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Abstract: The magnetic field of different geometry of the permanent magnet is 
analytically calculated by using basic principles of the magnetism in very easier 
approach. Concept of origin shifting and geometrical shape transformation are used to 
formulate the formula for cuboidal, cubical and cylindrical permanent magnets. This 
concept can be used for the analysis of magnetic field distribution in space around for 
permanent magnet as well as electromagnet in a very easier approach. Handy and 
simplified software is made to calculate the magnetic field due to permanent magnet 
and electromagnet at any desired position on space. Magnetic field visualization is also 
done in both magnitude and direction by using MATLAB. 

Key words: Magnetic moment, Scalar potential, Vector potential, Helmholtz equation, 
and Magnetic field.  

 

1. Introduction 

In ancient times, magnetism was believed to be the magical force. With the transition of time, 
many researches and scientific breakthrough has taken place. At this date, we are very much 
familiar with that magical force. The spin and the orbital motion in an atom causes the 
magnetism but there are plenty to be explored and discovered about the cause and property of 
magnetism. Numerous effort has been made to unify the Gravitational and magnetic force with 
the references that both possess the unusual attraction force. Electricity and magnetism are 
inseparable quantity. The source of magnetism is partly the rotation of magnet and partly 
revolution around the nucleus. The unfilled electron in the atom give rise to magnetism. A filled 
atomic shell has equal number of electrons consisting up and down spin which results in zero 
magnetic field. On the other hand, an unfilled shell, results in small magnetization from the 
orbiting electrons which in turn results in a non-zero net magnetic field of the atom. Earth is a 
giant magnet. It is not possible for the earth to cause magnetism with the same principle of 
artificial or man-made permanent magnet. Due to the presence of the tremendous temperature 
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inside the core where the existence state of permanent magnetism is not possible. It is believed 
that the cause of Earth magnetism is dynamo effect in the earth core. Dynamo needs source to 
drive it otherwise it would decay on a time scale of 200,000 years or so. There are many 
unsolved mysteries in this field including gravitational setting, tidal forces, buoyance of lighter 
element and their radioactivity. In order to exist current in the core of earth, it requires molten 
moving which is ensured by the rotation of Earth [8] [10]. Magnetism is inseparable part of 
technology. There is numerous application of the permanent magnet such as speaker, electric 
motors, relay switches, solenoid engines, memory storage, MRI scanner, smart phones, small 
fridge magnets, etc. Magnetic strength and magnetic field is the governing term of magnetism. It 
is well known to all; the magnetic field has the curved path but visualizing that shape is a 
difficult task. Calculating precise value of magnetic field at desired position is necessary in order 
to accomplish the project related to magnetism. Cyclotron and most of the particle accelerator 
uses magnetic field to accelerate the particles. 

There are many methods for the calculation of magnetic field produce by the permanent magnet, 
which uses the numerical approximations using Legendre polynomial, greens function, Fourier 
expansion, hypergeometric series [1], Azimuthal geometry [9], Columbian approach [5], Gauss 
law [4], etc. In this paper, easier approach for the computation of the magnetic field due to 
permanent magnet by using triple integration, volume transformation for cylindrical magnet in 
the cartesian co-ordinate system is chosen. This formula could even be used for the 
electromagnet in order to calculate the magnitude and direction of magnetic field at any desired 
point in space around it. Throughout the paper, it is tried to keep things simpler and easier.  

2. Magnetic Moment and Vector Potential 

Magnetic moment (m) gives the value of torque which a magnetic dipole will experience when 
placed in an external magnetic field. Magnetic moment can be considered as quantity having 
both magnitude and direction.  Magnetic moment is directly proportional to the magnetic field 
produce by the magnet.  

The direction of the magnetic moment is from the south 
to North Pole inside the magnet whereas it is from north 
to South Pole outside the magnet. In short, it can be 
stated that magnetic moment refers to system’s magnetic 
dipole moment [6]. The scalar and vector potential of 
magnetic field with magnetic moment m at any distance 
r is given by the following formulae: 

Fig.1: Direction of Magnetic moment  
and magnetic field 

 

∅ 𝑟𝑟 𝜋𝜋 𝑎𝑎𝑙𝑙𝑙𝑙 𝑠𝑠𝑝𝑝𝑎𝑎𝑐𝑐𝑒𝑒
∇′ 𝐹𝐹 𝑟𝑟′
𝑟𝑟 − 𝑟𝑟′ 𝑑𝑑𝑣𝑣

′ 𝐴𝐴 𝑟𝑟 𝜋𝜋 
∇′ 𝐹𝐹 𝑟𝑟′
𝑟𝑟 − 𝑟𝑟′𝑎𝑎𝑙𝑙𝑙𝑙 𝑠𝑠𝑝𝑝𝑎𝑎𝑐𝑐𝑒𝑒

𝑑𝑑𝑣𝑣′ 
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If the gradient of scalar potential and curl of vector potential are known then its vector function 
can be computed. According to Helmholtz decomposition equation vector function is given: 

F A   , where ∅ and A represent scalar potential and vector potential respectively.  

