

 Journal of Institute of Science and Technology 2019, 24(1): 42-46

ISSN: 2469-9062 (print), 2467-9240 (e)

Doi: http://doi.org/10.3126/jist.v24i1.24627

© IOST, Tribhuvan University

Research Article

COST-BASED QUERY OPTIMIZATION IN CENTRALIZED RELATIONAL DATABASES

Nawaraj Paudel*, Jagdish Bhatta

Central Department of Computer Science and Information Technology

Tribhuvan University, Kathmandu, Nepal
*
Corresponding author: nawarajpaudel@cdcsit.edu.np

(Received: May 20, 2019; Revised: June 17, 2019; Accepted: June 18, 2019)

ABSTRACT

Query optimization is the most significant factor for any centralized relational database management system (RDBMS)

that reduces the total execution time of a query. Query optimization is the process of executing a SQL (Structured Query

Language) query in relational databases to determine the most efficient way to execute a given query by considering the

possible query plans. The goal of query optimization is to optimize the given query for the sake of efficiency. Cost-based

query optimization compares different strategies based on relative costs (amount of time that the query needs to run) and

selects and executes one that minimizes the cost. The cost of a strategy is just an estimate based on how many estimated

CPU and I/O resources that the query will use. In this paper, cost is considered by counting number of disk accesses for

each query plan because disk access tends to be the dominant cost in query processing for centralized relational

databases.

Keywords: Query-optimization, Query-processing, Cost-based query optimization, SQL database

INTRODUCTION

A centralized relational database is the database that

stores and maintains data in a single location using tables

(or relations). Because of widespread use of such

databases, it is important to reduce system resources

required to fulfill a query and ultimately provide correct

information faster. Query optimization in database has

gained significant importance as it helps to reduce the

size, memory usage and time required for any query to be

processed. The main objective of any query optimization

is to determine the best strategy for executing each query.

It identifies an efficient way to execute the query with less

time complexity to produce better results. This process

can be formally defined as transforming a query into an

equivalent form which can be evaluated more efficiently

(Tejy 2016). Query optimization is the process of

determining the most efficient way to execute a given

query by considering the possible query plans. Wong and

Youssefi (1976) and Selinger et al. (1979) have done

work related to the relational query optimization. Several

approaches, methods and techniques of query

optimization have been proposed for various DBMS (i. e.,

relational, deductive, distributed, object, parallel). The

quality of query optimization methods depends strongly

on the accuracy on the efficiency of cost models (Hussein

et al. 2005, Naacke et al. 1998, Zhu et al. 2003, Adali et

al. 1996, Ganguly et al. 1996, Gardarin et al. 1996).

Query optimization is an important part of query

processing. The four main phases of query processing are

decomposition (consisting of parsing and validation),

optimization, code generation and execution. Query

processing is the activities involved in parsing, validating,

optimizing and executing a query. Query processing

transforms a query written in a high-level language,

typically SQL, into a correct and efficient execution

strategy expressed in a low-level language (implementing

the relational algebra), and executes the strategy to

retrieve the required data. The activity of choosing an

efficient executing strategy for processing query is query

optimization (Thomas & Carolyn 2015). It is generally a

process of reducing total execution time of the query,

which is the sum of the execution times of all individual

operations that make up the query (Selinger et al. 1979).

Query optimization needs database statistics to evaluate

different execution strategies properly. The statistics cover

information about relations, attributes and indexes. The

accuracy and currency of these statistics have a significant

bearing on the efficiency of the execution strategy chosen.

Keeping the statistics current can be problematic. If the

statistics is updated every time, the database is updated

there is significant impact on performance during peak

periods. An alternative and generally preferable approach

is to update the statistics on a periodic basis, for example,

nightly or whenever the system is idle.

The cost-based query optimization technique compares

different strategies based on their relative costs and selects

the one that minimizes resource usage. Because disk

access is slow compared to memory access, disk access

tends to be the dominant cost in query processing for a

centralized relational DBMS. The main objective of this

study is to compare cost of different execution strategies

of a SQL query represented as relational algebra

expressions in centralized relational databases to choose

most efficient execution strategy.

