 

Figure 7 Concentration profiles for Sc when  ∈= 𝟎. 𝟎𝟎𝟏, 𝝎 = 𝟏𝟎, 𝝎𝒕 = 𝟎, Kc=2 
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Table 1 Nusselt number data for ∈= 𝟎. 𝟎𝟎𝟏, 𝝎 = 𝟏𝟎, 𝝎𝒕 = 𝟎, Gr=5, Gm=5, Rc=0.1, A=0.5, Sc=0.3 

M Pr Ec Nu (Nayak and 
Panda[15]) 

Nu (present) 

1 0.7 0.001 0.116963 0.11575 
2 0.7 0.001 0.118819 0.11781 
3 0.7 0.001 0.119624 0.11862 
3 1 0.001 0.166763 0.16685 
3 2 0.001 0.239854 0.23976 
3 5 0.001 0.367016 0.36702 
3 5 0.005 0.352350 0.35244 
3 5 0.008 0.340166 0.34025 
3 5 0.010 0.331399 0.33148 

 
Table 2 Sherwood number data for ∈= 𝟎. 𝟎𝟎𝟏, 𝝎 = 𝟏𝟎, 𝝎𝒕 = 𝟎, Gr=5, Gm=5, Rc=0.1, A=0.5 

Kc Sc Sh 

1 0.2 0.5626 
2 0.2 0.7446 
3 0.2 0.8853 
2 0.3 0.9440 
2 0.7 1.5921 

   
 
Table 1 shows the Nusselt number for different 

pertinent parameters at phase t 0 = . It is observed 

that the Nusselt number increases with an increase of 
magnetic parameter. This is due to the fact that the 
applied magnetic field induces a Lorentz force and a 
Joule heating which are responsible for the increase of 
the rate of heat transfer and the decrease of the thermal 
boundary layer thickness. Further, it is observed that an 
increase in the Prandtl number results an increase in the 
Nusselt number that corresponds to more active 
convection but the reverse effect is marked when the 
Eckert number increases. Furthermore, Table-1 
represents a comparison of present study with the results 
of Nayak and Panda [15] which shows a good agreement. 
 
Sherwood numbers (Sh) are given in Table-2. It is 
observed that Sherwood number increases with increase 
in both chemical reaction parameter and Schmidt 
number. Sherwood number represents the ratio of the 
convective mass transfer to the rate of diffusive mass 
transport. So for the higher values of chemical reaction 
parameter and Schimdt number, convective mass 
transfer is dominant which may be of more interest due 
to application in drying, evaporation or dissolution. 
 
CONCLUSIONS 
An unsteady two dimensions mixed convective 
boundary layer flow of an incompressible and electrically 
conducting non-Newtonian second grade visco-elastic 
fluid along an infinite vertical heated plate in the 
presence of thermal and solutal buoyancy effects. The 
dimensionless governing equations for this investigation 
are solved analytically using two-term harmonic and 
non-harmonic functions. All the calculations and graphs 
have been accomplished using MATLAB. Some of the 
important conclusions are given below. 
 

• The higher Eckert number implies greater viscous 
dissipative heat and causes an increase in      the 
velocity. 

• Increasing values of chemical reaction parameter 
lead to low velocity and concentration. 

• Concentration is reduced by the increasing values of 
Schmidt number. 

• An increase in the Prandtl number results a decrease 
of the thermal boundary layer thickness. 

• It is observed that an increase in the Prandtl number 
results an increase in the Nusselt number but the 
reverse effect is marked when the Eckert number 
increases. 

• Higher values of chemical reaction parameter and 
Schimdt number enhance the mass transfer rate. 

 
AUTHOR CONTRIBUTIONS 
Both authors contributed equally. 
 
CONFLICT OF INTERESTS 
The authors declare no conflict of interests.  
 
DATA AVAILABILITY STATEMENT  
The data that support the findings of this study are 
available from the corresponding author, upon 
reasonable request. 
 
 
REFERENCES 
Abel, M.S., Sanjayanand, E., & Nadeppanavar, M.M. 

(2008). Viscoelastic MHD flow and heat transfer 
over a stretching sheet with viscous and ohmic 
dissipations. Communication in Nonlinear Science and 
Numerical Simulation, 13, 1808-1821. 

Abo-Eldahab, E.M., & EL Aziz, M.A. (2005). Viscous 
dissipation and joules heating effects on MHD free 
convection from a vertical flat plate with power-law 
variation in surface temperature in the presence of 



B.K. Swain, R.N. Barik 

63 

 

Hall and non-slip currents. Applied Mathematical 
Modelling, 29, 579-595. 