Helmholtz decomposition equation is the foundation in the mathematics, physics, and in the area 
of vector calculus. According to Helmholtz decomposition theory any sufficiently smooth, 
rapidly decaying vector field in three dimensions can be resolved into the sum of a solenoidal 
vector field and an irrotational vector field, which is commonly known as the Helmholtz 
decomposition equation. It is also called as Helmholtz representation equation. Irrotational 
means curl zero and solenoidal means divergence zero vectors. According to Helmholtz 
decomposition, a vector field satisfying appropriate decay and smoothness criteria can be 
expressed in the form F A    where   is a scalar field, called scalar potential, and A 
is a vector field, called a vector potential. 

3( )
4

o m rA r
r

 



 

For a permanent magnet, dm Mdv , where, M is magnetization dv is the differential volume. 
For a magnet divergence of a vector function is zero. So, it implies that there is no scalar 
potential ‘∅’ in case of permanent magnetism [3, 11]. Hence, it is left with the curl of vector 
potential only. 

( )B r A                               
5 3

3 ( . )( ) ( )
4

o r m r mB r
r r


 


 

3. Magnetic Field Due to Cuboid 
Considering the elementary volume, the formula of B(r) was integrated for whole volume of 
cuboid. The direction of the magnetic moment is taken upward. It should be noted that the 

direction of m is taken upward assuming the 
magnet is placed as shown in the figure below. 
It will also be correct when the magnet is placed 
upside down as in the figure below.  

 Distance between origin and point P is: 

2 2 2r x y z    

For elementary volume dv with dipole moment 
dm, 

Fig. 2: Permanent magnet place at arbitrary  
                           point on space 
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5 3
2 2

3( )( .( ))( ) ( )
4

o xi yj zk dmk xi yj zk dmkdB r
xi yj zk xi yj zk

    
 


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For entire volume, taking triple integration, 

1 1 1

1 1 1

( ) ( ) ( ) 2 2 2

5 5 5
2 2 2

3 3 (2 )( ) ( )
4

x a y b z c

x y z

oM xz yz z x yB r i j k dxdydz
r r r

     
  

     

The integration was carried out using MATLAB and Mathematica.  

1 1 1

1 1 1

1( ) [[[[(log( ) log( ) tan ( ) )] ] ] ]
4

x a y b z c
x y z

oM xyB r y r i x r j k
zr

       


 

Assumptions: 

2 2 2
1 1 1r x y z    2 2 2

1 1 1 1( )r x a y z     

2 2 2
2 1 1 1( )r x y b z     

2 2 2
3 1 1 1( )r x y z c     

2 2 2
12 1 1 1( ) ( )r x a y b z      

2 2 2
13 1 1 1( ) ( )r x a y z c      

2 2 2
23 1 1 1( ) ( )r x y b z c      

2 2 2
123 1 1 1( ) ( ) ( )r x a y b z c     

 

1

1 23 1 12 1 13 1

1 2 1 123 1 1 1 3

( )( )( )( )[ log( )]
4 ( )( )( )( )x

y b r y b r y r y roMB
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

      
 

1

1 12 1 13 1 23 1

1 123 1 1 1 2 1 3

( )( )( )( )[ log( )]
4 ( )( )( )( )y

x a r x a r x r x roMB
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
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1

1 1 1 11 1 1 1 1 1 1 1
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1 1 1 11 1 1 1 1 1 1 1
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( )( ) ( ) ( )[ [ tan ( ) tan ( ) tan ( ) tan ( )
4 ( ) ( ) ( ) ( )

( )( ) ( ) ( )tan ( ) tan ( ) tan ( ) tan ( )]
( )

z
x a y b x y b y x a x yoMB

r z c r z c r z c r z c
x a y b x y b x a y x y

r z r z r z c rz

    

   

   
     

    
   

  


1 1 1x y zB B i B j B k                                  (1) 

4. Comparison and Validity 

The Formula for the magnetic field on the symmetry axis of an axially magnetized cylinder 
magnet (disc or rod), which are commonly found in many text books of magnetism is [2] [11] 

2 2 2 2

( )( )
2 ( )

rB D Z ZB
R D Z R Z


 

