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ABSTRACT 

The possibility of a broken time-reversal symmetry state (BTRS) of the ground state of a single Long Josephson 
Junction (LJJ) due to the presence of additional tunneling channels is investigated by using a microscopic model for 
two-gap superconductors.  The consequence of this broken time reversal ground state is discussed.The ground state 
phase configuration was obtained by minimizing the free energy of the LJJ with respect to phase variables in the 
absence of an external magnetic field.  The boundary conditions were obtained at the junction interface.  Applying the 
boundary conditions, the conditions for time-reversal symmetry invariance (TRSI) state and BTRS state were 
obtained. The relative phase in the ground state was numerically calculated.  The phase configuration of the ground 
state was determined from the free energy calculation as a functions of relative phases (χ, χ) for different values of 
inter-band current and Josephson current. When the ground state corresponds to the BTRS, the relative phase constant 
δθcomputed as a function of phase difference ϕ showed linearly dependence.  The variation of current density J 
with the phase difference ϕ behaves as the sine-curve. 
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INTRODUCTION 
Due to relative phase of the two condensates of two-gap 
superconductor in a LJJ an interesting phenomenon in 
the ground state of the system may be produced.  One of 
these interesting properties is a broken time reversal 
symmetry state.  In the absence of external magnetic 
field, there are no net currents in the ground state of a 
LJJ. However, in the LJJ with one-gap and two-gap 
superconductor layer, the ground state satisfies the 
condition of no net current density via maintaining the 
inter-band phase difference of either 0 or π.  This state is 
called the time-reversal symmetry invariant (TRSI) 
state. On the other hand, if the phase difference between 
the two condensates differs from 0 or π, then system is 
said to have phase frustration. When the phase 
frustration is maintained, the ground state may have 
non-zero current density in the absence of an external 
magnetic field while satisfying the condition of zero net 
current flow.  This state of the ground state is called the 
broken time-reversal symmetry state (BTRS).  
Theoretical studies of superconductor-insulator-
superconductor (hetero-Josephson) junctions between 
one- and two-gap superconductors suggest that the time-
reversal symmetry is violated in the ground state.  
The relative phases of the condensates in the ground 
state reflect the time-reversal symmetry of the junction.   
 

To study the TRSI and BTRS state, one needs to focus 
on the phase frustration.  Phase frustration may also 
occur in a Josephson junction.  This situation is similar 
to a two-gap superconductor with both inter-band 
Josephson and biquadratic interaction. A junction 
between a two-gap superconductor with either the  
or 	-symmetry and a conventional S-wave 
superconductor may yield a different behavior due to 
either absence or presence of phase frustration, 
respectively. The time-reversal symmetry breaking 
within two-gap superconductors was studied by Lee et 
al. (2009),  Lin and Hu (2011), Tanaka et al. (2010) 
2023-2026,  Tanaka et al. (2010) 1010-1012 and Lin 
and Hu (2011). They realized that the inter-band 
Josephson interaction tends to lock the relative phase to 
either 0 or π, while the biquadratic interaction tends to 
lock the relative phase to ± 2⁄ .  Tanaka and coworkers 
claim that when the inter-band coupling  is greater than 
zero (i.e. > 0), the Josephson interaction in the -
symmetry state will lock the relative phase  to 0.  
However, when   < 0, the Josephson interaction in the 
-symmetry state will lock the relative phase to π.  If 
the phase difference between two condensates differs 
from the phase-locked value of either 0 or π, then there 
is phase frustration which breaks the time-reversal 
symmetry in the ground state. 
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The phase frustration and the BTRS state can also be 
described in terms of boundary conditions in the 
junction interface.  Boundary conditions in the junction 
interface are described in terms of current density of the 
individual condensate.  When the non-zero individual 
currents satisfy the condition of zero net current flow in 
the ground state, the system is strongly frustrated, 
resulting in broken time-reversal symmetry state.  In this 
work the time reversal symmetry invariant and broken 
time-reversal symmetry state in junction with two-gap 
superconductors will be investigated.  
Possibility of Phase Frustration 
The possibility of phase frustration in a two-gap 
superconductor is reviewed by computing the free 
energy of the system.  Earlier studies (Tanaka et al. 
2010, Lin & Hu 2011, Chung et al. 2002, Bardeen et al. 
1957, Loufwander et al. 2000, Garaud et al. 2011, Hu & 
Wang 2011, Platt et al. 2011) indicate that phase 
frustration and the appearance of broken time reversal 
symmetry state in a tunnel junction between two-gap 
and one-gap superconductors are closely related.  
The ground state of the junction may be examined by 
computing the free energy.  The free energy for the two-
gap superconductor in the absence of an external 
magnetic field is given by  
 = |ψ

