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ABSTRACT 

This article is about the Bayesian modelling of the parameters of a simple linear regression with normal errors. It 

studies the use of non-informative normal priors to the regression parameters. It has an application on modelling 

gluten content in terms of protein content of a variety of wheat. The exact estimations of credible sets of the 

regression parameters obtained from real and simulated data by using MCMC. The posterior estimates of the gluten 

content in terms of protein content are better in this regression model with normal non-informative prior. 

Key words: Modelling, Bayesian regression, regression parameters, prior specification, MCMC. 
 

INTRODUCTION   

Models are the designed statements for predicting future 

events, capturing summarized trends and regularities in 

the observed data. A statistical model is a collection of 

probabilistic statements that describes and interprets 

present behaviour or predicts future performance. 

Statistical models are cheaply used to describe real life 

problems under uncertainty (Ntzoufras, 2009). It 

consists of three components: the response variable Y, 

the explanatory variables X, and a linking mechanism 

between the two sets of variables. The response variable 

Y is a stochastic part of the model because the outcome 

is uncertain before it is observed. In modelling 

procedure we put our interest to a certain outcomes of Y 

and to predict a future outcome of Y. Y is a stochastic 

variable, so    

Y| X1, X2, … … …, Xp ~ D(Τ),  where D(θ) is a 

probability distribution with parameter θ. 

The advantage of models is that they impose us to 

arrange and organize all information available in a 

logical way, which helps to define precisely the problem 

under study and facilitates exchange of knowledge. 

Models may be used for prediction when verified and 

validated, which may require data from both observation 

and experiments. To describe significant dependencies 

among variables, dependency modelling is used 

whereas, to describe the causal relations between 

determinant factors and performance measures causation 

models are used (Fayyad et al. 1996).  

MODELS AND METHODS 

Modelling in Bayesian Paradigm 

If the underlying processes are not enough understood, 

models are designed based only on the observed data. 

Instead, models are constructed with existing expertise, 

by beginning with a flexible model specified by a set of 

parameters, and combined it with the statistical model of 

the generated data set. The former is the modelling 

technique in standard classical approach and the latter is 

the Bayesian modelling approach (O’Hagan, 1995). 

Bayesian modelling is the method of parametric 

modelling of data with prior information. 

The strength of Bayesian approach is that they can make 

use of information that might not pertain exactly to the 

issue at hand. The information can be weighted 

according to relevance or quality, and sensitivity 

analysis can be used to assess the priority to be given for 

collecting more directly relevant data. Bayesian variants 

of Monte Carlo integration procedures have been 

devised to address these objections using Gaussian 

process models (Rasmussen & Ghahramani, 2003). 

Let, Y be a random variable called response variable, 

which follows a probabilistic rule with density or 

probability function )|y(f θ , where θ is the parameter 

vector. If, the independent and identically distributed 

sample of size ‘n’ of variable  ], …….,y, yy[y= 
T

n21 ,  

then the joint distribution  

 ∏
=

=
n

i
i )|y(f)|y(f

1

θθ

 
is called the likelihood of the model and contains the 

available information provided by the observed sample. 

Models are constructed, usually, in order to asses or 

interpret causal relationship between the response 

variable Y  and various characteristics expressed as a 

variable υ∈j,X j , called explanatory variables; j 

indicates a model term (or covariate) andυ , the set of 

all terms under consideration. The explanatory variable 
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is linked with the response variable via a deterministic 

function and a part of the original parameter vectors is 

substituted by an alternative set of the parameters 

(denoted by β ) that usually summarizes the effect of 

each covariate on the response variable. 

In a Bayesian model selection, we calculate the posterior 

distribution over a set of models given a priori 

knowledge and some new observations (data). The 

knowledge is represented in the form of a prior over 

model structures P(M), and their parameters P(Τ/M), 

which define the probabilistic dependencies between the 

variables in the model (Beal, 2003). 