Anjali Devi, S.P. & Ganga, B. (2009). Effects of viscous 
and joules dissipation on MHD flow, heat and mass 
transfer past a stretching porous surface embedded 
in a porous medium, Nonlinear Analysis: Modelling and 
Control, 14(3), 303-314. 

Barik, R.N., Dash, G.C., & Rath, P.K. (2013). MHD flow 
and heat transfer over a stretching porous sheet 
subject to power law heat flux in the presence of 
chemical reaction and viscous dissipation, 
International Journal of Computing Science and Mathematics, 
4(3),252-265. 

Barik, R.N., Dash, G.C., & Rath, P.K. (2012). Mass 
transfer effect on a free convective visco-elastic fluid 
over an infinite vertical porous plate with viscous 
dissipation. International Journal of Mathematical Archive, 
3(10), 3809-3825.  

Barletta, A., & Celli, M. (2008). Mixed convection MHD 
flow in a vertical channel with joules and viscous 
dissipation effects. International Journal of Heat Mass 
Transfer, 5, 6110-6117. 

Bhargava, R., & Singh, S. (2012). Numerical simulation 
of unsteady MHD flow and heat transfer of a second 
grade fluid with viscous dissipation and Joule heating 
using mesh free approach. World Academy of Science, 
Engineering and Technology, 67, 1043-1049. 

Biswal, M.M., Swain, B.K., Das, M., & Dash G.C. (2022). 
Heat and mass transfer in MHD stagnation point 
flow toward an inclined stretching sheet embedded 
in a porous medium. Heat Transfer, doi: 
10.1002/htj.22525. 

Chaim, T.C. (1977). Magnetohydrodynamic heat transfer 
over a non-isothermal stretching sheet. ActaMech, 
122, 169-179. 

Chen, C.H. (2013). Combined heat and mass transfer in 
MHD free convection from a vertical surface with 
ohmic heating and viscous dissipation. International 
Journal of Engineering Science, 42, 699-713. 

Khan, Z., Haq, S., Ali, F., & Andualem, M. (2022). Free 
convection flow of second grade dusty fluid between 
two parallel plates using Fick’s and Fourier’s laws: a 
fractional model. Scientific Reports, 12, 3448. 

Mabood, M., & Shateyi, S. (2019). Multiple slip effects 
on MHD unsteady flow heat and mass transfer 
impinging on permeable stretching sheet with 
radiation. Modelling and Simulation in Engineering, 
3052790, 1-11. doi: 10.1155/2019/3052790. 

Mahanta, M., & Choudhury, R. (2012). Mixed convective 
MHD flow of visco-elastic fluid past a vertical 

infinite plate with mass transfer. International Journal of 
Science & Engineering Research, 3(2), 1-7. 

Nadeem M., Siddique I., Awrejcewicz J., & Bilal, M. 
(2022). Numerical analysis of a second grade fuzzy 
hybrid nanofluid flow and heat transfer over a 
permeable stretching/shrinking sheet. Scientific 
Reports, 12, 1631. 

Nayak, A., & Panda, S. (2013). Mixed convective MHD 
flow of second grade fluid with viscous dissipation 
and joule heating past a vertical infinite plate with 
mass transfer. Mathematical Theory and Modelling, 3(2), 
38-46. 

Parida, S.K., Panda, S., & Acharya, M. (2011). Magneto-
hydrodynamic (MHD) flow of second grade fluids in 
a channel with porous wall. Meccanica, 46, 1093-1102.  

Poonia, H., & Chaudhary, R.C. (2010). MHD free 
convection and mass transfer flow over an infinite 
vertical porous plate with viscous dissipation. 
Theoretical and Appllied Mechanics, 37(4), 263-287. 

Sekhar K.R., Reddy, G.V., Raju, C.S.K., Ibrahim, S.M., 
& Makinde, O.D. (2018). Multiple slip effects on 
magnetohydrodynamic boundary layer flow over a 
stretching sheet embedded in a porous medium with 
radiation and joule heating. Special Topics & Reviews in 
Porous media: An International journal, 9, 117-132. 

Singh, A.K, & Gorla, R.S.R. (2009). Free convective heat 
and mass transfer with Hall current, Joule heating 
and thermal diffusion. Heat and Mass Transfer, 45(11), 
1341-1349. 

