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Abstract: The earliest arrival flow problem sends a maximum number of 

evacuees as early as possible during the evacuation of people and/or property 

from dangerous zone to the safe zone. The contraflow approach significantly 

increases the capacity to send the evacuees at one hand and reduces the time the 

evacuation takes on the other hand. The problem has been extensively studied as 

an optimization problem with wide application. In this paper we briefly revisit 

the existing literature of the problem.  

Keywords: Earliest arrival flow, Contraflow approach, Evacuation problem 

 

1. Introduction 

People may be in dangerous situation because of different natural and manmade disasters. For 

example, the recent Nepal earthquake and Paris attack. An efficient evacuation strategy is 

required to save the lives and property in such a situation. The strategy incorporates the four 

steps preparedness, planning, response and recovery (PPRR). The preparedness deals with the 

reduction or elimination of the effects of a hazard. The planning step draws a layout for the 

efficient evacuation. The response phase involves actions whereas the recovery seeks to bring 

back the situation into normalcy. 

We concentrate on the contraflow approach of the earliest arrival flow problem. This is a part of   

planning. The problem sends a maximum number of evacuees as early as possible from the 

disastrous zone to the safe zone. The contraflow approach has a significant impact to increase the 

capacity of the path as well as to reduce the time to send. Reduction of time is really important to 

save the lives and/or property of the people in that situation. The problem has been extensively 

studied even to achieve the optimality. In this paper, we briefly revisit the existing literature with 

optimization version.  

The paper is organized as follows: We formulate earliest arrival flow problems in section 2, 

solution procedures algorithms and examples in section 3, Contraflow approach and earliest 

arrival contraflow problems in section 4. The final section concludes the paper. 
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2.   Mathematical Formulation of Earliest Arrival Flow 

The problem has been studied as a network flow in which the disastrous zone , which may be a 

building or a region or a vehicle, is considered  as a source, all the paths the evacuees send 

through are the arcs (, ) with  = 	 (, ): , 	 ∈ , where  is the set of nodes  which are 

the crossings and the safe zone is taken as a sink . We consider the network (, , ,		τ, , ,) where c represents the capacity and  represents the transit time of the arc. So in the 

evacuation problem this method is very useful and be applied so that for each discrete time step 

maximal number of evacuees can be evacuated from dangerous zone to the safety zone. Linear 

Programming Formulation of earliest arrival flow problem by David Gale [10] is  

  maximize        ()     for each ,  = 0, 1, 2, …, T. 

  such that   

 [(, , ) − (, ,  − (, ) = ()		 = 																																																										(1)





 

              

[(, , ) − (, , ) − (, ) = 0		 ≠ , ; 	 = 0, 1, 2, … 																																			(2)


 

 [(, , ) − (, ,  − (, ) = −()		 = 																																																							(3)





 

0 ≤ (, , ) ≤ (, )																																																																																																																										(4)  

For all 		0, 1, 2, … ,  and (, )		, we have (, ) = 1, (, ) = ∞	 for hold over at 

node	. Equation (1) represents total outflow from source node, equation (2) represents net flow 

at intermediate nodes, equation (3) represents total inflow towards sink and equation (4) 

represents capacity constraint. The objective is to maximize the flow as early as possible. 

3. Solution Strategies of the Problem 

The network  on which the problem is described may contain all or some two way arcs. 

The capacity of the arc can be increased if the arcs are reversed.  It has been investigated 

that the capacity can be doubled and the evacuation time can be halved [13]. The 

problem has been formulated as a linear programming with efficient algorithm to find the 

optimal solution [10, 14, 21]. The solution is basically based on the Ford and Fulkerson’s 

algorithm on the dynamic network to find a maximum solution  [8, 9]. Furthermore, an algorithm 

for the earliest arrival and the latest departure of the flow also exists [12]. The dynamic network  is converted into  by reversing the arcs. 

Algorithm 1: [12] Earliest arrival and latest departure flow algorithm 

Input: Modified time-expanded graph 	(T) 
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Output: Earliest arrival and latest departure maximal dynamic flow. 

Begin: Apply the maximal dynamic flow algorithm to find a maximal dynamic flow on the 

underlying static network N (V, E, s, t) 

Whenever a flow augmenting path is found, consider the corresponding arcs of each copy of this 

path in (T). 

If the arc is forward arc then label it with the time when the flow enters this arc. 

Else 

Remove the former label 

End if 

End:  

At termination, these labels indicate a latest departure-earliest arrival schedule. The algorithm is 

pseudo-polynomial that depends on  as in [14,21]. In 1994 Hoppe and Tardos [11] presented 

the first polynomial time approximation algorithm for the earliest arrival flow problem, which 

gives a (1 +	∈) approximation for any fixed ∈	> 0. They developed a capacity scaling shortest 

augmenting path algorithm with the unusual feature of scaling upwards. This means that the 

scaling start with ∆	= 1 and increases ∆ by setting ∆	= 2∆ after iteration until no s - t path of 

length less or equal T exists. The algorithm works on the residual network  ′ () = (V,  (x), T) 

of the dynamic network  (, , , , , , ). Where the capacities arcs updated according to 

the flow changes and are rounded at the end of each iteration by the scaling increasing scaling 

factor	∆. 

Algorithm 2: [11] Polynomial time approximation algorithm for the earliest arrival flow 

problem. 

Input: Dynamic network  (, , , , , , ) with capacity function c and transit time 

function 	∀	(i, j)	∈	E. chain decomposition set P = ∅ and scaling factor ∆ = 1, rounded 

capacity	̃	= c flow x = 0 for some ∈	> 0. 
Output: (1 + ∈) approximation of the earliest arrival flow.  

