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ABSTRACT 

Setting the proper objective functions to optimize the decision making situations is prevalent in most of the 

mathematical programming problems. In this paper, we formulate the mathematical models of product rate variation 

and discrete apportionment problems. Furthermore, a brief comparative study of the objective functions to both the 

problems is reported in terms of inequality measures, precisely indicating the equitably efficient frontier for 

production rate variation problem via discrete apportionment. The largest reminder algorithm and rank-index 

algorithm for the apportionment problem are discussed briefly.    
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INTRODUCTION 

The product rate variation problem (PRVP) is the 

mixed-model just-in-time (JIT) sequencing problem 

which is widely studied during the latter half of the 20
th

 

century. The JIT production system is popularly known 

as Toyota production system developed and perfected 

by T. Ohno while working as assembly manager in 

Toyota company around 1970s. It is a management 

philosophy that requires to produce only the necessary 

products in the needed quantities at the required times 

and in desired quality, which is based on the planned 

elimination of all wastages, continuous improvement of 

productivity and reduction of inventories in all levels. 

To achieve this goal, the early-tardy operations are 

penalized considering the negligible switch over or 

setup costs from one model to other model, and hence 

underproduction and overproduction are minimized to 

increase profits as well as to decrease costs. The PRVP 

reduces the rate at which different models are produced 

on the production line by minimizing the discrepancies 

between the actual and ideal productions (Thapa,  2012). 

It is single-level problem which is studied in perspective 

of the two types of objective functions, namely 

maximum deviation and sum deviation. The PRVP with 

the objective of minimizing the maximum deviation 

between the actual and the ideal productions is called 

the bottleneck PRVP. Similarly, the PRVP with the 

objective of minimizing the total deviations between the 

actual and the ideal productions is called the total 

PRVP. The total PRVP with a general objective function 

has been solved in a pseudo-polynomial time (Kubiak & 

Sethi 1994). The bottleneck PRVP is solved via perfect 

matching approach and bottleneck analysis (Steiner & 

Yeomans 1993; Brauner & Crama 2004). The total 

PRVP is efficiently handled via discrete apportionment 

approach (Dhamala et al. 2012).   

The discrete apportionment problem (DAP) plays an 

important role in modern democracies, a classical 

example being the U.S. presidential election, which is 

the problem of translating an election outcome to a 

number of seats from a fixed-sized political house. 

Mathematically, it is the problem of translating a 

sequence of real numbers to a sequence of integers, 

while ensuring that the sum of the sequence sums up to 

a pre-determined number, called the house size. The 

problem arises because seats are indivisible (integers), 

whereas an election outcome generally gives rise to 

fractional remainders. The main problem is to minimize 

the difference between these two quantities as close as 

possible. DAP occurs in all kinds of electoral systems 

(Thapa & Dhamala, 2009a), for example, in federal 

system (regional representation based on population as 

in USA), in proportional system (political representation 

based on votes as in Israel) and mixed system (mixture 

of federal and proportional systems as in Nepal). The 

DAP is a complex kind of discrete fair division problem, 

since all possible apportionment methods contradict the 

principle of fairness criteria (Brams, 1976). In fact, no 

method equalizes states under the fixed house size 

allocating minimum requirement of one seat and states 

not crossing the house size. Mainly two fairness ideas 

have been studied in the literature: the first is each state 

should get either its lower quota or upper quota, and the 

second is to look at pair-wise equity between states. In 

any case, the philosophy of apportionment must obey 

political legitimacy and the solutions must be acceptable 
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to nation. It naturally appears that finding a perfect 

apportionment method is a difficult job. Some methods 

of apportionment are practiced in different time and 

situations. For an excellent historical note, mathematical 

formulations and the apportionment methods, we refer 

the seminal monograph by Balinski and Young 

(Balinski & Young, 2001). 
 

Product Rate Variation Formulation 

The first step in solving the real-world problem is to 

model it in mathematical form. Assume n  products to 

be produced within the given time horizon 1 through k  

with integer demands nddd ,,,
21
  such that 

Dd
n

i i = =1
 is the total demand. The time horizon is 

partitioned into D equal units. If 
D

d

i
ir =  is the ideal 

production rate for the parts of type i  such that

,1
1

= =

n

i ir then the scheduling goal for the assembly 

line is to maintain the total cumulative production of 

product i  to the total production as close to ir  as 

possible. This means exactly ikr  units of product i  

should be produced in the first k time periods.  