Swain, B.K., Biswal, M.M., & Dash, G.C.(2021), Effect 
of the second-order slip and heat source on 
dissipative MHD flow of blood through a permeable 
capillary in stretching motion. International Journal of 
Ambient Energy. doi 10.1080/01430750.2021.1979649 

Swain, B.K., Parida, B.C., Kar, S., & Senapati, N. (2020), 
Viscous dissipation and joule heating effect on MHD 
flow and heat transfer past a stretching sheet 
embedded in a porous medium. Heliyon, 6, e05338,1-
11. 

Swain, B.K., & Senapati, N. (2015). The effect of mass 
transfer on MHD free convective radiating flow over 
an impulsively started vertical plate embedded in a 
porous medium. Journal of Applied Analysis and 
Computation, 5(1), 18–27. 

Uwanta, I.J., Isah, B.Y., & Ibrahim, M.O. (2011). Visco-
elastic fluid flow past an infinite vertical plate with 
heat dissipation. International Journal of Computer 
Applications, 36(2), 17-24.

 
 
 
  



Mass Transfer Effects on Mixed Convective MHD Flow …. 

64 

 

APPENDIX 

2 2

0 1

4 4
,   m , m

4 2 2

c c c c c c

c c

S S S k S Si
k S




   + + + + 
   = + = − = −          

 

2

2 3 4

1 1 4
41 1 4

m ,m ,m ,
2 2 2

r r r

i
M

P P i P M





  
+ + +     + + + +    = − = − = −           

 

 

2 2 20
0 1 2 0 0 3 4 5 3 3

1 2

4
,    ,    , ,  ,   mr

r r

Am GG
I I P P M I m m M I I I m m M

I I
= = − − = + − = = = + −  

3 3

3 0 4
6 7 8

1 2

4
,    ,    ,rr P I m IiP A

I I I
I I

−
= = =  

I9 = (I3 + I4) + Rc (I7 + I8), I10 = I3 + R c I7, I11 = I4 + RcI8 

2 2 2 2 2 2

9 3 10 11 0
12 13 142

3 3 0 0

( ) ( ) ( )
  ,     ,  

2 (2 ) 2 2 (2 )

r r r r

r r r

P I m M I P P M I P m M
I I I

m m P P m m P

+ + +
= = =

+ +
 

( )9 10 3

15 2

3 3

2 r r

r

I I P m P M
I

m P m

−
=

−
, 

( )10 11 0

16 2

0 0

2 r r

r

P I I M m P
I

m m P

−
=

−
, 

( )

( )( )
9 11 0 3

17

3 0 3 0

2 r

r

P I I M m m
I

m m P m m

+
=

+ + +
 

I18 = I17 – I12 – I13 – I14 – I15 – I16, 
2 2

19 3 3 204 2 ,    4 2 ,r rI m m M I P P M= + − = − −

( ) ( )
2

2

21 0 0 22 3 34 2 ,    r r
I m m M I P m P m M= + − = − − − −  

I23 = (Pr- 0m )2 – (Pr- 0m )– 0m ,  I24 = (m3+ 0m )2 + (m3+ 0m )- M, 

18 13 1512 14
25 26 27 28 29

1 19 20 21 22

,   ,   ,   ,   ,r r rr rG I G I G IG I G I
I I I I I

I I I I I
= = = = = 16 17

30 31

23 24

,   ,   r rG I G I
I I

I I
= =  

I32 = I31 – I25 – I26 – I27–I28 – I29 – I30, 

3 3 3 3

25 3 26 27 0 28
34 35 36 37

1 19 20 21

8 8 8
,   ,   ,   ,r rI P m I P I m I

I I I I
I I I I

= = = =

( ) ( ) ( )
3 3 3

29 3 30 0 31 3 0

38 39 40

22 23 24

,   ,
r rI P m I P m I m m

I I I
I I I

− − +
= = = ,I41= I35+ I37–I40– I39– I38– I36– I34, 

I42 = I32 + Rc I41, 
2 2

43 2 2 44,   
4 4

r r

i i
I m m M I P P M

    
= + − + = − − +   

   
 

2 2 2

45 1 1 46 0 0 47 3 3,   , ,  
4 4 4

i i i
I m m M I m m M I m m M

       
= + − + = + − + = + − +     

     
 

0

0
48 49 50 51

43 44 45 46

44
11

44
 ,  ,  , 

r
mr

mr r

im AiP A
GG

iG m AiG P A
I I I I

I I I I



 