As given in Fig.1, the query processing has four phases as

query decomposition, query optimization, code generation

mailto:nawarajpaudel@cdcsit.edu.np

Nawaraj Poudel, Jagdish Bhatta

43

and runtime query execution. The important aspect of

query processing is query decomposition. Query

decomposition is the first phase of query processing. This

phase transforms a high-level query into a relational

algebra query and to check whether the query is

syntactically and semantically correct. The query

optimization phase chooses an efficient execution strategy

that minimizes the overall cost of execution. This phase

uses information from database statistics to find cost of

each execution strategy. The code generation phase

receives an optimal execution strategy from the

optimization phase and produces an iterative execution

plan that is usable by the rest of the database. Runtime

query execution is the last phase of query processing and

runs the query and displays the required result.

Fig. 1. Phases of query optimization (Thomas & Carolyn 2015)

MATERIALS AND METHODS

Cost-based query optimization

Cost-based query optimization is an overall process of

choosing the most efficient means of executing a SQL

statement based on overall cost of the query. The efficient

execution is the execution with minimum cost. To find the

cost of query execution plan, the optimization technique

uses database statistics.

In this optimization technique, all of the possible ways or

scenarios in which a query can be executed will be

assigned a ‘cost’, which indicates how efficiently that

query can be run. Then, the optimizer will pick the

scenario that has the least cost and execute the query

using that scenario, because the query with least cost is

the most efficient way to run the query. The dominant cost

in query processing for centralized relational databases is

disk access because disk access is slower than memory

access. So the optimization technique counts the number

of disk accesses of each scenario and execute the scenario

with minimum number of disk accesses. In centralized

systems, the costs are dominated by the time for

secondary storage access although the CPU costs may be

quite high for complex queries (Gotlieb 1975).

During decomposition phase, high level query (SQL) is

transformed into some internal representation typically

using query tree (relational algebra tree). Thomas and

Carolyn (2015) have devised a rule for constructing query

tree as follows:

 A leaf node is created for each base relation in the

query.

 A non leaf node is created for each intermediate

relation produced by a relational algebra operation.

 The root of the tree represents the result of thee query.

 The sequence of operations is directed from the leaves

to the root.

RESULTS AND DISCUSSION

Consider two relations employee (emp_no, emp_name,

emp_address, position, salary, branch_no) and branch

Cost-based query optimization in centralized relational databases

44

(branck_no, branch_city, branch_address, city) with a

member of employee can only work at one branch.

Consider an SQL query as given below.

SELECT*

FROM Employee, Branch

WHERE Employee.branch_no = Branch.branch_no AND

Employee.position = ‘Manager’ AND Branch.city =

‘Kathmandu’;

We can write three different relational algebra queries for

the above SQL query as given below.

Query 1: (position = ‘Manager’) ^ (city = ‘Kathmandu’) ^ (Employee.branch_no

= Branch.branch_no) (Employee × Branch)

Query 2: (position = ‘Manager’) ^ (city = ‘Kathmandu’) (Employee ⨝

Branch)

Query 3: (position = ‘Manager’(Employee)) ⨝ (city = ‘Kathmandu’

(Branch))

The relational algebra trees for each of above queries are

listed below as shown in Figs 2-4.

Suppose there are 2000 tuples in Employee, 20 tuples in

Branch, 20 Managers (one for each branch), and 10

Kathmandu branches. To compare these three queries, we

assume number of disk accesses. We also assume that

there are no indexes or sort keys on either relation. The

results of any intermediate operations are stored on disk.

The cost of the final write is ignored because it is the

same in each query. We further assume that tuples are

accessed one at a time (although in practice disk accesses

would be based on blocks, which would typically contain

several tuples), and main memory is large enough to

process entire relations for each relational algebra

operation.

Fig. 2. Relational algebra tree for query 1

Fig. 3. Relational algebra tree for query 2

Fig. 4. Relational algebra tree for query 3

Nawaraj Poudel, Jagdish Bhatta

45

The query1 calculates the Cartesian product of Employee

and Branch, which requires (2000 + 20) disk accesses to

read these two relations, and creates a relation with (2000

× 20) tuples. We then have to read each of these tuples

again to test them against the selection predicate at a cost

of another (2000 × 20) disk accesses, giving a total cost of

(2000 + 20) + 2 × (2000 × 20) = 82020 disk accesses.

The query 2 joins Employee and Branch which again

requires (2000 + 20) disk accesses to read each of the

relations. The Join of these two relations has 2000 tuples,

one for each member of Employee. Consequently, the

Selection operation requires 2000 disk accesses to read

the result of the join, giving a total cost of (2000 + 20) + 2

× (2000) = 6020 disk accesses.