Let ikx be the actual production of product i in the time 

period 1 through k and ikr  be the ideal production in 

the same time horizon where 

.,,2,1;,,2,1 Dkni  ==  If ,0>− iik krx then 

overproduction occurs creating inventories and 

0<− iik krx implies the underproduction creating the 

shortages. The ideal case would be 0=− iik krx , which 

is very rare in general. For a convex penalty function if  

with minimum ( ) ,00 =if  the bottleneck PRVP and total 

PRVP are formulated respectively as follows:  

( ) )1......(....................maxmin
,

max iiki
ki

krxfF −=

 

( ) )2(..............................min

1 1

 
= =

−=
n

i

D

k

iikisum krxfF

 

subject to            )3.....(..........,,2,1,
1

Dkkx
n

i
ik ==

=
 

( ) )4........(,,2,1;,,2,1,1 Dknixx ikki  ==≤−

)5......(..............................,,2,1, nidx iiD ==

ikx  is a non-negative integer ..................................... ( )6          

The constraint (3) ensures that exactly k units are 

sequenced in time periods 1  through ,k the constraint (4) 

represents the monotone condition for production 

sequence which is clearly non-decreasing function. The 

constraint (5) ensures that production requirements are 

met for each product whereas the constraint (6) 

represents the integrality of the product. These four 

constraints jointly indicate that exactly one product is 

produced during each stage. The formulation (1) to (6) 

is an integer programming problem with cardinality, 

monotonicity and integrality constraints. The objectives 

(1) and (2) are studied as squared and absolute deviation 

objectives in terms of inequality measures (Thapa & 

Dhamala 2009a;  Thapa, 2012) which are discussed in 

the section right after the following section. 
 

Discrete Apportionment Formulation  

Suppose there are s states or parties indexed by

sj ,,2,1 =  that are supposed to receive 

representatives or seats according to the size of their 

population or votes from the congressional integer house 

size h , a pre-defined fixed number. Suppose the state j  

has a population jp  such that the total population of the 

nation is  =
=

s

j j pp
1

.  The DAP is to apportion jha  

integer seats to state j under the constraints 

ha
s

j jh = =1
 and ,

+∈ Zajh set of positive integers. 

An ideal apportionment is assumed to satisfy the 

equation 
p

p

h

a jjh =  for all states giving ,
p

hp

jh

ja =  

called the ideal quota or fair share for state j denoted 

by jhq which is not necessarily an integer. The number 

jha  is called actual apportionments for the state j

associated with  house size .h  Since only the integral 

jha  can be assigned to any state, the crucial point is 

how to handle the problem fairly. An immediate idea is 

rounding: for each state, ideal apportionment should 

either be rounded down to the next lower integer or 

rounded up to the next higher integer; but should never 

exceed these bounds (Thapa 2012). The lower and upper 

bounds are defined by the floor and ceiling values of the 

fractional number jhq  as follows:     . 
The apportionment vector a  satisfies the quota if and 

only if      for each state .j  This idea of 

rounding is not unique. On top of the rounding concept, 

there are five traditional divisor methods from 

Huntington family (Balinski & Young 1977) which are  
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proposed in different political situations and intervals of 

time. Largest reminder methods are another type of 

methods. With the above notations, the mathematical 

models of DAP are formulated as follows: For the fixed 

house size ,h the maximum and the sum deviation 

global indices of discrete apportionment to be 

minimized are (Thapa & Dhamala, 2009b; Thapa 2012): 

( ) ( )7.........................................maxminmax jhjhj

hj

qagG −=  

( ) ( )8...................................min
1

jhjh

s

j
jsum qagG −= 

=
 

subject to  ( )9................................................
1

ha
s

j
jh =

=
 

 ( ) ( )10...........................................,,2,1,
1

sjaa
hjjh =≤

+
 

  ,1≥jha an integer ..............................................  ( )11  

This is a constrained integer programming problem 

seeking for integer allocations jha  in such a way that 

the sum of them does not exceed the house size h  and 

they remain near to the fair shares jhq  as close as 

possible. Also the allocations must never be less than 

unity, since it is the minimum requirement. 
 