  
+−   

   = = = =  

( )3 4 3 3 4 0
52 53 54

47 44 46

, ,r
A I I m AP I AI m

I I I
I I I

+
= = = , I55 = I49 + I50 + I52 + I53 – I48 – I51 – I54, 

I56 = I49 + I53 , I57 = I51 + I54, 
2

58 4 4
4

i
I m m M

 
= + − + 

 
 

3 3 3 3 3 3

55 4 48 2 56 1 50 0 57 3 52
59 60 61 62 63 64

58 43 44 45 46 47

, , , , , ,rI m I m I P m I m I m I
I I I I I I

I I I I I I
= = = = = =  



B.K. Swain, R.N. Barik 

65 

 

2 2 2 2 2

55 4 48 2 56 50 1 57 0
65 66 67 68 69

58 43 44 45 46

, , , ,
4 4

rI m I m I P I m I mi i
I I I I I

I I I I I

 
= = = = = , 

( )2
7 8 352 3 7 8 0

70 71 72 73

47 47 44 46

, , ,r
I I mI m I P I m

I I I I
I I I I

+
= = = = ,

( ) 3 3 3
3 4 3 3 0 4

74 75 76

47 44 46

, ,r
I I m I P m I

I I I
I I I

+
= = =

,  
 I77 =I65– I59, I78=  I64- I70 – AI71- AI74, I79 = I66–I60,  I80 = I62–I68, I81 = I69–I63 + AI73+ AI76, 
I82 = –I61– I67 – AI72 – AI75, I83 = –I78– I79– I80– I81– I82, I84 = I25+Rc I34, I85 = I26–Rc I35,  
I86 = I27+Rc I36, I87 = I28–Rc I37, I88 = I29+Rc I38, I89 = I30+Rc I39, I90 = I31–Rc I40,  
I91 = I55 + Rc I83, I92 = I48 + Rc I79, I93 = Rc I82 – I56 

I94 = Rc I80 – I50, I95 = Rc I81 + I57, I96 = Rc I78 – I52, I97 = 
2

rP A I18 

I98 = – 2Pr A I12 m3 – 2 PrI9 I96
2

3m – 2Pr M I9 I96 

I99 = 2
2

rP A I13 + 2
3

rP I10 I93 + 2 Pr M I10 I93 

I100 =- 2 0m Pr A I14 + 2 Pr
2

0m I11 I95 + 2 Pr M I11 I95 

I101 = PrA I15 (Pr – m3) + 2
2

rP  I9 I93 m3 – 2 
2

rP I10 I96m3 – 2MPr I9 I93 + 2MPr I10 I96 

I102 = Pr A (Pr- 0m ) I16-  2
2

rP I10 I95 0m  + 2Pr MI10 I95- 2 
2

rP 0m  I11 I93 + 2MPr I11 I93 

I103 = Pr A (m3+ 0m ) I17-2Pr 0m m3 I9 I95– 2MPr I9 I95+2 Pr 0m  I11 I95 m3+ 2MPr I11 I96 

I104 = 2Pr I9 (I92m3m4 + M I91), I105 = 2 Pr I9 I92 (m2m3 + M), I106 = 2 Pr I9 I94 (m3m1 +M) 
I107 = 2 Pr I10 (Prm4 I92 – I91 M), I108 = 2 Pr I10 I92 (Prm2 + M), I109 = 2Pr I10 I94 (Prm1 – M) 

I110 = 2 Pr I11 (M I91+ 0m m4 I92), I111 = 2 Pr (M + 0m m2) I11 I92, I112 = 2 Pr I11 I94 (M + 0m m1 ) 

2 2

113 114 3 3 115

4
,   4 2 , 2

4 4

r r
r r

r

i P i Pi
I I m m P I P

P

 


= = + − = − , 

2

116 0 04 2
4

r
r

i P
I m m P


= + −  

( ) ( )
2

117 3 3
4

r
r r r

i P
I P m P P m


= − − − − , ( ) ( )

2

118 0 0
4

r
r r r

i P
I P m P P m


= − − − −  

   ( ) ( )
2

119 3 0 3 0
4

r
r

i P
I m m P m m


= + + + − , ( ) ( )

2

120 3 4 3 4
4

r
r

i P
I m m P m m


= + + + −  

   ( ) ( )
2

121 3 2 3 2
4

r
r

i P
I m m P m m


= + + + − , ( ) ( )

2

122 3 1 3 1
4

r
r

i P
I m m P m m


= + + + −  

    ( ) ( )
2

123 4 4
4

r
r r r

i P
I P m P P m


= − − − − , ( ) ( )

