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ABSTRACT 

The capacitated facility location problem (CFL) is one of the extensively researched challenging problems in combinatorial 
optimization. CFL consists of deciding which facilities to operate among a set of available locations and how to allocate 
customers to these opened facilities. Fenchel cuts are a class of cutting planes that solve the separation problem directly with 
a clear understanding of the polyhedral structure. In this paper, the Fenchel cutting plane method has been used to justify the 
capacitated facility location problems. A suitable knapsack structure has been chosen to obtain deep cuts using Fenchel cuts. 
Moreover, a simple heuristic solution is obtained. The comparison of the lower and upper bounds acquired from this method 
to those subjected to Lagrangian relaxation applied to the demand constraints is reviewed. Specifically, it displayed that the 
Fenchel cutting planes approach performs better than the Lagrangian one, to obtain bounds and effectiveness when included 
in a branch or bound algorithm, commencing each relaxation.  

Keywords: Capacitated facility location problem, Fenchel inequality, cutting plane, Lagrangian relaxation. 

 

1.​ Introduction 

The Capacitated facility location (CFL) problem is recognized as one of the extensively researched 
challenging problems in combinatorial optimization. In CFL, the task involves making decisions 
about which facilities to operate among a set of available locations and how to allocate customers to 
these opened facilities. The primary goal of CFL is to minimize the overall fixed costs associated with 
opening these facilities and satisfying the demands of customers, all while considering the capacity 
constraints of the facilities. For numerous private and public companies, a crucial decision revolves 
around determining the optimal locations for their facilities to meet their customer’s demands 
effectively. Beyond its relevance to facility location, CFL finds applications in various contexts, 
including lot sizing, designing networks, replacing machines, optimizing vehicle routes, and 
scheduling [1][2]. 

1.1 The CFL problem 

Let  be the set of potential facility sites to be opened,  and  be the set of customers to be 𝐹 𝐹| | = 𝑚 𝐺
allocated to the opened facilities, . For each of the facilities,  possess a capacity, ,  𝐺| | = 𝑛 𝑖∈𝐹  𝑢

𝑖
> 0

and each of the customers has a demand . To establish a facility at location i, a predefined cost  𝑑
𝑗

> 0

exists, denoted as , and when assigning customer j to the opened facility i, a cost of is  𝑓
𝑖
≥0  𝑐

𝑖𝑗
≥0 

incurred. 

 Let’s define the continuous variable  as the fraction of the demand of customers’ j that is fulfilled 𝑥
𝑖𝑗

by facility i, and  be the binary variable defined as: 𝑦
𝑖
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 𝑦
𝑖

= {1                 𝑖𝑓 𝑎 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦 𝑖𝑠 𝑜𝑝𝑒𝑛𝑒𝑑 𝑎𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖 0                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                 

1.2 Mathematical Model of CFL 

The standard or weak formulation of CFLP is formulated as 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑖∈𝐹
∑

𝑗∈𝐺
∑ 𝑐

𝑖𝑗
𝑥

𝑖𝑗
+

𝑖∈𝐹
∑ 𝑓

𝑖
𝑦

𝑖
                          (1)

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 
𝑖∈𝐹
∑ 𝑥

𝑖𝑗
= 1 ,   𝑗 = 1, 2, …, 𝑛              (2)

                    
𝑗∈𝐺
∑ 𝑑

𝑗
𝑥

𝑖𝑗
≤ 𝑢

𝑖
𝑦

𝑖
 ,   𝑖 = 1, 2, …, 𝑚        (3)

                         0≤𝑥
𝑖𝑗

≤1 ,           𝑖 = 1, 2, …, 𝑚         (4)

                         0≤𝑦
𝑖
≤1 ,            𝑗 = 1, 2, …, 𝑛           (5)

                               𝑦
𝑖
∈𝑍 ,           𝑖 = 1, 2, …, 𝑚            (6)

The main objective (1) is to select a subset of facilities for opening and determine the allocation of 
services from these facilities to each client, aiming to minimize the overall costs. Constraints (2) 
represent the demand restrictions, guaranteeing that the requirements of each customer are met. 
Constraints (3) represent the capacity constraints that ensure that the demand given to the facility 
cannot exceed its capacity. Constraints (4 & 5) encompass non-negativity requirements and basic 
upper bounds on both continuous and discrete variables. If needed, these constraints will be 
differentiated into  and . Lastly, constraints (6) refer to the integrality constraints. 4

𝑥
5

𝑦

2.​ Literature Review 

Various methodologies have been applied to address the CFL problem, aiming to establish the most 
precise achievable lower and upper limits. Lower limits are often found through resolving relaxations, 
with the Lagrangian relaxation method being the most commonly utilized approach for the CFL issue 
[2][3][4] and [5][6][7] and [8] for general references. 