| + ∇ + |ψ
| + |ψ

| +
∇ + |ψ| − 		2	|ψ||ψ|cos	 − ,  (1)                               
 where the pseudo-order parameters ψ

 and ψ
 are non-

zero and  < 0.  Note that two pseudo-order 
parameters are coupled by the inter-band Josephson 
coupling J, representing interactions between electrons 
in the s- and d-bands.  From Eq. (1), for   > 0, it is 
clear that the free energy becomes a minimum for	 =
.   However, for  < 0, the free energy becomes a 
minimum for  =  = .  Thus, there is no phase 
frustration in two-gap superconductors for either   > 0 
or  < 0. 
The situation is different in the tunnel junction involving 
a two-gap superconductor and a one-gap 
superconductor. Ng and Nagaosa (Ng & Nagaosa 2009) 
suggested that the free energy density for a Josephson 
junction is given by 
 ≅ Θ−2 cos −  + ∇ + ∇ +
	2 cos −  +  cos −  +
	Θ−∇2 + ,                                   (2) 
where  = |ψ|ψ,  = |ψ||ψ|,  =
|ψ|ψ,  = |ψ|,  is the part of free energy 
that is independent of phase angle,and the index  = ,  
denotes electronic bands in the two-gap superconductor.  

Here,  represents the coupling between the one-gap 
superconductor and the i-th electronic bands of the two-
gap superconductor. To study a deviation from the 
phase-locked state, one needs to minimize the free 
energy with respect to the phase variables.  By 
minimizing the free energy with respect to the phase of 
the one-gap superconductor, one can obtain 
 = − sin  −  sin .            (3) 
Here, the phase variable  is set to zero (i.e.,  = 0) as a 
convenient reference point to measure the phases  .  
Note that Eq. (3) becomes  = 0, away from the 
junction interface (i.e., x≠0). The solution of this 
equation may be written as	 = . 
Similarly, for the phases of the two pseudo-order 
parameters, one may obtain the equations of motion: 
By matching the boundary condition to reflect the 
requirement that the current density is conserved at the 
junction interface, one can get 
 = −4 sin +  tan − sin −
 tan ,                       (4) 
where		 = 4  + ⁄  and  
 = 4  + ⁄ . 
In the ground state, the Josephson junction does not 
introduce any additional bulk energy to the system.  
This condition implies that there is no net current flow 
in the ground state of the system. Therefore, one can 
set	 = 0.  Now Eq. (4) indicates that one can obtain 

	 sin  −  sin  = 0 
When a=0.   This implies that  = 0 or	.  On the 
other hand, when  ≠ 0, but a is small, one may write  
/ = 0 as	
−sin  cos − cos  sin.       (5) 
Equation (5) indicates that  must be different than 0 
or π. If the phase difference between the two 
condensates becomes something other than 0 or π, then 
system is said to have phase frustration.  The ground 
state of the junction with phase frustration has non-zero 
current flow, which breaks the time-reversal symmetry.  
For LJJ with two-gap and one-gap superconductor, the 
net current in the Josephson junction is zero (i.e., 
 +  = 0) in the ground state (all these mathematical 
relations were derived). The time-reversal symmetry 
invariant state is represented by the trivial solutions of 
Eqs. (4) and (5).   These solutions are  = 0 or π and 
 = 0, indicating that  =  = 0. Also, there are non-
trivial solutions±, ± ≠ 0, representing the broken 
time-reversal states. These solutions are degenerate. The 
 ≶ 0 solutions correspond to two degenerate time-
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reversal pairs (Ng & Nagaosa 2009).  In the BTRS state, 
the current loop circulates through the junction in 
momentum-space, and not in real space. 
Broken Time-Reversal Symmetry State in the Two-
gap LJJ  
This is the main part of my research. The broken time-
reversal symmetry (BTRS) states in the Josephson 
junction with two-gap superconductors (as shown in fig. 
1) are examined by using the free energy derived from 
the BCS Hamiltonian. By minimizing the free energy 
with respect to phase variables, one can determine the 
conditions for phase frustration, yielding the broken 
time-reversal symmetry state.   