2

124 2 2
4

r
r r r

i P
I P m P P m


= − − − −  

    ( ) ( )
2

125 1 1
4

r
r r r

i P
I P m P P m


= − − − − , ( ) ( )

2

126 4 0 4 0
4

r
r

i P
I m m P m m


= + + + −  

    ( ) ( )
2

127 2 0 2 0
4

r
r

i P
I m m m m P


= + + + − , ( ) ( )

2

128 1 0 1 0
4

r
r

i P
I m m m m P


= + + + −  

    ,,,,,,
118

102
134

117

101
133

116

100
132

115

99
131

114

98
130

113

97
129

I

I
I

I

I
I

I

I
I

I

I
I

I

I
I

I

I
I ======  

,,,,,,
124

108
140

123

107
139

122

106
138

121

105
137

120

104
136

119

103
135

I

I
I

I

I
I

I

I
I

I

I
I

I

I
I

I

I
I ======

,,,,
128

112
144

127

111
143

126

110
142

125

109
141

I

I
I

I

I
I

I

I
I

I

I
I ====  

I145=I136+I137+I138+I139 +I140 + I141 – I129 – I130 – I131 – I132 – I133 – I134 – I135 – I142 – I143 – I144 

2 2

146 3 3 1474 2 , 4 2
4 4

r r

i i
I m m M I P P M

    
= + − + = − − +   

   

( ) ( )
2

2

148 0 0 149 3 34 2 ,
4 4

r r

i i
I m m M I P m P m M

    
= + − + = − − − − +   

   



Mass Transfer Effects on Mixed Convective MHD Flow …. 

66 

 

( ) ( ) ( ) ( )
2 2

150 0 0 151 3 0 3 0,
4 4

r r

i i
I P m P m M I m m m m M

    
= − − − − + = + + + − +   

   

( ) ( ) ( ) ( )
2 2

152 3 4 3 4 153 3 2 3 2,
4 4

i i
I m m m m M I m m m m M

    
= + + + − + = + + + − +   

   

( ) ( ) ( ) ( )
2 2

154 3 1 3 1 155 4 4,  
4 4

r r

i i
I m m m m M I P m P m M

    
= + + + − + = − − − − +   

   

( ) ( ) ( ) ( )
2 2

156 2 2 157 1 1 ,
4 4

r r r r

i i
I P m P m M I P m P m M

    
= − − − − + = − − − − +   

   

( ) ( ) ( ) ( )
2 2

158 4 0 4 0 159 2 0 2 0 ,
4 4

i i
I m m m m M I m m m m M

    
= + + + − + = + + + − +   

   

( ) ( )
2

160 1 0 1 0
4

i
I m m m m M

 
= + + + − + 

 

,,,,,
148

132
165

147

131
164

146

130
163

44

129
162

43

145
161

I

IG
I

I

IG
I

I

IG
I

I

IG
I

I

IG
I rrrrr =====

,,,,,
153

137
170

152

136
169

151

135
168

150

134
167

149

133
166

I

IG
I

I

IG
I

I

IG
I

I

IG
I

I

IG
I rrrrr =====

138 139 140 143141 142
171 172 173 174 175 176

154 155 156 157 158 159

, , , , , ,r r r rr rG I G I G I G II G I G
I I I I I I

I I I I I I
= = = = = =

32 3 25 3 26 27 0 28144
177 178 179 180 181 182

160 47 44 146 147 148

2 2 2
, , , , , ,r rr I m I P m I P I m II G

I I I I I I
I I I I I I

= = = = = =

( ) ( ) ( )29 3 30 0 3 0 31

183 184 185

149 150 151

, , ,
r rI P m I P m m m I

I I I
I I I

− − +
= = =  

I186 = I162 + A I179, I187 = I163 – AI180, I188= I164 + A I181,I189 = I165 – AI182, 
   I190 = I166 + AI183, I191 = I167 + AI184, I192 = I168 + AI185, 

( ) ( )
3 2

169 3 4 3 4

193

152

4

i
I m m m m

I
I

 
+ − + 

 =  

( ) ( )
3 2

170 3 2 3 2

194

153

4

i
I m m m m

I
I

 
+ − + 

 =  

I195 = AI178, 
A1 = I169 + I170 + I171 + I172 + I173 + I174 + I195 – I175 – I176 – I177 
  – I161 – I186 – I187 – I188 – I189 – I190 – I191 – I192 