PRVP verses DAP 

These two problems are considered to be similar due to 

their generic common properties. Establishing the 

relation between PRVP and DAP, Bautista et al. (1996) 

stated that the former problem can be seen as a 

constrained sequential apportionment problem. 

Józefowska et al. (2006) characterized some of the 

algorithms of PRVP via apportionment theory with 

suitable transformation of the problems. Adding some 

similar properties, we present the notational interrelation 

of the problems as follows:  

Number of products n ⇔  number of states s  

Product i   ⇔  state j  

Demand vector d ⇔  population vector p  

Demand id for product i ⇔  population jp of state j  

Position in sequence k ⇔ size of fixed house h  

Actual production ikx ⇔  actual apportionment jha  

Ideal production ikr ⇔ exact quota jhq  

Total demand  == n
i idD

1 ⇔ total population  =
=

s

j jpp
1

 

Monotonicity in PRVP  ⇔  house monotone in apportionment 

Thus, the two problems can be observed from the same 

window and handled in similar ways in most of the 

cases, such as the parametric divisor methods of 

apportionment generate cyclic just-in-time sequences 

(Kubiak, 2009). The optimality of many instances of 

either problem indicates the optimality of the other one. 

In the next Section, we discuss the inequality measures 

in PRVP and DAP. 
 

Inequality Measures of PRVP and DAP Objectives 

Equality is essentially an abstract socio-political concept 

that implies fairness and justice. However, the equality 

is usually quantified with the so-called inequality 

measures to be minimized. According to the theory of 

equity measurement, the preference model should 

satisfy the principle of transfers which states that a 

transfer of small amount from an outcome to any 

relatively worse-off outcome results in a more preferred 

achievement vector. The comparison and reduction of 

amount of inequalities between the intended quantities 

or shares of states to reach as near as to equity are the 

main ideas of the problem. To reach near to equity 

means to obtain fairness and justice. In the following, 

we present the inequality measures of PRVP followed 

by the same measures in case of DAP. 
 

PRVP Objectives 

The bottleneck PRVP is studied with absolute and 

squared objective functions to minimize the maximum 

deviation between actual and ideal productions 

(Lebacque et al. 2007; Thapa & Dhamala 2009b; Thapa, 

2012). These discrepancy functions are as follows: 

( )12..............................maxmin
,

max iik
ki

a
krxF −=

           

( ) ( )13..............................maxmin
2

,
max iik

ki

s
krxF −=

 

where a  and s over max
F stand for absolute and square 

respectively. The mostly studied total PRVP as absolute 

deviation and square deviation objectives are 

(Miltenburg 1989; Thapa, 2012) as follows:  

     

( )14...................................min
1 1


= =

−=
n

i

D

k
ik

xa
sum rF ik  

                     
( )15.......................................min

1 1

2


= =






 −=

n

i

D

k
ik

xs
sum rF ik

 

These measures are further deduced as the following 

standard total PRVP objectives (Miltenburg 1989): 

            

( )16.....................................min
1 1


= =

−=
n

i

D

k
iik

a
sum krxF

    

( ) ( )17...............................min
1 1

2
= =

−=
n

i

D

k
iik

s
sum krxF

   
The tractability of either type of these objectives is 

equivalent mathematically. The discrepancy functions 
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(14) and (15) keep the actual proportions of the 

production mix 
k

x ik close to the desired proportions ir  

at all times ,k whereas (16) and (17) attempt to keep the 

actual production close to the desired production at all 

times. Both types of objectives yield reasonably similar 

schedules. Miltenburg (1989) proposed three algorithms 

with two supporting heuristics for good solution of the 

objective (17). A concise survey on the heuristics for 

PRVP is recently reported (Thapa & Silvestrov 2014). 