 
Fig. 1.  A schematic diagram for a LJJ with two-gap 
superconductors is illustrated (Kim et al. 2012). 
The BCS Hamiltonian extended for two-gap 
superconductors (Fetter & Walecka 1971, Kim et al. 
2012) is rewritten as   ,  . The Hamiltonians , and  account for the contribution due to two-
gap superconductivity and electron tunneling between 
the two adjacent superconductor (S) layers.  The two-
gap Hamiltonian  , may be written in terms of 
Grassmann variables as ,   ∑ , ̅, ,  ,              (6) 

where	 is the energy of electrons in the i-band (i = s, 
d) about the Fermi energy. The pairing interaction 
between electrons in the l-th S layer is given by   ↑̅, ↓̅, ↓, ↑, -↑̅, ↓̅, ↓, ↑, ↑̅, ↓̅, ↓, ↑,  . .        (7) 

Where  is the pairing interaction strength between 
electrons in the i and j bands and ̅,  and ,	  are the 
Grassmann variables. The Hamiltonian  due to 
tunneling of an electron between the two adjacent S 
layers is given in terms of the tunneling matrix element  as 

  ∑ ̅, ,  . . , .        (8) 

To obtain the free energy, one may start with the BCS 
Hamiltonian for a two-gap superconductor and carry out 
a number of steps.  First, one may use the Nambu 
notation and Hubbard-Stratonovich transformation to 
simplify the partition function. Also, by using the 
Grassmann integrals to integrate the fermion fields, one 
can obtain the effective action for the system. I did a 
very long derivation to obtain effective action. 
The free energy F of the system may be obtained from 
the effective action as 

   ,                       (9) 

where	 is the Hubbard-Stratonovich field.  Here the 
components of the auxiliary field  

   	and		  , 

where    Δ  .  Using the effective action that was 
obtained in my derivation, one can write the free energy  

    
 |Δ|

  Δ
  2 ΔΔ cos  

  
   ,  18 Φ2   


 	Θ 

      	  
   ′   (10) 

where	    and   is the second order 
tunneling contribution to free energy.  Also the phase 
difference between two S layers in the presence of an 
external magnetic field is       2, ,     (11) 
and 

,      ,         (12) 

is superfluid velocity. For simplicity, one can make the 
local approximation for the integral kernel τ  τ 
in   by writing τ  τ  τ  ττ  τ.  
Within this local approximation, noting that the Ohmic 
quasi-particle contributions  τ  τ cos  	, ; ,  
in  do not depend on the phases, one may write       

    


|Δ|
  Δ

  2 ΔΔ cos  

  
  ,  18 Φ2   


 	Θ 

        	     .                 (13) 
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Note that, under local approximation,   becomes 

     cos     cos    cos   cos  .                       (14) 
In the steady state, the free energy of the system in the 

absence of magnetic field is   	Θ ∑ 
 


   ΔΔ cos  
       	,        (15) 

where 
   cos    cos  	 cos    cos   ,               (16) 

    and    .   
Now the phase configuration that minimizes the free 
energy is discussed.  In the steady state, the phase part 
of the free energy   	   of the LJJ based on two-
gap superconductors is  
  ̅cos   cos   ̅	cos  cos   ̅cos    cos  ,      (17)                         

where ̅  2ΔΔ ⁄ ,     , and     .  Note that one may set that ̅  ⁄   ⁄ , and		̅   ⁄   ⁄  for 
simplicity.  Here  is the part of the free energy density 
which is independent of the		’s.  Note that		  ⁄ ,    ⁄ , and   	⁄ , where 	is given in Eq. (8).  To 
examine the phase configurations which minimize the 
free energy density, the first derivative of   with 
respect to phase variables is set to zero.  The extrema of 
the free energy function , , ,  , , ,  may be found by using the two sets 
of conditions.  The first set of conditions is       ,     , and 

̅ sin     1 ̅ sin  
̅ sin    0	  .                          
The second set of conditions is      	, cos     cos    0 and 

̅ sin  2    2 
 cos 
   2  ̅ sin   2  ̅ sin   2 
 0	. 