2 2 2

161 2 2 186 187 3 3

2 3 4

43 44 146

4 2
4 4 4

, ,
r r

i i i
I m m I P P I m m

A A A
I I I

       
− + −     

     = = =  

( )
22 2

188 189 0 0 190 3 3

5 6 7

147 148 149

4 2 4 2
4 4 4

, , ,
r r r r

i i i
I P P I m m I P m P m

A A A
I I I

       
+ − − − +     

     = = =  

( )
2

191 0 0

8

150

4
,

r r

i
I P m P m

A
I

 
− − + 

 =

( )
2

192 3 0 3 0

9

151

4
,

i
I m m m m

A
I

 
+ + − 

 =  



B.K. Swain, R.N. Barik 

67 

 

( )
2

171 3 1 3 1

10

154

4
,

i
I m m m m

A
I

 
+ + − 

 =

( )
2

172 4 4

11

155

4
,

r r

i
I P m P m

A
I

 
− − + 

 =  

( ) ( )
2 2

173 2 2 174 1 1

12 13

156 157

4 4
, ,

r r r r

i i
I P m P m I P m P m

A A
I I

    
− − + − − +   

   = =  

( ) ( )
2 2

175 4 0 4 0 176 2 0 2 0

14 15

158 159

4 4
, ,

i i
I m m m m I m m m m

A A
I I

    
+ + − + + −   

   = =  

( )
2 2

177 1 0 1 0 195 3 3

16 17

160 47

4 4
, ,

i i
I m m m m I m m

A A
I I

    
+ + − −   

   = =  

( ) ( )2 2

3 32 3 41 25 34

18 19

47 44

, ,
r rAm I m I AP I P I

A A
I I

+ +
= =

( ) ( )3 3

35 3 26 3 36 27

20 21

146 147

2 8 2 8
, ,

r rA I m I m A I P I P
A A

I I

− +
= =  

( )( ) ( ) ( ) 
23

3 3 29 3837 0 28 0

22 23

148 149

2 8
, ,

r rA P m P m I IA I m I m
A A

I I

  − − +−
  = =  

( ) ( )  ( ) ( ) 
2 2

0 0 30 39 3 0 40 3 0 31

24 25

150 151

, ,
r rA P m P m I I A m m I m m I

A A
I I

− − + + − +

= =  

A26 = A19 + A3, A27 = A20  + A4, A28 = A21 +A5, A29 = A22 + A6, A30 = A23 + A7, A31 = A24 + A8, A32 = A25 + A9, A33 = A17 
– A18, A34=  A32 + A11 + A12 + A13 + A14 + A15 + A16–A26 – A27 – A28 – A29 – A30  – A31 – A2 – A10 – A33 – I193 – I194, A35 = 
A1 + Rc A34, A36=  I161 + RcA2, A37 = I186+ RcA26, A38 = I187 + Rc A27, A39 = I188 + RcA28 , A40 = I189 + Rc A29, A41 = I190 + Rc 
A30, A42  = I191 + Rc A31, A43 = I192 – Rc A32, A44 = I195 – Rc A33, A45 = I169 – Rc I193, A46 = I170 – Rc I194, A47 = I171 – Rc A10, A48 = 
I172 + Rc A11, A49 = I173 + Rc A12,  A50 = I174 + Rc A13, A51 = I175 – Rc A14, A52 = I176 – Rc A15, A53 = I177 – Rc A16 

 
Nomenclature 
B0 Magnetic field of constant strength  Gr   thermal Grashof number  
C Concentration of the fluid   k   thermal conductivity   
Cp Specific heat    kc  chemical reaction parameter   

C  Ambient concentration   k0  elasticity parameter 

D Thermal diffusivity    Kp Porosity parameter 
Ec Eckert number    k* Mean absorption coefficient 
g  acceleration due to gravity   M Magnetic field parameter  
Gm     modified Grashof number   Nu Nusselt number 
Pr Prandtl number     t  time 
Q Heat source parameter   

T  Ambient temperature  

Rc   visco-elastic parameter   Tw temperature of the wall 
Sc Schmidt number     u x component of velocity 
Sh  Sherwood number    v y component of velocity  
T Temperature    x, y Coorinates 
 
Greek Symbols 

  Non-dimensional temperature    Density 

*  Stefan-Boltzmann constant   
T Thermal expansion coefficient 

C  Concentration expansion coefficient     Thermal diffusivity 

  Kinematic viscosity     coefficient of viscosity 

  Similarity variable     electrical conductivity, 

  Nondimensional concentration 