The query 3 first reads each Employee tuple to determine

the Manager tuples, which requires 2000 disk accesses

and produces a relation with 20 tuples. Similarly, the

second Selection operation reads each Branch tuple to

determine the Kathmandu branches, which requires 20

disk accesses and produces a relation with 10 tuples. The

final operation is the join of the reduced Employee and

Branch relations, which requires (20 + 10) disk accesses,

giving a total cost of (2000 + 20) + (20 + 10) + (20 + 10)

= 2080 disk accesses. From the calculations above, it is

clear that query 3 is the most efficient query and is 2.89

times faster than query 2 and 39.43 times faster than the

query1. Figure 5 shows the cost comparisons of each

relational algebra query. It can be seen clearly that that the

cost of query 3 is minimum as compared to the cost of

other two queries.

Fig. 5. Cost comparison of each query

If we considered 10000 tuples in Employee and 1000

tuples in Branch query 3 would be 2.38 times faster than

query 2 and 1536.84 times faster than the query1. Since,

Cartesian product and Join operations are much more

expensive than Selection operation, query3 significantly

reduces the size of the relations that are being joined

together.

CONCLUSION

Query optimization is the process of determining the most

efficient method for a SQL statement to access requested

data. A SQL query can have different query execution

strategies and the cost-based query optimization technique

selects and executes the query execution strategy with

least cost among all the execution strategies. To find the

cost of each execution strategy, the optimization

technique uses database statistics, because disk access is

slower as compared with memory access and disk access

tends to be the dominant cost in query processing for

centralized relational databases. Using database statistics,

the optimization technique counts the number of disk

accesses for each execution strategy in centralized

relational databases.

REFERENCES

Adali, S., Candan, K.S., Papakonstantinou, Y. and

Subrahmanian, V.S. 1996. Query caching and

optimization in distributed mediator systems. In:

Proceedings of ACM SIGMOD International

Conference on Management of Data, ACM Press,

New York, pp. 137-148.

Ganguly, S., Goel, A. and Silberschatz, A. 1996.

Efficient and accurate cost models for parallel

query optimization. In: Symposium in Principles of

Database Systems PODS, ACM Press, New York,

pp. 172-182.

Gardarin, G., Sha, F. and Tang, Z.-H. 1996. Calibrating

the query optimizer cost model of IRO-DB, an

object-oriented federated database system. In:

Proceedings of 22
nd

 VLDB, Morgan Kaufmann, San

Francisco, pp. 378-389.

Gotlieb, L.R. 1975. Computing joins of relations. In:

Proceedings of the ACM-SIGMOD International

Conference of Management of Data, ACM, New

York, pp. 55-63.

Selinger, P.G., Astrahan, M.M., Chamberlin, D.D., Lorie,

R.A. and Price, T.G. 1979. Access path selection in a

relational database management system. In:

Proceeding of the 1979 ACM SIGMOD

International Conference on Managment of Data,

Massachusetts, USA, pp. 23-34.

Hussein, M., Morvan, F. and Hameurlain, A. 2005.

Embedded cost model in mobile agents for large

scale query optimization. In: Proceedings of the 4
th

International Symposium on Parallel and

Distributed Computing, IEEE CS, Los Alamitos,

pp. 199-206.

Naacke, H., Gardarin, G. and Tomasic, A. 1998.

Leveraging mediator cost models with

heterogeneous data sources. In: Proceedings of the

Cost-based query optimization in centralized relational databases

46

14
th

 International Conference on Data

Engineering, IEEE CS, Los Alamitos, pp. 351-360.

Selinger, P.G., Astrashan, M., Chamberlin, D., Lorie, R.

and Price, T. 1979. Access path selection in a

relational database management system. In:

Proceedings of the 1979 ACM SIGMOD

Conference on Management of Data, ACM Press,

New York, pp. 23-34.

Tejy, K.K. 2016. Query optimization in database systems.

PhD Thesis, Department of Computer Applications,

Faculty of Computer Applications, Dr. M.G.R.

Educational and Research Institute University,

Maduravoyal, Chennai, India.

Thomas, C.M. and Carolyn, B.E. 2015. Database systems:

a practical approach to design, implementation and

management. 6
th

 Edition, Pearson, pp. 727-782.

Wong, E. and Youssefi, K. 1976. Decomposition- a

strategy for query processing. ACM Transactions

on Database Systems 1, 223-241.

Zhu, Q., Motheramgari, S. and Sun, Y. 2003. Cost

estimation for queries experiencing multiple

contention states in dynamic multi-database

environments. Journal of Knowledge and

Information Systems Publishers 5(1): 26-49.