Using the conditions for minimum free energy, above 
equation is solved for z = 0 numerically.  To study the 
phase frustration in the ground state of the LJJ, the free 
energy / is plotted in the Fig. 2 as a function of 
inter-band relative phase for (a)   ̅/  1.0,   ̅/  1.0,   0.0 (b)   1.0  1, 	  0.0 and  (c)   1.0,    1.0,   1.4.  
Also, in Fig. 3, the free energy contours are plotted as a 
function of relative phase for the same set of parameters 
as used in Fig. 2.  These free energy plots indicate that 
the value of relative phases (,) for the free energy 
minimum depends on . From the free energy contour 
plot of Fig. 3, one can easily see that the ground state 
value for (,) is (0, 0), when the phase difference across the two adjacent layers is zero (i.e.,   0).  
However, when   0, the free energy minimum 
occurs for =-1.0 and =1.0 at a non-zero value of 
(,), indicating the appearance of phase frustration 
in the ground state.  This dependence on  may be 
seen easily in Fig. 2c.  Similarly for = -1.0,  =1.0, 
and = 0.0, the free energy surface and contours in 
the (, ) space is shown in Figs. 2b and 3b, 
respectively. 

 
Fig. 2. The free energy / is plotted as a function of 
inter-band relative phase difference  and  for (a)   /  . ,   ̅/  . ,    (b)   . ,    , 	   and  (c)   . ,    . ,   . . These free energy surfaces illustrate 
the dependence of the ground state phase configuration on 
the parameters		, 		, and . 
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Fig. 3. The free energy / is plotted as a function of 
inter-band relative phase difference  and  for (a)   /  . ,   ̅/  . ,    (b)   . ,   ,     and  (c)   . ,    . ,   . . These free energy contours 
illustrate the location of the minimum free energy and to 
estimate the coordinates (, ) for given parameters,  , and  . 
     One may estimate the phase frustration in the ground 
state from the phase equation of motion derived from 
the free energy of Eq. (17). One uses the Euler-Lagrange 
equations for different phase variables to obtain the 
equations of motion. For an example, for the  
variable, the equation of motion is given by 
2   2 Δ Δ sin   

 
 sin    

 sin   .        (18) 

Similar equations of motion can be obtained for the 
phase variables , , and .  When the Euler-
Lagrange equations for  and  are added, one can 
obtain  

    
 Δ Δ 

 
  

  sin 
  0                              (19) 

for   0.   Noting that     , one can write  

  
 sin   0,                                                 (20) 

where 


  
 Δ Δ4 

  
 . 

A single-soliton solution to the sine-Gordon equation of 
Eq. (20) for the relative phase  is given by 

  4 tan  
.                   (21) 

One can decompose Eq. (21) and obtain the expression 
for  and  as 

        
 tan  

,   (22) 

and 

      
 tan  

,     (23) 

respectively. Similarly, one may add the Euler-Lagrange 
equation for  and  to obtain the sine-Gordon 
equation for      (i.e., for	  0). By 
following the decomposition approach for  , one can 
write the phase variables and  as 

        
 tan  

,   (24) 

and 

      
 tan  

,    (25) 

respectively.  The current density   2  ⁄  for 
l=1, 2 at   0 leads to  

  
 

 sin    
 sin  ,   (26)  

and 

  
  

 sin    
 sin  ,      (27) 

Similar relation for  and  can be obtained easily. 
Also, noting that the current density is given by 

 ≅ 1
Λ

Φ2   2 
, 

one may write for     2 
   

 

=   
 sin  tan  tan 

 
 sin    tan  tan,         (28) 

where	    	denotes the relative phase 
constant which does not depend on position,  8  	 	⁄  and     4   ⁄ .  For the simple case of    0	and   0, one can obtain  

    

 sin  
 sin.                  (29) 

This means that when   0	and   0,   , the 
ground state is time-reversal symmetry invariant since    0 and   0.  On the other hand, when   0  
and  0, but both   and   are small, one may 
expand  tan	    

  
  ⋯  . 

and write Eq. (29) as  
   

 ≅ 
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 
 sin      

 sin    ,(30) 

indicating the relations between the constants , , , and . 

 
Fig. 4. Boundary conditions for current density in the 
ground state of LJJ are schematically illustrated.  A LJJ 
with two layers of two-gap superconductors which are 
separated by an insulator in the z-direction is shown.  The 
l=2 and l=1 superconductor layers are above (  0) and 
below (  0) the junction interface. 
At the junction interface (i.e., z =0), the current density 
is conserved (Fig. 4). This boundary condition for the 
current densities may be summarized as        .         (31) 
One may see how this boundary condition may lead to 
phase frustration by first evaluating the current densities 
at   0 as   

  2   2 
 sin    

 sin  ,     (32) 

  2   2 
 sin    

 sin  ,     (33) 

  2   2 
 sin    

 sin  ,     (34) 

and    

  2   2 
 sin    

 sin  .  (35)  