By Bayes’ rule, the posterior over models M observing 

data y is given by: 

)(

)/(  )(
)/(

yP

MyPMP
yMP =  

The term )M|y(P  in the numerator is the marginal 

likelihood or evidence for a model M, which integrates 

over model parameters, and is the key quantity for 

Bayesian model selection. Also, 

= θθθ d)M,|y(P)M|(P)M|y(P     

For model structure, we can compute the posterior 

distribution over parameters as 

 
)M|y(P

)M,|y(P)M|(P
)M,y|(P

θθ
θ =  

The predictive density of a new response y′ given the 

responses y = {y1, y2,……, yn}  obtained as 

  ′=′ θθθ d)M,y,|y(P)M,y|(P)M,y|y(P ,  

or simply 

  ′=′ θθθ d)M,|y(P)M,y|(P)M,y|y(P  

If y′ is conditionally independent of y|Τ, we can find 

posterior distribution of x′ associated with the new 

response value y′ as 

  ′′∝′′ θθθ d)M,|y,x(P)M,y|(P)M,y,y|x(P  

The process of assembling information into a Bayesian 

model is a multi-stage one, using data and information 

of many types. It is important to note that, even though 

these models provide a structure into which the 

available data can be incorporated and use expert 

opinion; where there are no data, this does not mean that 

the models are a substitute for experimental data. The 

greatest advantage of Bayesian models is that they can 

be used to facilitate decision analysis despite inadequate 

data; this is especially important as some types of data 

are not likely to be readily collected at all (Beal, 2003). 

Bayesian analysis of the regression was first presented 

in the landmark paper by Lindley and Smith (1972). 
 

Normal Regression Model 

By regression we mean a statistical method used to 

model the relationship of one or more dependent (or 

response or outcome) variables to one or more 

independent (or explanatory) variables. The regression 

analysis is used with objectives of analyzing correlation, 

predict the values of dependent variable(s) given 

independent variable(s), infer cause and effect 

relationships and estimate systematic relationships and 

filter out noise.  

In normal regression models the response variable Y is 

considered to be a continuous random variable 

distributed with the normal distribution with the 

parameters µ (mean) and σ2
 (variance). The normal 

regression model is summarized as: 

 




 2

2121     σβµ ),X,...,X,X,(N~X,...,X,X|Y pp   

with, 
=

+=
p

j
jjp X)X,...,X,X,(

1
021 βββµ  

where, 
2

10   and σβββ
T

p ),........,,( are the regression 

parameters. 

An alternative formulation of the regression model is 

that representing response variable directly as a function 

of the explanatory variable plus a random normal error 

with mean 0 and variance σ2
. 

 110 εβββ ++++= ppX..........XY ,  

where   ),(N~
2

0 εσε  

Likelihood Specification in Normal Regression 

Model 

To simplify computational notation, we denote the 

response variable given explanatory variable 

    pX.,,.........X,X|Y 21  simply by Y,  

and the expected value  

E(Y|X1, X2, ……,Xp) by E(Y) or µ. 

Let, ip2i1i x,,.........x,x  be the values of the explanatory 

variable X1, X2,…..,Xp and with a sample size n 

corresponding to response values 
T

n )y,........,y,y(y 21=  

for individuals   …,n 2, 1,i= ; then the model is expressed 

as  

 




 2
 σµ ,N~Y ii  

ippii x...............x βββµ +++= 110   for i = 1, 2, ……,n. 
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Independent Prior Specification:  

To make inferences about the regression coefficients, 

we obviously need to choose a prior distribution for β, 

σ2
. The basic way of assuming a priori regarding the 

parameters in the normal regression model is the use of 

independent distributions. 

 ( ) 




⋅=
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
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 )( gamma 
2

a, binv~σ  

The computational software, WinBUGS, for Bayesian 

analysis prefer to use precision (τ) instead of variance 

σ2
. So, the specification is expressed as 

         

( ) ( ) ( )τβτβ ff,f
p

j
j∏

=

⋅=
0

    and )b,a(gamma~  τ  

The prior mean and variance of precision parameter τ 

are  

  b
a)(E =τ and 

2
b

a)(Var =τ respectively.  

 

Conjugate Prior Specification: 

The normal distribution is assigned as conjugate prior 

for the β|σ2 
and an

 
inverse gamma distribution for σ2 

for 

the normal regression model. The priori for the joint 

distribution of ],[
2

σβ  follows normal-inverse gamma 

distribution. We symbolize it as 

 




 222

  σµσβ β Vc,N~| p   and ( )b,aIG~  
2

σ  

where,  
1−

= )XX(V
T

 and c
2 

is a parameter controlling 

overall magnitude of the prior variance (Zellner, 1986); 

the default choice of c
2 

= n (Kass & Washerman, 1995). 
 