To establish an upper bound, basic heuristics like modified greedy or interchange heuristic versions 
have been employed. To address the CFL and other location problems, the Lagrangian heuristics have 
been used extremely successfully [1][3][9][10] and [11]. In fact, through the resolution of the 
Lagrangian dual and the determination of the upper limit using the heuristic approach, there is a 
chance to achieve the same lower bound with the Lagrangian methodology. Using a duality gap, the 
quality of the limit can be measured [12]. 

The primary limitation of the prior Lagrangian method becomes evident when integrating the limits 
into a branch-and-bound procedure for exact problem resolution. Despite a Lagrangian dual’s 
capability to offer a robust lower bound, it is widely recognized that it does not offer a linear 
programming relaxation of the main problem [12]. 

Essentially, building on the seminal research of Crowder and co-authors [13], significant lower 
bounds derived from linear relaxations are fundamentally acquired through cutting plane methods and 
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integrated into a procedure with a branch-and-bound method. These cuts are typically derived from 
sets of established valid inequalities, necessitating an examination of the facets of the corresponding 
polyhedral [6] [14]. The advancements in polyhedral techniques, encompassing robust cutting planes 
and preprocessing methods, have been successfully incorporated into state-of-the-art commercial 
software packages. Consequently, this integration has significantly expanded the problem sizes that 
can be effectively addressed. 

Several researchers have identified sets of valid inequalities, especially about the CFL issue (refer to 
[15], [16] and [17], with the latter focusing on cases with constant capacities). These inequalities are 
typically derived from either pure or mixed structures found within CFL problem formulations, 
including knapsack, flow, effective capacity, submodular, and single depot inequalities. Aardal [15] 
has conducted computational experiments involving the implementation of these inequalities in a 
branch-and-bound algorithm. Notably, after trying out various combinations of inequality sets, Aardal 
[15] determined that knapsack cover inequalities, derived via the substitute knapsack polytope, were 
the most impactful. As progress is made through this paper, the utilization of surrogate knapsack 
structures to obtain both a robust linear relaxation and a heuristic solution through Fenchel cuts will 
be explored. 

The Fenchel cutting planes method facilitates the incorporation of Lagrangian relaxation techniques 
into polyhedral methods and branch-and-bound algorithms [18]. In this approach, given a formulation 
and a specific structure denoted as Q, the Fenchel inequalities that describe the convex hull conv(Q) 
are under consideration. These cutting planes are derived straight from the structure Q itself, without 
requiring any prior understanding of the conv(Q) face structure. Boyd [19] developed the Fenchel 
cutting planes approach, which allows one to solve the convexified issue related to any Lagrangian 
relaxation, as shown in the work of Saez [18]. 

In this study, a linear relaxation for CFL issues that matches the value of Lagrangian dual problem 
was reviewed. Additionally, a primal heuristic method similar to Lagrangian heuristics was studied. 
This approach allows for comparisons between the Fenchel and Lagrangian methods for CFL 
problems to be conducted. 

3.​ Methodology And Discussion 

It is commonly known that solving CFL problem often yields a relatively weak lower limit. Therefore 
variable upper-bound constraints 

 𝑥
𝑖𝑗

≤ 𝑦
𝑖
    ∀𝑗∈𝐺,   ∀𝑗 = 1, 2, …, 𝑛                (7)

are added to the above problem so that a strong formulation is obtained. 

The bound derived from the weak formulation’s linear relaxation is acknowledged to be less favorable 
than the bound resulting from the strong formulation’s linear relaxation (weak linear relaxation and 
strong linear relaxation respectively) [3]. 

The redundant constraint of total demand 

 
𝑖∈𝐹
∑ 𝑢

𝑖
𝑦

𝑖
≥

𝑗
∑ 𝑑

𝑗
                             (8)

can be added to strengthen the CFL problem’s strong formulation. 
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Various lower bound for CFL is established by partially relaxing or applying a Lagrangian approach 
to the constraints (2-8). The following notation from Cornuejols et al. [3] is utilized for this purpose. 