While there exists a s - t path in () with length	≤	T. 

Set  = 0 

While 

( < ∆	∈ ) and there exists a s - t path in (x) with length	≤ . 
Do 

Find the shortest s - t path in (x) and denote it by p.  = (̃		:	(i, j)	∈P). 

Augment the flow x by  along P and update the chain decomposition 

Set P = P	∪ (; ) 	=		+ 1 
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 ̃=  – (	mod	∆) 

End while 

If P ≠ ∅ the dynamic flow f can be obtained by the repeating all path flows in P.  

Example 1: Let us consider the graph shown in Figure 3 with time horizon T = 7 and ∈	= 1.25	 
to see how above algorithm works. First we set the scaling factor ∆ = 1, the flow f(x, y) = 0 and P 

=	∅,	we start with  =	0 and we have 
∆∈  =		×	. = 4. Here (	= 0 < 4 =	∆		∈ ). 

 

 

 

 

 

 

 

 

               Fig.  3: (a) Dynamic Network                                            (b) Network after First Rounding 

So we apply the inner loop. 

The shortest path is  = {s, x, y, t} with length 4 and maximal residual capacity  = 2, thus we 

augmenting the flow along  by , we get the flow value   (f) = 2 and update the residual 

capacities. Add  to the chain decomposition set P and  =		+ 2.  Since also 	= 2 < 4 = 
∆∈  and 

we have s - t path  = {s, x, t} with length 5 and flow value 3. Update the residue network and 

set  =		+ 3 = 5. Here  < 
∆∈  is not possible. So we have to increase the scaling factor set 

∆	=	2∆ and round the capacities as shown in figure. In the next iteration there exists a s - t path 	= {s, y, t} with length G and flow value 8 in the rounded residual network. We set  = 0 and 

we find 
∆∈  =	×. = 8, here  <	∆∈ . So we update the flow value V (f) = 5 + 8 = 13 and the 

residual capacities.  Then we set: 	+ 8 = 8 and thus we cannot repeat the inner loop again, since  < 8 is not possible. We increase the scaling factor and get ∆ = 4 and round the capacities then 

we get there does not exists s - t path. 
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4.  Contraflow Approach 

Given an evacuation network with each edge having a capacity and travel time and source-

destination capacities, with the general contraflow problem or lane reversals consists of finding a 

network reconfiguration with ideal directions to each lane subject to the given constraints with 

reallocated available edge capacity, that maximizes a given objective function.   In addition to 

evacuations, the contraflow technique is also applicable in order to reduce congestion and traffic 

jams during the day to day rush hours like office time, some events management cases or street 

demonstrations. Authors from different field of research have reported significant time 

possibilities and an effective adaption of technique. 

4.1 Earliest Arrival Contraflow Problem 

Arulselvan [1] and Rebennack et al [17] have considered the contraflow approach with respect to 

the computational complexity. Given a directed graph G = (V, E,) with single source s and single 

sink t having travel time   ∈ T with  =  for (i, j), (j, i)	∈ E and capacity  ∈  for each 

(i, j)	∈ E. The MDCF problem require to find the maximum amount of flow that can sent within 

the given integer time T units from the source to the sink t if the direction of the arc can be 

reversed at time zero. The problem becomes earliest arrival contraflow problem if it sends 

maximum amount of flow from source to the sink for each	,  =		0, 1, 2, …,T. The earliest 

arrival contraflow problem was first introduced in [6]. 

4.2 Procedure of Maximum Contraflow Problem 

1.   Construct the transformed graph  = (V,	 ) where the arc set is defined as (i, j) ∈ 	   if (i, j), 

(j, i) ∈ . The arc capacity function is defined by  =	 +	 for all arcs (i, j)∈   and the 

transit time is     ′	( =  ′ ) = 					(	, ) ∈ 			ℎ.		  
2.   Solve the maximum flow problem on graph with   capacity	. 

3.   Perform flow decomposition into path and cycle flows of the maximum flow resulting from 

step 2. Remove the cycle flows. 

4.   Arc (j, ) ∈  is reversed iff flow along arc (i, j) is greater than  or if there is a non 

negative flow along arc (i, j) ∈ E and resulting flow is the maximum flow with arc reversal 

for graph G = (V, E). 

Arulselvan et al. [18] presented strongly polynomial time for the single source and single sink 

MDCF problem and the multi - terminal static contraflow problem. The time complexities of 

these algorithm are O [(|V|, |E|) +	(|V|, |E|)] and O[(V|, |E|) + (|V|, |E|)] respectively. 

The algorithm for the MDCF Algorithm has been modified [6] for the TTSS graph. 

Example 2:  Consider a dynamic contraflow as given in the Figure 4(a). In Figure 4(b) the arcs 

of the network from the source to the sink are reversed towards the outgoing arcs at time zero. 
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5. Concluding Remarks 

The evacuees can be efficiently sent in a maximum number at every step of time over the time 

horizon using optimization techniques. The problem can be formulated as a linear programming 

problem described as the evacuees’ flow along the reversed arcs of a dynamic network. There 

exists a number of efficient algorithms based on the Ford and Fulkerson’s approach of sending 

maximum flow from the source to the sink.    

The contraflow approach has been useful to implement during the evacuation to find the efficient 

routes from the source to the sink. The applicability of the concept has been increased over the 

past years not only for the evacuation but also to resolve the congestion during the rush hours in 

the populated city. The general problem with arc reversal cost is computationally hard. It is still 

open whether there exists a polynomial time algorithm or not. However, there exists a 

polynomial algorithm on a special class of graph. Moreover, the problem with the case of partial 

arc reversal is still unsolved.  
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