 

 

Posterior Updating 

The object of statistical inference is the posterior 

distribution of the parameters β0,…,βk and σ2
. By 

Bayes’ Rule, this is simply 

 

) ,|f(y    )  , ,......, , f(   X) Y, |   , ,......, ,f( 2
i

i
i

2
k10

2
k10 ∏×∝

In case of simple linear regression 
 

) ,|f(y    ) , , f(   X) Y, |  , ,f( 2
i

i
i

2
10

2
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Simple Linear Regression with Normal Errors  

Simple linear regression is the statistical method used to 

model the relationship of one dependent (or response or 

outcome) variable to one independent (or explanatory) 

variable. In simple linear regression, we assume mean of 

dependent variable Y is linearly related to independent 

variable X. 

X]XY[E 10 ββ +=
 

  10 εββ ++= XY  where ),(N~
2

0 εσε and 0 =)(E ε
 

For simplicity this model is written as X]XY[E βα +=  

or   εβα ++= XY with common notation  0 αβ =  and 

 1 ββ = .  

For simple linear regression, data consist of a sample of 

),( ii XY  pairs and we infer whether or not distribution of 

Y depends on X, estimate coefficients of relationship 

between Y and X, find credible intervals for coefficients 

of the slope and intercept, evaluate how much of the 

variability in Y is explained by X, predict not-yet-

observed Y for a given X value and evaluate adequacy of 

model. 

The likelihood function is given by 


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The standard estimates for α, β are 

xx

xy

S

S
b =  and  x bya −=  respectively. 

where, ( ) ( )yyxxS i

n

i
ixy −−=

=1

  ,  
=

−=
n

i
ixx )xx(S

1

2
,          

n/yy
i

i=  and   n/xx
i

i=  

The estimates a and b are often called ordinary least 

square (OLS) estimates because they minimize the sum 

of squared deviations from the regression line. 

{ }  min arg ,See)b,a( = where,       


=

−−=
n

i
)ibxai(ySee

1

2
   

a and b are the maximum likelihood estimates of α 

andβ, if the error term is normally distributed.   

Assuming the prior distribution for (α,β and φ) as  
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1
φ

φβα =),,(g  , where
2

  σφ =  

then, a and b are the posterior expected values of α and 

β if n > 2. 
 

Bayesian Estimation of the Parameters in Simple 

Linear Regression  

Let us re-parameterize   εβα ++= XY as 

Xβαη +=  where,  
=

=
n

i
iX

n
X

1

1 is the sample mean, 

then )XX()X|Y(E −+= βη  

β is called the slope of the regression line (simply, 

regression coefficient) and η is sometimes called the 

intercept, although this term is usually used for α. 

The likelihood function for the re-parameterized form is 

{ }
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The regression estimates in the re-parameterized model 

are 
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Replacing σ2 
by φ, the likelihood function is  
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By assigning the reference prior, g(α,β,φ) = 1/φ, the 

posterior is obtained as prior times likelihood: 

Posterior ∝ Prior × Likelihood  
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Algebraic manipulation of squared deviations 

{ } 222
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Thus, the posterior density 
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The first term in the exponential does not involve η and

β , and the second part is proportional to a bivariate 

normal density. 

Conditional on the variance, φ, the posterior distribution 

for η and β is bivariate normal. The mean of η is h and 

its variance is n/φ  and mean of β is b and its variance is 

Sxx/φ . Conditional on φ, η and β are independent but 

untransformed intercept α is not independent of β. 

On the subject of posterior distribution of φ, we find the 

posterior distribution for See/φ , which is  

See/φ ~  inv. chi-square with n-2 df. 

 Posterior distribution of precision parameter 

φτ /1= ~ Gamma(c, d) with 2/)2( −= nc and See/d 2=   

Marginal posterior distribution for η and β are given as 

)n/(See

)h(
n

2−
−

=
η

η ~ t n-2  and  
)n/(See

)b(
Sxx

2−
−

=
β

β  ~ t n-2   

If we marginalize out φ, η and β are not independent. 

The theory behind these distributions can be found in 

Draper and Smith (1981) and Lee (1997). 
 

 

APPLICATION OF MODEL 

Sample and Data  

Independent samples were collected for a variety of 

wheat to study the relationship between the percentage 

of protein and gluten content (Khatiwada, 2011). Protein 

content is vital for baking quality of wheat flour whereas 

gluten is the main structure for forming protein. Sahin 

and Sumnu (2006) explain that ‘proteins are surface 

active compounds, comparable with low molecular 

weight emulsifiers (surfactants), result in lowering of 

interfacial tension of fluid interfaces, emulsify an oil 

phase in water and stabilize the emulsion’. It helps in 

increasing flavor, self- life of the product and helps to 

make the product soft.   