When a set of constraints, such as (2), is completely relaxed, the resulting bound is denoted as . 𝑧2

Similarly, when constraints other than (2) undergo a Lagrangian relaxation, the resulting associated 
Lagrangian dual bound is represented as . 𝑧

2

The collections of equality or inequality constraints are denoted as . The notation  𝐵
1( ), 𝐵

2( ), … , (𝐵
𝐾

) 

 is denoted to define the space determined by these constraints . 𝑃(𝐵
1
, … , 𝐵

𝐾
) 𝐵

1( ), 𝐵
2( ), … , (𝐵

𝐾
)

. 𝑃 𝐵
1
, … , 𝐵

𝐾( ) = 𝑃 𝐵
1( )∩… ∩𝑃(𝐵

𝐾
)

Different treatment is applied to the integrality constraints (8). The feasible convex hull of space 
characterized by constraints , (8) is represented as [3]. 𝐵

1( ), 𝐵
2( ), … , (𝐵

𝐾
)  𝑐𝑜𝑛𝑣 𝐵

1
, … , 𝐵

𝐾
, 8( )

Given a mixed integer program D, which is written as 

(D)     𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑐𝑦

                𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦∈𝑀

where , we have 𝑀 = 𝑃 𝐵
1
, … , 𝐵

𝐾
, 8( )

 𝑧
𝐵

𝑖 = 𝑚𝑖𝑛⁡{𝑐𝑦 : 𝑦∈𝑀\𝑃 𝐵
𝑖( )} 

and 

 𝑧
𝐵

𝑖

= 𝑚𝑖𝑛⁡{𝑐𝑦 : 𝑦∈𝑃 𝐵
𝑖( )∩𝑐𝑜𝑛𝑣(𝑀\𝑃 𝐵

𝑖( ))}

where the previous equality is obtained from the well-known Geoffrion finding that convexification 
and dualization are equivalent [20][21]. Convexification transforms the objective function into a 
convex form, while dualization converts the constraints into a dual problem. Geoffrion’s work 
illustrated that these transformations are interchangeable or equivalent, leading to the same 
mathematical problem in a different representation. This equivalence is a crucial insight because it 
allows for alternative problem-solving approaches and provides a theoretical foundation for applying 
Lagrangian relaxation techniques in optimization problems. 

For a given optimization problem (*), the optimal value of problem (*) be denoted as u(*) and its 
relaxation by . Similarly, for a given structure Q represents linear relaxation [18]. (*) ,  𝑄 

Lastly, the formulation is based on the above-notation and is applied as. 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 
𝑖𝑗
∑ 𝑐

𝑖𝑗
𝑥

𝑖𝑗
+

𝑖
∑ 𝑓

𝑖
𝑦

𝑖

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑥, 𝑦( )∈𝑀 = 𝑃(2, 3, 4, 5, 6, 7, 8)

jacem, Vol. 10 , 2025 ​​ A Review On The Fenchel Cutting Plane Approach To Capacitated Facility Location Problem 



5 

3.1 Lagrangian Relaxation for the CFL Problem 

Cornuejols et al. [3] explored numerous relaxations in the CFL problem and found that  and  were 𝑧
3

𝑧
2

more strong, even though it was NP-hard to calculate. The following inequalities are true: 

1.  𝑧7,6 ≤ 𝑧6 ≤ 𝑧
3
8 ≤ 𝑧

3

2.  𝑧6 ≤ 𝑧
2

≤ 𝑧
3

3.   𝑧7,6 ≤ 𝑧
3
7 ≤ 𝑧

2

In addition, any inequality is strict for at least one instance of the CFL problem. The bound  which 𝑧6

is associated with a strong linear relaxation, was significantly improved by  and . 𝑧
3

𝑧
2

In the field of research focused on the CFL problem, the relaxation denoted as , obtained from  𝑧
2

dualizing the demand constraints, has gained substantial recognition and usage [1][2][3][4]. The 
ability to achieve linear programming relaxations with a value by combining Lagrangian and 𝑧

2

Fenchel cutting planes was studied. 