On defining the ideal production time 

Dknit
ir

k
ik ,,2,1;,,2,1,

2
12  === −  and required 

production time iky  of each product, Inman & Bulfin 

(1991) proposed the min-sum squared sequencing 

objective ( ) ( )
= =

−=
n

i

D

k

ikik tyyf
1 1

2
to be minimized and 

developed a pseudo-polynomial heuristic with 

complexity ( )DO  via an efficient algorithm, namely 

earliest due date (EDD) algorithm. The problem is 

reduced into single-machine scheduling with due date 

.ikt  The optimal sequences are found by ordering the 

jobs following the EDD rule. Likewise, PRVP 

objectives with weight factor are also considered and 

discussed in many research works, for example in Thapa 

(2012).  

Another type of deviation for the pair of products 1
i  and 

2
i is proposed (Balinski and Shahidi 1998), which aims 

to minimize the variation of production rates from 

product to products. The production rates of the 

products 1
i  and 2

i  are defined by 

1

1

i

ki

r

x
and 

2

2

i

ki

r

x
 

respectively. If 

2

2

1

1

i

ki

i

ki

r

x

r

x
= for all ,,

21
ii then perfection 

will be gained. However, this ideal case is very rare in 

practice. Therefore, the objective minimizing the 

inequality between these two ratios is measured as  
     

( )18..................................................maxmin

2

2

1

1

21 i

ki

i

ki

ii r

x

r

x
−

 

This is an interesting objective that minimizes the 

difference of product rates between two products. We 

have developed equitably efficient frontier for this 

objective function relating with DAP defining the 

objective function for state to state variation in the 

number of representatives (Dhamala et al. 2012). Both 

the objectives are studied in terms of their relative 

differences. The similar inequalities can be observed in 

the DAP which are discussed in the following 

subsection. 

DAP Objectives 

There are several apportionment objectives to be 

minimized in terms of global and local measures of 

deviations (Thapa, 2012). The global index is the overall 

discrepancy function to be minimized whereas the local 

index is the discrepancy function that minimizes the 

pair-wise injustice between the two states. The global 

indices of apportionment objectives (7) and (8) can be 

studied under the same constraints in absolute and 

square deviation perspectives as follows: 
 

)19(................................maxminmax jhjh
hj

a qaG −=

 

( ) ( )20......................................
2

max maxmin jhjh
hj

s
qaG −=

 

( )21.......................................min
1


=

−=
s

j
jhjh

a
sum qaG

 

( ) ( )22..............................................min
1

2
=

−=
s

j
jhjh

s
sum qaG

 

It is observed that the global indices of the PRVP and 

the DAP objectives are of similar nature and an efficient 

frontier is established (Thapa, 2012). Hamilton 

presented the largest reminder (LR) method for the 

global index of DAP in 1792, in which the 

apportionments are made easily as follows: Calculate 

the quota and assign to each state its integer part. 

Distribute unapportioned seats to the states ordering 

with the largest remainders until the house is full. This 

method was used in the U.S. from 1850 to 1900, and so 

it is important from a historical perspective. Moreover, 

this method seems to be natural and simple considering 

the quota approach. The quota method of apportionment 

is elaborately reported in Balinski and Young (1975). 

The following algorithm shows a formal description of 

how the apportionment process is carried out in 

Hamilton method (i.e., the LR method):  

Algorithm 1. The Largest Reminder Algorithm: 

Step 1.  Compute ,
p

hp

jh

jq = the ideal (fractional) value 

that gives perfect proportionality. 

Step 2.  Set  jhjhj qqr −= , the fractional remainder 

of jhq . 

Step 3.  Assign  jhjh qa =  for sj ,,2,1 = . 

Step 4.  Let  =
−=

s

j jhahR
1

be the number of seats 

that remain to be allocated. 
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Step 5.  If ,0>R  assign one more seat to states/parties 

with the largest fractional remainders .jr  

The LR method is studied in various form by different 

mathematical and political scientists. This method 

satisfies quota rule, however suffers Alabama, 

population and new states paradoxes. To avoid the effect 

of the apportionment paradoxes, house-monotone 

methods are developed which are called divisor 

methods. 

