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ABSTRACT 

The problem of minimizing the total deviations between the actual and the ideal cumulative production of a variety of 

models of a common base product arises as a sequencing problem in mixed-model just-in-time production systems. 

This is called the total product rate variation problem. Several pseudo-polynomial exact algorithms and heuristics have 

been derived for this problem. In this paper, we estimate the largest and the smallest function values of a feasible 

solution for the problem when the m-th power of the total deviations between the actual and the ideal cumulative 

productions has to be minimized. 

Key words: Bound, Product rate variation problem, Non-linear integer programming problem. 
 

INTRODUCTION  

Many companies have changed the assembly lines from 

paced single-model lines for mass production to mixed-

model assembly lines for mass customization of a 

variety of models of a common base product. Just-in-

time production system which requires producing only 

the necessary products in the necessary quantities at the 

necessary times usually uses mixed-model assembly 

lines. 

Mixed-model just-in-time production systems with 

negligible change-over costs between the models have 

been used in order to respond to the customer demands 

for a variety of models of a common base product 

without holding large inventories or incurring large 

shortages. One of the most important problems for the 

effective utilization of the systems consists in 

sequencing different models with keeping the rate of 

usage of all parts used by the assembly lines as constant 

as possible. This problem is known as the mixed-model 

just-in-time sequencing problem (abbreviated as 

MMJITSP). The problem of minimizing the variation in 

the rate at which different models are produced on the 

line is called the product rate variation problem 

(abbreviated as PRVP). The latter problem is the single-

level case of MMJITSP. The problem of minimizing the 

total deviations between the actual cumulative 

productions from the ideal one is called the total PRVP 

(abbreviated as TPRVP), see Kubiak (1993). This 

problem has been widely investigated in the literature 

since it has a model with a strong mathematical base and 

wide real-world applications, see Dhamala and Khadka 

(2009), a recent survey and therein. 

In Kubiak (1993), Kubiak solved the TPRVP with a 

general objective in pseudo-polynomial time . The 

problem is transformed into an equivalent assignment 

problem. Moreover, several heuristics also exist in the 

literature for near to optimal solutions, see Dhamala and 

Khadka (2009). In this paper, we propose a lower and an 

upper bound for TPRVP. We also establish an explicit 

lower bound of the problem.  

The remainder of the paper is as follows. In the second 

section, we present a non-linear integer programming 

formulation. In the third section, we estimate the largest 

and the smallest function values of a feasible solution of 

the problem which is the major contribution of this 

paper. First, the level curves are investigated, then the 

largest function value and finally the smallest function 

value. The last section concludes the paper. 
 

NON-LINEAR INTEGER PROGRAMMING 

FORMULATION 

Let  be the total demand of n different models with  

copies of model            where     and 

    
 . The time horizon is partitioned into  

equal time units under the assumption that each copy of 

a model           has equal processing time. A 

copy of a model is produced in a time unit   
      means that the copy of the model is produced 

during the time period from    to . Let    

  be 

the demand rate. Let   and   be the actual and the 

ideal cumulative productions, respectively, of model  
produced during the time units   through  . An 

inventory holds if     , and a shortage incurs 

if      . We assign the same cost for both 

inventory and shortage. Miltenburg (1989) and Kubiak 

and Sethi (1991) gave an integer programming 

formulation for TPRVP as follows 

with  being a positive integer:  
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minimize        



  

subject to 

   
 ,                                          

    ,                      

   ,    ,                                   

   , integer                  . 
 

ESTIMATIONS  

Level curve 

There exist   deviations between the actual and the 

ideal cumulative productions of   copies of   models. 

The value of the actual cumulative production   , 

                 , is sequence-dependent 

integer from        . However, the value of the 

ideal cumulative production  ,           
       , is sequence-independent rational number. 

Let  be the number of copies of a model and   be the 

  copy of model           . The actual 

cumulative production  ,           
       , has   values with      
                 . There exist at most 

    different values of   for TPRVP. Hence, one 

can replace   by   with           
      , in the level curve of the objective value of 

the function of TPRVP. The level curve for copy   of 

the objective function of TPRVP is defined as 


                        

 

 

 
 

Fig.  Level curves 


 for the instance          

Largest function value 

We set a horizontal line with a suitable value    

intersecting the level curve for each copy    
               , of the objective function of 

TPRVP on the planning horizon  . The horizontal 

line with the value  is called a bound for TPRVP. The 

intersecting points of the level curve of the objective 

function for each copy and the value B are important to 

determine the sequencing time units for all copies of all 

models. A sequencing time unit           , 

means that a copy of a model is produced during the 

time units from    to . One seeks smaller value of 

  so that the total deviations between actual and the 

ideal cumulative productions can be reduced with the 

sequencing time units not exceeding the planning 

horizon. 