Now, one can impose the boundary condition of Eq. 
(34) at   0.  Applying the boundary condition, one 
can show that    0	when   0,      0 and    0,   .  This means that       0, indicating that there is no net current flowing 
through the system in the ground state. This solution 
obeys the time-reversal symmetry.  Another solution 
that satisfies the boundary condition at z = 0 may also be 
found. The solution     0 (and     0 
indicates that the net current density is zero when		  (and		  . This solution breaks time-reversal 
symmetry. The appearance of the BTRS state in the 
ground state is indicated by the non-zero value of the 
relative phase constant     .  This constant 
may be computed by evaluating the phases at the 
junction interface (i.e., z = 0).  At  z = 0, the phases can 
be obtained using Eqs. (27) and (28) as 

       tan ,         (36) 

and 

     tan .                (37) 

Subtracting Eq. (36) from Eq. (37), one can obtain     4	 tan .                                    (38) 
Now, the relative phase constant      
indicating that the ground state breaks the time-reversal 
symmetry is obtained by imposing the boundary 
conditions   and   . By using Eqs. (36) 
and (37), one can obtain  
tan     

            
(39) 

where		is the relative phase of the two condensates of 
l-th S layer in the ground state where the system has 
minimum free energy.  From Eq. (34) it is clear that     0 when the relative phases for both the S 
layers are zero.  Similarly, when two relative phases are 
equal, but have opposite signs (i.e.  and  ), one can obtain 

  tan      
    . (40) 

To study the variation of phase constant      
as a function of , the relative phases at the minimum 
free energy was obtained by plotting free energy as a 
function of relative phase as shown in Fig. 5.  For a 
given value of ,	the phase configuration (, ) 
which corresponds to the ground state (, ) is 
determined. This value is substituted into Eq. (40) to 
calculate	 numerically. In Fig. 5, a plot 
of		versus	 is shown to illustrate the dependence 
on . The three lines corresponds to   0.49 (solid 
line),   0.47 (dashed line), and   0.45 (dot-
dashed line).  The curves in Fig. 5 show that the relative 
phase constant in the ground state varies linearly 
with	.  Also, one can see from Fig. 6 that the rate of 
variation  of for   0.45 is higher than that for   0.47 and   0.49. This dependence on  
indicates that greater charge imbalance between the 
charge densities of the s and d-band present in the 
system leads to stronger frustration in the ground state 
phase configurations.   
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Fig. 5. The phase constant  for the ground state is 
plotted as a function of		for three different values of 
  0.49 (solid line), 0.47 (dashed line), and 0.45 (dot-
dashed line).  These curves illustrate the effect of relative 
phase on the phase constant. 

 
Fig. 6. The current density   in the ground state is plotted 
as a function of	.  The curve illustrates the effect of 
relative phase on the current density at the junction 
interface (  ). 

In Fig. 6 the current density J = |
| at the junction 

interface (i.e., z = 0) is plotted as a function of the phase 
difference		.  The curve indicates clearly that current 
density varies as the sine function with the phase 
difference. The results of phase frustration in the ground 
state of the Josephson junction with two-gap 
superconductors and its consequences are discussed in 
the next section. 
RESULTS AND DISCUSSION 
To understand the time-reversal symmetry invariant 
(TRSI) and broken time-reversal symmetry (BTRS) 
state in a Josephson junction with two-gap 
superconductors, I investigated the ground state phase 
configuration. The ground state phase configuration was 
obtained by minimizing the free energy of the LJJ with 
respect to phase variables in the absence of an external 
magnetic field.  The boundary conditions were obtained 
at the junction interface. Applying the boundary 
conditions, the conditions for TRSI and BTRS state 
were obtained.  When the current density in the s and d 
electronic bands in the ground state are zero, the ground 
state corresponds to TRSI state.  In this case, the relative 

phase constants attain the values either 0 or	.  Although 
the net current density in the ground state is zero, the 
individual currents can be non-zero. In this case, 
   and the relative phase constants differsfrom 0 
or	.  This solution breaks time-reversal symmetry.  The 
relative phase in the ground state was numerically 
calculated.  The phase configuration of the ground state 
was determined from the free energy calculation as a 
functions of relative phases (, ) for different values 
of inter-band current and Josephson current.  When the 
ground state corresponds to the BTRS, the relative phase 
constant computed as a function of phase difference 
 showed linearly dependence. The variation of 
current density 

 with the phase difference  
behaves as the sine-curve. 
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