  
                                                                                             (2) 
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Br: Remanence field, independent of the 
magnet's geometry  
Z: Distance from a pole face on the 
symmetrical axis 
D: Thickness (or height) of the cylinder 
R: Semi-diameter (radius) of the cylinder 
The unit of length can be selected arbitrarily, 
as long as it is the same for all lengths.  
Dimension during comparison  
Cylinder: 
radius(r) =1cm 
height (h) =2cm 
Cuboid:  
Equivalent dimensions of area:  πr2 = (ab) 
a = -1.772 cm 
b = -1.772 cm 
c = 2 cm 

Fig. 4: Comparison of magnitude of field among  
    equation 1 and equation 2 along z axis only 
 
5.  Shape Transformation for Cylindrical Magnet into Equivalent Square Faced Magnet  
Comparing the value of magnetic field obtain from equation (1) and equation (2) along z axis by 
a cylindrical magnet. Fig. 4, shows that the validity of shape transformation. The above curves 
show that there is not significant change in value of magnetic field along z axis for both 
cylindrical magnet and equivalent transformed cuboidal magnet. The curve obtain from both was 
almost similar and of maximum of -1.16% error at a point (0,0,0.9), which means the maximum 
error in the value of magnetic field is obtained at a distance of 0.9 cm from nearest central point 
of magnet. 

The above figure-5 shows the variations in error 
for different dimensions during shape 
transformation. It also shows that initially the 
error is almost consistent (1.25%) but as the area 
of cylinder (to be transformed in equivalent 
cuboid) goes on increasing there is sharp 
transition in nature of error after an area of 
128.6796 sq. cm and on further increasing the 
error again become almost consistent.  

Note: (radius was taken from 0.1 to 10 cm) 

           Fig. 5: Compensating area vs. error 

Fig. 3: Permanent magnet placed at Z-axis 
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6. Derivation for Solenoid 

 The derived formula for Permanent Magnet is derived for the solenoid by replacing: 

M=N*I, where
M = Magnetization, N = Number of turns, I = Current through turn 

7. Validity of Derived Formula for Solenoid 

The common formula for calculation of magnetic field of solenoid along axis is given by: 

2

1

'
2

3
' 2 2 22

(( ) )

x

x
x

onI dxB R
x x R




 


1 2
2 2 2 2

1 2

( ) ( )( )
2 ( ) ( )

x
x x x xonIB

x x R x x R
  

 
   

     (3)  

 

 

Fig. 6: Solenoid placed along x-axis with n number of turns and I current 

Comparing the value of magnetic field obtain from equation (1) and equation (3) along axis as 
shown in figure by solenoid. Fig. 7 shows that the validity of shape transformation.  

 

      Fig.7: Comparison of equation (1) with equation (3) 

The above curves show that there is not significant change in value of magnetic field along z axis 
for both equivalent transformed cuboidal (originally cylindrical) magnet and solenoid. The curve 
obtain from both, was almost similar and of maximum of -1.16% error at a point (0,0,0.9).  This   
also suggests that the formula gives nearly accurate result. 
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8. Derivation of Magnetic Field Equation at Space by Keeping  
    Center of Magnet at Origin 

 

Fig. 8: Permanent magnet with its center placed at origin 

Some assumptions for simplicity: 
 

2 2 2
11 1 1 1( ) ( ) ( )

2 2 2
a b cr x y z       

2 2 2
12 1 1 1( ) ( ) ( )

2 2 2
a b cr x y z       

2 2 2
13 1 1 1( ) ( ) ( )

2 2 2
a b cr x y z       

2 2 2
14 1 1 1( ) ( ) ( )

2 2 2
a b cr x y z       

2 2 2
15 1 1 1( ) ( ) ( )

2 2 2
a b cr x y z       

2 2 2
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2 2 2
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2 2 2
21 1 1 1( ) ( ) ( )

2 2 2
a b cr x y z       

2 2 2
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2 2 2
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2 2 2
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9. Magnetic Field Visualizations 

In order to visualize the magnetic field more precisely the formula is derived for 2D with same 
approach as followed in above derivation. The final result was stream plotted using MUPAD in 
MATLAB. Square plane magnet with dimension Length (l) = 0.5cm and Breadth (b) = 0.5cm is 
used. 

 

Fig. 9: Showing magnetic field using stream plot MUPAD in MATLAB 
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 The derived equation of magnetic field was plotted using scatter plot keeping x=2 in equation 2.   

 

In Fig. 8, the vector lines show the magnitude and 
direction of magnetic field around the magnet in 
the 2D space. In figure, the variation in density of 
scattered bubbles shows the magnitude 
distribution of magnetic field in the 2D space.   

 

Fig. 10: Showing magnitude of magnetic  
     field using scatter plot MATLAB 

10. Magnetic Field Visualization Using MATLAB for Attraction  
    and Repulsion of Two Magnets 

The field visualization for attraction of two magnets by derived formula is shown below. 