The following Lagrangian relaxation must be solved for each multiplier vector  to achieve the 𝑣∈𝑅𝑛

bound . 𝑧
2

 𝐶𝐹𝐿
𝑣( ) 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 

𝑖,𝑗
∑ 𝑐

𝑖𝑗
𝑥

𝑖𝑗
+

𝑖
∑ 𝑓

𝑖
𝑦

𝑖
+

𝑖
∑ 𝑣

𝑗
1 −

𝑖
∑ 𝑥

𝑖𝑗( )
 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑥, 𝑦( )∈𝑃(3, 4, 5, 7, 8, 6)

Let Q = P (3, 4, 5, 7, 8, 6) be the special structure related to the Lagrangian function L(v) = u( ). 𝐶𝐹𝐿
𝑣

Both a knapsack problem with continuous variables (n variables) and a knapsack problem with 
discrete variables (m variables) must be addressed ([1] and [4]) and to calculate L (v). 

The Lagrangian dual 

 𝐷
𝐿( )  𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐿(𝑣)

                𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑣∈𝑅𝑛

gives the bound . In this literature, different methods, such as subgradient and dual ascent, and 𝑧
2

column generation ([2] [3] [4] and [22]) and have been used to obtain the value .  𝑧
2

= 𝑢(𝐷
𝐿
)

3.2 Adding one Lagrangian inequality 

For any  the inequality 𝑣∈𝑅𝑛

 𝐿(𝑣)≤
𝑖,𝑗
∑ 𝑐

𝑖𝑗
𝑥

𝑖𝑗
+

𝑖
∑ 𝑓

𝑖
𝑦

𝑖
+

𝑗
∑ 𝑣

𝑗
1 −

𝑖
∑ 𝑥

𝑖𝑗( )
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is considered valid for Q and is referred to as the Lagrangian inequality related to vector v [18]. 

Shapiro demonstrated that incorporating the above inequality into any linear programming (LP) 
relaxation guarantees that the objective function’s value will be bigger or equal to L(v). 

The limit given by the linear relaxation 

 𝐿𝑃 𝑣( )( )  𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 
𝑖,𝑗
∑ 𝑐

𝑖𝑗
𝑥

𝑖𝑗
+

𝑖
∑ 𝑓

𝑖
𝑦

𝑖
 

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐿(𝑣)≤
𝑖,𝑗
∑ 𝑐

𝑖𝑗
𝑥

𝑖𝑗
+

𝑖
∑ 𝑓

𝑖
𝑦

𝑖
+

𝑗
∑ 𝑣

𝑗
1 −

𝑖
∑ 𝑥

𝑖𝑗( )
 (𝑥, 𝑦)∈𝑃(2, 3, 4, 5, 7, 8)

is known to be bigger or equal to L(v) [3]. For any  the inequality  holds 𝑣≥0 𝑧
2

= 𝐿(𝑣*)≤𝑢(𝐿𝑃 𝑣*( ))

if  is the best solution to  [18]. 𝑣* 𝐷
𝐿

This allows the generation of a linear relaxation with a price that is at least as excellent as . Before 𝑧
2

achieving  by adding a Lagrangian inequality, the Lagrangian dual problem  needs 𝐿𝑃 𝑣*( ) 𝐷
𝐿

resolution. The presence of numerous inequalities here might increase the complexity of solving the 

relaxation of  and potentially diminish the effectiveness of the subsequent branch-and-bound 𝐿𝑃 𝑣*( )
technique. 

3.3 Cutting planes from Fenchel for the CFL problem 

Fenchel cuts are a type of cutting plane for integer programs that differ from more traditional cuts that 
attempt to directly solve the separation issue without explicit knowledge of the polyhedral structure of 
the integer program. i.e. without referring to a specific category of cutting planes, their focus is 
entirely on the separation problem [19]. 

For the Problem (T) 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑐𝑦

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐵𝑦≤𝑏

 𝑦∈𝑄

where   is nonempty set that contains the integrality constraints. 𝑄⊂𝑅𝑛

The primary difficulty in implementing a cutting plane method lies in resolving the separation 
problem, whether it is related to a group of inequality problems or a convex set encompassing the 
feasible region [8]. The problem of separating for conv(Q), given Q as a particular structure, is solved 
using the Fenchel cutting plane method. 