The summary statistics regarding percentage of protein 

content and gluten content obtained from 20 samples is 

given in the Table 1.  

Table 1. Summary statistics of the percentage of protein and gluten content 

Content Mean S.D. SE of mean Variance min max range 95% CI 

Protein (x) 13.32 2.28 0.509 5.188 9.11 16.67 7.56 12.26 − 14.39 

Gluten (y) 5.36 0.93 0.207 0.858 3.44 7.21 3.77    4.93 − 5.79 
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RESULTS 

Summaries of the OLS Method 

The correlation coefficient between the percentage of 

protein and the gluten contents (0.935) is significant (p 

<0.000) with SE=0.337. By ordinary least square (OLS) 

method the regression coefficients are obtained as α 

=0.29 and β = 0.38 with SE(α)=0.458 and SE(β)=0.034 

respectively. The values of R-square and adjusted R-

square are 0.875 and 0.868 respectively. The classical 

simple regression line of the percentage of gluten 

content on protein contained by OLS method is given by 

Y=0.29+0.38X.  
 

Bayesian Regression Summaries from Real Data 

The following summaries were obtained on applying 

Bayesian method of regression on the real data of the 

percentage of protein and gluten content.  

Posterior distributions of the parameters (α and β), 

conditional on φ : 

- Posterior mean of 365.=η , thus, the intercept (α) 

has a normal distribution with mean 5.36 and 

variance φ/20 

- Posterior mean of β 3810.Sxx/Sxyb === , thus, 

the slope (β) has a normal distribution with mean 

0.381 and variance, 5698./Sxx/ φφ = . 

- The posterior mean of the slope and intercept are 

the same as that of the (OLS) estimates. 

Posterior distributions of the parameters (α and β), for 

un-conditionality on φ: 

- Posterior α has a t distribution with 18 df, center 

5.36 and standard error  = n/S =0.08 

- Posterior β has a t distribution with 18 df , center 

0.381 and standard error = Sxx/S  = 0.034 

- Posterior precision φτ /1= has a gamma (c, d) 

distribution, where 922 =−= /)n(c   and 

See/d 2= = 0.98 

The 95% credible interval (CI) and 50% highest density 

region (HDR) of the parameters α and β obtained from 

the real data, updated using a non-informative prior, are 

given in the Table 2. 

Table 2. Posterior summaries of the HDR and CI of the regression parameters 

Parameters Mean Se 

50% HDR 

(given, t0.75,18=0.688) 

95% CI 

(given, t0.95,18=2.101) 

α 5.360 0.080 5.31−−5.41 5.19—5.53 

β 0.381 0.034 0.357—0.404 0.31—0.45 

 

The posterior summaries of the variance (φ) are obtained 

from the inverted chi-square with n-2 degrees of 

freedom. The 50% HDR for the variance (φ)  
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The 95% credible set for variance (φ) 
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Results from the Simulated Data 

For the model assessment posterior estimates were 

generated by using MCMC via Win BUGS. MCMC 

offers a way of using numerical methods to sum over 

the uncertainty about the parameters in the model in 

order to summarize the marginal distributions even in 

the absence of an accessible analytic solution. The non-

informative normal priors were used for the regression 

parameters and a gamma prior for the precision 

parameter to update the normal regression model for the 

protein and gluten content data. 5000 iterations were 

performed to look at the convergence of the model and 

the results were taken discarding initial preliminary 500 

iterations. The likelihood of the percentage of gluten 

content in a wheat variety is, then obtained as:  

Yi ~ N (µi , σ2
), where, µi = α + β xi  (xi is the 

proportion or percentage of protein content) 

The non informative priors were taken as  

α ~N (0, 1000), β ~N (0, 1000) and  τ 
~gamma (0.1, 0.1) 

The summary of the posterior densities of the 

parameters [intercept (α), regression coefficient (β), 

precision (τ) and the predicted values of the means (µ) 

of the response variable Y], obtained from simulated 

data, using MCMC via WinBUGS, are given in the 

Table 3. 
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Based on the posterior distribution of the values of the 

parameters, the fitted model is obtained as   

X..Ŷ 4358091930 +−= . 