The magnetic line of force directing from south pole 
of one magnet to north pole of another magnet, which 
verifies the attraction of two magnets.  

Note: Square plane magnets with dimension Length 
(l) = 0.5cm and Breadth (b) = 0.5cm. Magnets lies 
between -0.5 cm to 0.5 cm and 4 cm to 5 cm along z 
axis and between -0.5 cm to 0.5 cm along x axis. 

Fig. 11: Field visualization for attraction  
                        of two magnets 
 
The field visualization for repulsion of two magnets by derived formula is shown below. 

The magnetic line of force directing from south pole 
of one magnet is reflected by south pole of another 
magnet, which verifies the repulsion of two 
magnets. From data, the co-ordinates for the 
formation of magnetic vortex could also be 
determined. Note: Square plane magnets with 
dimension Length (l) = 0.5cm and Breadth (b) = 
0.5cm. Magnets lies between -0.5 cm to 0.5 cm and 
4 cm to 5 cm along z axis and between -0.5 cm to 
0.5 cm along x axis. 

Fig. 12: Field visualization for repulsion  
                      of two magnets 
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magnets. From data, the co-ordinates for the 
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Fig. 12: Field visualization for repulsion  
                      of two magnets 

 
11. Software for Magnetic Strength Calculation at any Desired Points 

This software is applicable to cubic and 
cuboidal permanent magnets to compute the 
value of magnetic field along with the values 
of each components of magnetic field. It 
takes the input from user and displays the 
output on pressing the CALCULATE button. 
It also allows the user to reset all values of 
variables and result parameter to zero default 
value.  

 
 

Fig. 13: MF Calculator for cubic or cuboidal  
                        permanent magnet 
 

This software is applicable to 
electromagnet to compute the value 
of magnetic field along with the 
values of each components of 
magnetic field. This software 
required input arguments from user 
and compute the value of magnetic 
field very quickly and easily. 
 

 

 

       Fig. 14: MF Calculator for electromagnet magnet 

 

12. Conclusion 

This software is applicable to cylindrical permanent magnet to compute the value of magnetic 
field along with the values of each components of magnetic field and can be used to figure out 
location of magnetic vortex. It asks input arguments from user and compute the value of 
magnetic field. During the computation of magnetic field, the concept of shape transformation is 
used. The obtained value from the relation has maximum error of 1.25%, when the dimension of 
magnet is taken to be 1 cm radius. The software is handy and can be transformed into Android 
and IOS apps. It provides user -friendly environment and enable one to solve their problems 
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related to this scope easily. Field Visualization can be done by using MUPAD and values of 
magnetic field for each co-ordinate could be generated form the MATLAB coding. MATLAB is 
very powerful mathematical and Engineering tool. Application of this formula will enrich the 
doers with higher degree of freedom in acquisition, manipulation and storage of data for future 
use. 

References 

[1] Camacho JM and Sosa V (2013), Alternative method to calculate the magnetic field of 
permanent magnets with azimuthal symmetry, Revista Mexicana de F´ısica E, 59 : 8–7. 

[2] Cheng DK (1983), Field and Wave Electromagnetics, Tshinghua University Press. 
[3] Furlanis EP (2001), Permanent Magnet and Electromechanical device, Academic Press. 
[4] Garrity TA (2015), Electricity and Magnetism for Mathematicians, Cambridge University 

Press.  
[5] Herbert RE and Hesjedal T (2005), Calculation of the magnetic stray field of a uniaxial 

magnetic domain, Journal of Applied Physics 97(7) : 074504(1-4), DOI: 10.1063/1.1883308 
[6] Lorrain P, Corson DR and Lorrain F (1987), Electromagnetic Field and Waves. W H Freeman 

& Co. 
[7] Östman A and Ivedal M (2014), Demagnetization Effects of Assembling Halbach Arrays. 

Uppsala Universitet. 
[8] Purcell EM, Morin DJ (2013), Electricity and Magnetism, Cambridge University Press. 
[9] Ravaud R, Lemarquand G, Lemarquand V and Depollier C (2008), Analytical calculation of 

the magnetic field created by permanent-magnet rings, IEEE transaction on magnetics, 
44(8):1982-1989. 

[10]  Selvaggi J, Salon S, Kwon OM and Chari MVK (2004), Calculating the External Magnetic 
Field from Permanent Magnets in Permanent-Magnet Motors - An Alternative Method, IEEE 
transactions on magnetics, 40(5) : 3278-3285. 

[11]  Thide B (2008), Electromagnetic Field Theory, Upsilon books, Uppsala, Sweden. 

Alternative Approach for the Calculation of Magnetic Field due to Magnet for Magnetic Field Visualization ...