A piecewise linear concave function called  is maximized to produce Fenchel cuts, with the 𝑤(β)
cutting planes being  values for which . A cutting plane doesn’t exist if the greatest value β  𝑤(β) > 0
of  is nonpositive, and Fenchel cuts are the deepest cuts that can be produced for a problem in a 𝑤(β)
well-defined sense [19]. 
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Theorem 1.  Consider  as a feasible solution within the linear relaxation of problem P. There exists a 𝑦
^

value of  for which the value  iff there exists a hyperplane  that separates   β 𝑤(β) > 0 β𝑊𝑦≤𝑓(β) 𝑦
^

from the polyhedron , where W is the matrix that spans the null space of B. Let us define the   𝑅
𝐹

 𝑓(β)

and  as [19] 𝑤(β)

 𝑓 β( ) = β𝑊𝑦 : 𝑦 ∈𝑅
𝐹{ } 

 𝑤 β( ) = β𝑊𝑦
^

− 𝑓(β)

Observation 1.  When  separates  and , the distance from  to the plane   β𝑊𝑦
^
≤𝑓(β) 𝑦

^
 𝑅

𝐹
𝑦
^

𝑤(β)/| β𝑊| ||

: when it does not, it is the negative of this distance [12][19]. 

In conclusion, Fenchel cuts are produced by seeking the maximum value of the function  over 𝑤(β)
any domain that contains the origin within its interior and is full-dimensional. If any  results inβ

, it signifies the presence of a cutting plane. However, if the greatest value of  is zero,  𝑤(β) > 0 𝑤(β)

it proves the absence of a cutting plane that separates  from . As a result, after selecting a domain𝑦
^

𝑅
𝐹

, the problem of separating for conv(Q) may be stated as follows [12][19].  Λ

 𝑅( )𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑤 β( )

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 β∈Λ

To take account of a significant number of variables, it is possible to apply several specific domain 
constraints that will lessen the size of the separation problem. 

The equivalence of dualization and convexification, which ensures that  is simply the LP dual of 𝐷
𝐿

the problem 

 𝐷'( ) 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑐𝑦

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐵𝑦≤𝑏

Q) 𝑦∈𝑐𝑜𝑛𝑣(

also referred to as the convexified issue for structure Q, is one of the key results obtained from the 
Lagrangian relaxation theory. 

Although Saez [18] demonstrates that the separation theorem may be used after a domain  is Λ
selected, D’ cannot be directly solved in the absence of an explicit description of conv(Q). 

 𝑐𝑜𝑛𝑣 𝑄( ) = {𝑦∈ 𝑅
𝐹
:  β𝑦≤𝑤 β( )  ∀ β∈Λ}

That is to say, a description of conv(Q) is provided by the set of Fenchel inequalities. The 
consideration of the linear relaxation 

 𝐿𝑃 𝑄( )( )𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑐𝑦

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐵𝑦≤𝑏

 𝑦∈𝑄
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 β𝑦≤𝑤 β( )  ∀  β∈Λ

is made possible by this. 

The Fenchel cutting planes algorithm will be used to solve what will be referred to as the Fenchel 
relaxation with respect to structure Q. The choice of structure Q is the most important issue in 
Fenchel’s cutting plane theory. To resolve the problem of separation efficiently, there is a need for 
structure Q to have these properties [18] [19]: 

●​ Q does not need to satisfy the integrality condition: for instance, it may be the case that 
conv(Q) , because in that case, the Fenchel relaxation’s bound and the continuous linear  ⊊ 𝑄
relaxation’s bound are identical. 

●​ The optimization shall be relatively simple for Q: remember that in solving the separation 
problem  is to be calculated repeatedly. 𝑤(β)

●​ Structure Q must be sparse or separable; otherwise, cuts won’t be sparse, and the separation 
problem will be more challenging due to excessive variables. 

3.4 Fenchel relaxation for the CFL problem 

For the CFL problem, numerous structures to support Fenchel relaxations are chosen. Especially when 
taking Q = P (2,3,4,5,7,8) a relaxation is obtained, 

 𝐶𝐹𝐿*( ) 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 
𝑖,𝑗
∑ 𝑐

𝑖𝑗
𝑥

𝑖𝑗
+

𝑖
∑ 𝑓

𝑖
𝑦

𝑖

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑥, 𝑦( )∈𝑃(2)∩𝑐𝑜𝑛𝑣(𝑄)

Keeping in mind that . It can employ Fenchel cutting planes in place of conventional 𝑧
2

= 𝑢(𝐶𝐹𝐿*)

Lagrangian techniques since   for at least one case of the CFL problem [3], say conv(Q) ,   𝑧6 < 𝑧
2

 ⊊ 𝑄

does not verify the integrality property. 