Let a  and p  denote apportionment vector and 

population vector. A divisor function depending upon 

a  is a monotone increasing function ( )ad  such that 

( ) .1+≤≤ aada  In light of this divisor function, a 

systematic study of the divisor methods has been carried 

out (Huntington,  1921) and thereby investigated several 

local measures of inequity in DAP based on pair-wise 

comparisons of states' relative representation as the 

house-monotone methods (Thapa 2012). This family of 

methods is based upon rank-index 

( ) ( ) ( ) 0,, ≠= adapr
ad

p
 and fairness measure 

,

2

2

1

1

j

hj

j

hj

p

a

p

a
>  minimizing pair-wise measures of inequity 

between two states
1
j  and 

2
j  (Balinski & Young 1977, 

2001). The state having maximum of ( )ad

p
 receives the 

( )th
h 1+ seat. For given house size ,h

jh

j

a

p  and 
j

jh

p

a
 

represent the average district size and the share of 

representatives respectively for state .j  If ,

2

2

1

1

j

hj

j

hj

p

a

p

a
>

then state 1
j is said to be better off than the state .

2
j  An 

apportionment method M is said to be house monotone 

if for every apportionment solution ,Mf ∈

( ) )1,(, +≤ hpfhpf  is satisfied. There always exists 

a certain inequality in practice between two states, 

which gives one of the states a slight advantage over the 

other. An apportionment a is stable if no transfer of one 

seat from a better off state 1
j  to a less well off state 2

j  

reduces the value of the inequality. The main idea of 

divisor (rank-index) method is: 

Algorithm 2. Rank-index Algorithm: 

Step 1. Start with ( ) ,00, =pf  that is, 

sja j ,,2,1,0 ==  

Step 2. Find a state t  such that 

( ) ( )
jj

j
tt aprapr ,max, =  

Then, 1
' += tt aa  and 

11

'

tt aa =  for 
1

tt ≠           

Step 3. Repeat step 2 until all h seats are allocated. 

Theorem: An apportionment method M is a house 

monotone and consistent if and only if it is a Huntington 

method. 

The measures of amount of inequalities between the 

states defined as the fairness measures, are not unique. 

The inequality 

2

2

1

1

j

hj

j

hj

p

a

p

a
> can be rearranged in 

4
2 16=

different ways by taking different combinations of 

.,,,
2121 jjjj aapp  Several cases of the fairness measures 

between two states can be found in the literature 

(Balinski & Young 2001, Thapa & Dhamala, 2009a). 

For any two states 1
j  and ,

2
j one of the local measures 

of inequalities in DAP similar to the PRVP objective 

(18) is: 

( )23..........................................................maxmin

2

2

1

1

21 j

hj

j

hj

jj p

a

p

a
−  

We have established an equitably efficient frontier for 

the two objectives (18) and (23) with respect to their 

relative differences (Dhamala et al. 2012). These pair-

wise variation problems in PRVP and DAP are 

equivalent and have if and only if condition for the 

optimality of each other.  Note that balancing the inter-

state apportionment is equivalent to balancing sub-

products of a product. The complexity issues of the 

problems are also equivalent in both the local and global 

deviations (Thapa,  2012). The PRVP is studied in terms 

of parametric methods of apportionment  relating with 

rounding and production (Balinski & Ramirez, 1999). 

On top of all above discussions, we can clearly observe 

that the PRVP and DAP are closely interlinked in terms 

of global measures of deviation and in terms of pair-

wise variations.        
 

CONCLUSION 

The PRVP and DAP both are the promising research 

problems independently and simultaneously as well. A 

number of research works has been carried out in both 

directions. The goal of both the problems is to minimize 

certain type of discrepancy functions under pre-assigned 

constraints. The comparative study of the inequality 

measures as objective functions of both the problems is 

reported in this short paper and hence if and only if 

conditions are indicated. The problem whether 

balancing global deviation measures in each problem 

can balance the local deviation measures and vice-versa 

remains open.  It is really difficult to find a perfect 
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apportionment method meeting all the desired 

requirements. The famous Impossibility Theorem of 

apportionment due to Balinski and Young (2001) states 

that there are no perfect apportionment methods. 

Moreover, it is impossible for an apportionment method 

to be population monotone and stay within the quota at 

the same time for any reasonable instance of the 

problem. This implies that there are still many open 

research issues in the discrete apportionment domain.   
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