The density plots and trace plots of alpha and beta are 

drawn using software WinBUGS and presented. in 

Figure 2. The density plots (Figure 1) show that the 

posterior values of the alpha and beta are better fitted to 

the normal distribution. The trace plots (Figure 2) show 

that the convergence of the model is satisfactory. 

Figures 3 depicts the box plots of the average predicted 

values (µi) of response variable yi and the scatter plot 

with the fitted line for µi  is given in the Figure 4.  

The Bayesian version of MSE and R-square were 

obtained 0.3419 and 0.903 respectively for the simulated 

data. Simulated data has large R
2
 value and less mean 

square errors of the estimate. This model gives the 

predicted values very close to those values obtained in 

classical regression, because of the use of a non-

informative normal prior with large variance. However, 

this model has heavy tail distribution with the large 

values of standard deviations of the estimates. 

Table 3. Summary of the posterior density and the predicted values of means 

node mean se MC error median 2.5% 97.5% 

alpha -0.9193 31.77 0.4556 -0.9823 -63.07 60.66 

beta 0.4358 31.73 0.5518 0.1735 -60.56 63.80 

tau 0.9889 3.097 0.0418 0.0049 2.39E-15 9.57 

mu[1] 3.051 291.40 5.0710 1.171 -558.90 587.60 

mu[2] 4.554 400.40 6.9690 0.966 -772.80 808.70 

mu[3] 3.922 354.60 6.1710 0.316 -681.10 717.00 

mu[4] 5.352 458.30 7.9770 1.401 -883.50 925.20 

mu[5] 6.010 506.10 8.8090 1.282 -973.40 1021.00 

mu[6] 4.127 369.40 6.4300 0.334 -711.70 746.80 

mu[7] 5.914 499.20 8.6880 1.580 -959.80 1008.00 

mu[8] 5.831 493.20 8.5830 1.516 -948.10 995.50 

mu[9] 5.339 457.40 7.9610 1.476 -881.80 923.40 

mu[10] 3.500 324.00 5.6370 0.930 -620.70 654.80 

mu[11] 6.345 530.50 9.2340 1.071 -1019.00 1069.00 

mu[12] 4.036 362.80 6.3140 0.125 -698.00 733.50 

mu[13] 4.284 380.80 6.6280 0.818 -734.20 769.50 

mu[14] 5.487 468.20 8.1480 1.344 -900.90 944.30 

mu[15] 4.249 378.30 6.5840 0.711 -729.30 764.50 

mu[16] 4.219 376.10 6.5450 0.576 -724.90 760.00 

mu[17] 5.988 504.60 8.7820 1.401 -970.30 1018.00 

mu[18] 4.027 362.20 6.3030 0.194 -696.70 732.20 

mu[19] 6.154 516.60 8.9910 2.019 -993.60 1042.00 

mu[20] 5.326 456.40 7.9440 1.550 -880.10 921.50 

 

 

Fig. 1. Posterior density plots of alpha and beta from the simulated data using MCMC 
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Fig. 2. Trace plots of alpha and beta for last 200 iterations from simulated data using MCMC 

 

Fig. 3. Box plots of the Predicted mean values from the simulated data 

 

Fig.  4. Scatter plot and model fit of the predicted mean values 
 

CONCLUSION 

In this study, the posterior densities for the parameters 

of the normal regression were obtained under 

consideration of a non-informative prior distribution. 

The credible intervals and HDR for the parameters 

(intercept, regression coefficient and precision) were 

obtained combining the real data to the specified prior. 

The point posterior estimates obtained for the intercept 

and slope were adequately akin to classical estimates. 

The study was completed using simulations by MCMC, 

which helped to sum over the uncertainty about the 

parameters in the model and to generate posterior 

densities of the parameters of interest. The technique for 

reaching an eventually distribution fitting of the 

posterior estimates, known as a convergence test, was 

used by monitoring one chain for a long time in MCMC 

iterations. An sensitive and easily implemented 

diagnostic tool for the model, known as a trace-plot, was 

used to plot the parameter values at time (t) against the 

iteration number and studied the shape of the plot and 

model found to be fitted satisfactorily. Runs of the 

means were obtained to test whether the posterior 

distributions of the parameters influenced or not.  The 

kernel density plots were plotted to summarize the 
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posterior distribution of the parameters. From the results 

of the study, it is found that the modelling of the 

percentage of gluten content in terms of protein content 

is better in normal regression model with normal non-

informative prior.  
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