The equivalence of  to the Fenchel relaxation LP(Q) related to Q is known. A Fenchel cutting 𝐶𝐹𝐿*

planes algorithm could efficiently solve this relaxation provided that the separation problem can be 
effectively addressed. However, structure Q is not sparse and separable; therefore, a solution to the 
separation problem is challenging [3]. 

Proposition 2.  conv(Q)  =  𝑃 3, 7, 4
𝑥( )∩𝑐𝑜𝑛𝑣 8, 5

𝑦
, 6( ).

This claim allows to replacement of structure Q with the aggregated knapsack structure 

 𝑄𝐾 = {𝑦∈𝑅𝑚:  
𝑖

∑ 𝑢
𝑖
𝑦

𝑖
≥

𝑗
∑ 𝑑

𝑗
                      𝑦

𝑖
∈ 0, 1{ }  𝑖 = 1, …, 𝑚 

The properties required to solve the CFL* for Fenchel cutting planes have been verified by structure 

.It is crucial to note that the separation issue only contains m variables   with structure , but 𝑄𝐾 λ∈𝑅𝑛 𝑄𝐾

the separation problem, initialized with starting structure , would consist of mn+m variables 𝑄𝐾

denoted as . μ, λ( ) ∈ 𝑅𝑚𝑛+𝑚
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Therefore, the bound  which is obtained by solving the problem 𝑧
2

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 
𝑖,𝑗
∑ 𝑐

𝑖𝑗
𝑥

𝑖𝑗
+

𝑖
∑ 𝑓

𝑖
𝑦

𝑖

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 (𝑥, 𝑦)∈𝑃(2, 3, 7, 4
𝑥
)∩𝑐𝑜𝑛𝑣(𝑄𝐾)

The above problem is the same as Fenchel relaxation, taken with  𝑤 β( ) = 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒(β𝑦: 𝑦∈𝑄𝐾}.  

 𝐿𝑃 𝑄𝑘( )( )𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 
𝑖,𝑗
∑ 𝑐

𝑖𝑗
𝑥

𝑖𝑗
+

𝑖
∑ 𝑓

𝑖
𝑦

𝑖

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑥, 𝑦( )∈𝑃 2, 3, 4, 7, 5( )

 β𝑦≤𝑤 β( )   ∀β∈Λ

 

3.5 The separation problem concerning for  𝑐𝑜𝑛𝑣(𝑄𝐾)

Assume that the CFL problem has a fractional solution, . A Fenchel cutting plane that can create (𝑥
^
, 𝑦

^
)

a separation between  and the knapsack polytope  was searched. Based on established 𝑦
^

𝑐𝑜𝑛𝑣(𝑄𝐾)

findings for independence systems, an overview of the separation problem for  was 𝑐𝑜𝑛𝑣(𝑄𝐾)
summarized. 

Definition 3.  An B  is called an independence system if​ ⊂ 𝑍
+
𝑛

i) ​0∈𝑆

ii) ​ 𝑥𝑎∈𝐵,  𝑥𝑏 ∈ 𝑍
+
𝑛  𝑎𝑛𝑑 𝑥𝑏 ≤ 𝑥𝑎⟹𝑥𝑏∈𝐵

i.e. is an independence system if all the coefficients of (A,b) are positive integers[6]. {𝑥∈𝑍
+
𝑛 : 𝐴𝑥≤𝑏

The outcomes are well-known, making the separation problem easier to solve when structure Q is 
independent, and domain  is a unit sphere with an infinity norm . Λ  Λ

∞

Theorem 4.  (Saez)[18] Consider an independence system represented by B, a fractional solution 

denoted as  and consider the domain  In this case, there exists a  within  that maximizes 𝑦
^

Λ = Λ
∞

β Λ

the function ,and as a result, 𝑤(β)

1.  β
𝑖

= 0,  𝑖𝑓 𝑦
𝑖

^
= 0.

2.  β
𝑖

=− 1,  𝑖𝑓 𝑦
𝑖

^
= 1.

3.  0≤β
𝑖
≤1,  𝑖𝑓 0 < 𝑦

𝑖

^
< 1.