It is important to establish the largest and the smallest 

function values of a feasible solution of the problem so 

that one can minimize the total deviations in a 

reasonable time. A sequence corresponding to the 

minimum value, denoted as  , which satisfies the 

inequality 

    



   ,            

       
is optimal for TPRVP. 

A necessary and sufficient condition for the existence of 

a feasible sequence for the product rate variation 

problem with the objective of minimizing  
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                      is 

that the value  must satisfy the two inequalities 

               
  

and 

 

         
      

where                   intersects 

with the time interval within which copy    is 

sequenced, see Brauner and Crama (2004). 

Theorem 1: Let   be the largest function value of a 

feasible solution for TPRVP. Then 

     


 

Proof:  

Given   be the largest function value of a feasible 

solution for the problem. Then the value  satisfies the 

inequality 

    



    

Let   be the largest function value of a feasible 

solution for the problem with the objective function                      
The value  satisfies the inequality                       . 

Consider 

    
 

Then, we can write  

          
 

If  is an integer,  

    
           

and if  is not an integer,             
where  is the fractional part of . 
Since  


     

, 
    

       
 

        
Therefore, 

        
Again, 

          
 

If  is an integer,  

 

    
            

and if  is not an integer, 

    
        

  
                     

Therefore,  

       
Hence, 

           


      



  

    ………….……………..  (1)                                

and 

           


      



  

           ………………..(2) 

 

The two inequalities (1) and (2) show that  

    


 

is one of the largest function values of a feasible solution 

for TPRVP with the objective function                      
Now, 

    





     
  

    
  

         
            

    


 

Hence, the largest function value   of a feasible 

solution for TPRVP is 

     
 

 Smallest functions value 

If an instance has a feasible sequence at the smallest 

function value of a feasible solution, the sequence is 

optimal. However, not all instances are even feasible at 

this value.  
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Theorem 2: If   be the smallest function value of a 

feasible solution for TPRVP, then      
Proof:  

Given Bl be the smallest function value of a feasible 

solution for TPRVP. The 

objective function does not exceed Bl. i.e. the inequality 

      



  

holds. 

First copy of a model          must be sequenced 

at the time unit   . So, one can replace  by  at   . 

Therefore, for any feasible solution, 

       
  

Which can be written as          
The inequality consists of  terms of  . 

Thus,     
Hence, the smallest function value of a feasible solution 

for TPRVP is       
 

CONCLUSIONS 
For the total product rate variation problem, several 

pseudo-polynomial exact solution algorithms and 

heuristics have been developed. The largest and the 

smallest function values of a feasible solution for 

TPRVP are 

     
 

and  

     
 

respectively. These bounds can be used to develop an  exact solution procedure recently given by 

Khadka and Werner (2014) which improves the known 

exact algorithm by Kubiak from (1993)  with a 

complexity of . 

 

REFERENCES 

Brauner, N. and Crama, Y. 2004. The maximum 

deviation just-in-time scheduling problem. Discrete 

Applied Mathematics 134: 25-50. 

Dhamala, T.N. and Khadka, S.R. 2009. A review on 

sequencing approaches for mixed-model just-in-time 

production system. Iranian Journal of Optimization 

1(3):266-290. 

Khadka, S.R. and Werner, F. 2014. An exact solution 

procedure for the total product rate variation 

problem.  Journal of Manufacturing Systems 

Submitted. 

Kubiak, W. 1993. Minimizing variation of production 

rates in just-in-time systems: A survey. European 

Journal of Operational Research 66:259-271. 

Kubiak,  W. and Sethi,  S.  1991. A note on level 

schedules for mixed-model assembly lines in just-in-

time production systems. Management Science 

37(1):121-122. 

Kubiak, W. and Sethi, S.  1994. Optimal just-in-time 

schedules for flexible transfer lines. The 

International Journal of Flexible Manufacturing 

Systems 6:137-154. 

Miltenburg, J.  1989. Level schedules for mixed-model 

assembly lines in just-in-time production systems. 

Management Science 35(2):192-207. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Estimation of the Largest and the Smallest Function Values of a Feasible Solution for the Total Product Rate Variation Problem