For any other domains, condition 2 does not hold anymore, but conditions 1 and 3 remain. 
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Theorem 5.  Let a fractional solution be denoted as  of a linear relaxation and a 0-1 aggregated 𝑦
^

knapsack structure be . Then there exists a  that maximizes the function  over the domain  𝑄𝐾 β 𝑤(β) Λ
∞

such that 

1.  β
𝑖

=− 1,  𝑖𝑓 𝑦
𝑖

^
= 0.

2.  β
𝑖

= 0,  𝑖𝑓 𝑦
𝑖

^
= 1.

3.  − 1≤β
𝑖
≤0,  𝑖𝑓 0 < 𝑦

𝑖

^
< 1.

As a consequence, since many variables will be regarded as constants by 1 and 2 conditions, there 
may be lower variables than m involved in this separation problem. It can accelerate the solution of 
this separation issue by reducing the domain dimension. 

3.6 Fenchel heuristic 

In contrast to the well-known Lagrangian heuristics [1][2][3][5], a different heuristic approach was 

introduced. For each iteration of the cutting planes method and each  the optimal solution of the β∈𝑅𝑚

subproblem  at a point denoted as was determined. According to the 𝑓 β( ) = 𝑚𝑎𝑥⁡ {β𝑦: 𝑦∈𝑄𝐾} 𝑦 ∈ 𝑄𝐾

structure definition , a point  satisfies the requirements of the total demand (8), signifying a set of 𝑄𝐾 𝑦
operational facilities with sufficient capacity to meet the total demand. Considering facilities 
represented by the vector , let  represent the optimal solution to the subsequent transportation 𝑦 𝑥
problem: 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 
𝑖,𝑗
∑ 𝑐

𝑖𝑗
𝑥

𝑖𝑗

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜
𝑖

∑ 𝑥
𝑖𝑗

= 1,   𝑗 = 1, …, 𝑛

 
𝑗

∑ 𝑑
𝑗
𝑥

𝑖𝑗
≤  𝑢

𝑖
𝑦

𝑖 
,     ∀ 𝑖∈𝐼*

where . A feasible solution for the CFL problem is . The optimal  𝐼* = {𝑖∈ 1, …, 𝑚{ }:  𝑦
𝑖

= 1} (𝑥, 𝑦)

solution out of all those discovered along the cutting planes procedure is used as the heuristic solution. 

This suggested heuristic is rather simple to apply, and positive outcomes have been obtained 

3.7 Benefits of Fenchel relaxation in comparison to Lagrangian relaxation 

1.​ A relaxation based on linear programming is the Fenchel relaxation . Consequently, 𝐿𝑃(𝑄𝐾)

once  was solved to obtain the optimal value, the transition to the branch-and-bound 𝐿𝑃(𝑄𝐾)
method was possible to determine the overall optimal value. There are two possible solutions 
to this dual problem with the Lagrangean method, both in solving it and adding an inequality 
of linear relaxation that is associated with Lagrangian coefficients based on a 
branch-and-bound algorithm. 
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1.​ The dual problem involves n variables, which correspond to the number of clients, as 
determined through Lagrangian methods. However, in the context of Fenchel cuts, the total 
number of variables involved in the separation issue is typically limited to the overall number 
of facilities, denoted as m, as among these some may be sets of constants. Generally, the value 
of m is considerably smaller compared to n. 

4.​ Conclusion 

In this review, an attempt has been made to study and provide an overview of the application of the 
Fenchel cutting plane method for addressing Capacitated Facility Location (CFL) problems. 
Additionally, the acquisition of a strong linear relaxation and a basic heuristic, known as the Fenchel 
relaxation and Fenchel Heuristic, has been observed. The superiority of the lower bound obtained 
from Fenchel relaxation over Lagrangian relaxation has been demonstrated. Similarly, upper bounds 
have been obtained using both methods. 

Furthermore, the benefits of Fenchel relaxation over Lagrangian relaxation become more pronounced 
when integrated into a branch-and-bound framework based on linear programming for identifying the 
integer optimal value. Additionally, when employed as an approximation technique, the Fenchel 
approach yields highly effective solutions. 

Exploration of these approximation measures demonstrates that the Fenchel relaxation approach 
provides solutions that are more effective than those obtained through Lagrangian relaxation. 
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