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ABSTRACT

One of the major contributors of global warming and environmental changes which is considered as global problemis fossil
operated internal combustion engines vehicles. To sort out this problem, enhanced battery technology and subsidies provided
by the Government has caused rapid increase in number of electric vehicles (EVs) which requires charging station (CS) to
connect the power grid and the transport network. The behaviour of EV is uncertain and CSrandom placement affects both
the network simultaneously. So, in this paper demand of CSis obtained by Monte Carlo simulation (MCS) with the help of
queuing theory for taking the dynamic characteristics of a CS serviceability into account. Optimal placement of CSs is
structured as a multi-objective optimization problem, which is solved by non-dominated sorting genetic algorithm-11 (NSGA-
I1) to obtain a set of compromised solutions from which best compromised solution is obtained by Fuzzy optimization
technique. The objective functions to be optimized are minimization of electrical distribution loss, minimization of power loss
occurring in EVS when travel towards CSlocation and maximization of utilization factor (UF). UF value provides an insight
on how well the CSinfrastructureis utilized and helps in determining the number of CSsrequired in a network. The proposed
method is simulated on a real 12kV OM feeder of Nepal to show various results. Results show best location of CSs and
parameters like voltage profile, CS utilization and demand uncertainty of CSare analyzed and presented.

Keywords: Queuing theory, utilization factor, NSGA-II, electric vehicle, charging station, Monte Carlo simulation, Fuzzy
optimization.

INTRODUCTION

The risks to present era are greenhouse gas (GidiS3iens, the rapidly increasing demand for energy
while the depletion of petroleum and natural gascé&the transportation sector (Internal combustiol
engine) is responsible for 23% of the GHG emissionthe world, it must play a significant role in
keeping temperatures rising to less th&@ PL]. Electric vehicles (EVs) possess the abiliiyreduce
greenhouse gas emissions, which are the causaiof tiemperatures and environmental damage
Besides to the benefits for the environment, oltlegrefits that encourage many nations to switch fror
internal combustion engines to electric vehicledude reduced maintenance costs, noise levels, al
operating costs. Many countries have stated tleat éimtire transportation system will be electdfiey
2030 [2]. The Nepal government also intends toeiase the percentage of electric vehicles driven u
to 25% by 2025 and up to 90% by 2030. Electric pds/eequired for charging EVs. EVs have become
incredibly popular in recent years, and it appehas this trend will continue until the transpoidat
sector adopts a maximum of EVs, in accordancenéti policies implemented by several government
across the globe. The selection of EVs is growing t advancements in power electronics and batte
technologies.

A higher level of integrating plug-in electric velgs (PEVs) can have both positive and negatiex et
for the electrical system operator. The unforturibieg is that an increase in the number of electri
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vehicles on the road can lead to problems suchoftage drop, overloaded power transformer
overloaded low voltage lines, increased energy Erss harmonic currents [3]. In order to preveesth
issues, grid managers and electric vehicle usess collaborate and develop a plan for energy-effiti
use of electricity and locate charging station nexglifor EVs optimally. The charging demanc
behaviour of plug-in electric vehicles considerthg different factors such as inter-arrival timel an
service time duration, charging voltage level andent level, the number of plug-in hybrid electrit
vehicles beings charged [4], energy consumptiormpley, total battery capacity and start or endustat
[5], daily driven distance pattern and daily regfeaenergy [6] , type of electric vehicles and pnese
of percentage of electric vehicles in the CS [7$ baen determined. Establishing public chargir
stations presents a problem since it needs integraf two distinct systems: the transportation ar
electricity system. If we only think about what #lectrical system needs and don't consider hopwlpeo
travel and where they need to charge their eleg#idcles, we might put charging stations in place
that are good for the electrical system but noy éaisdrivers to reach. This means the solution ‘wor
be good for the people who drive electric cars aeed to charge them. Similarly, if we only thin}
about where people drive and put charging stationisose places, it might be hard for the eleckric
system to handle all the electric cars chargingethe

The previous studies did not to consider into anttle uncertainty of electric vehicles and chaggir
stations, distance travel of EV to arrive at CS i@xamined the charging capability of chargin
stations. In this work distribution losses and tiagital cost of the charging stations are takea in
account when placing charging stations in additmeonsumer comfort or reduce the traveling los
M/M/s queuing models is selected to obtain powenaleds of a charging station and stochastic lo.
models for the EV propelling system. Monte Carlm@&iation (MCS) technique [8] is employed tc
examine load demand of the charging station. Mabfective function considering utilization factor t
measure the effective utilization of charging statinfrastructure is solved with the help of Nomted
Genetic algorithm (NSGA-II).

MATHEMATICAL FORMULATION
1. Modelling of PEV Recharging Energy

In the M/M/s queuing theory [9], the first M meahe exponential distribution of incoming for chargi
PEVs customer with a mean of average arrival tifhgtthe second M means of exponential distributic
of a PEV customer’s average service time ahd s represents the maximum number of CP fallphr
charging PEVs in the same instant [10]. The follayvsteps are used for the random simulation proct
to determine the total charging demand samples/of E

a. The number of PEVs (n) being charged at the sastant is randomly generated using thi
equation for charging station:

an
TPon= 1,2,3,.... 1

(25—1(&)"4_(511)5L)

i=0" I sl 1-a

P(n) =

where p, = 1)

an
Sen—s P =S +1,.....0

b. Randomly select PEV as per their market share.
c. Randomly generate PEV daily driven dista(idg) parameters for selected market share [11

My = etmtomeN )
d. Calculate electrical energy consumed per km BE¥ (EK).

e. Calculate daily recharge energy requirementREY, (D:) [4] using this equation:

Jacem, Vol.9, 2024 Optimal Placement of Chargitegi@ in Om Distribution Feeder of New Chabil Staltion
Considering Dynamic Nature of Electric Vehicle Load



Jacem 3 1 5

_ [ CpatMy = Mg
Dp = {EK.Mde < Mj 3)

f.  Charging time T, is generated randomly with a megnusing this equatiorfy is truncated

inside a certain rang&,;,., Tmax] due to the battery capacity or service restrictidl].

TminTC < Tmin
Te =Ty € (DTin < Te < Trnax 4)
TmaxTC 2 Tmax

g. Charging currenti{is calculated by the applied voltage V and maxinulvarging current,, ,,
of selected power lev§d] using this equation.

(D
I; = mm(

V-_’};:C, Imax) (5)

h. Overall charging demand P of a CS for chargifg/r4] is calculated using this equation.

P =Zn:v.1i (6)

i=1

The previously mentioned process is carried ousuiificient samples are generated to perform irth
static evaluation.

2. Formulation of objective function
A) Minimization of Distribution L oss

When the distance between the distribution transéorand the charging station location is increasec
then the distribution loss will increase. So, ilngortant to evaluate the network loss correctly.

MNmax Mmax

fobjl = min(PLoss) = Z Z (Ib)z-Rb Vb € Nypax @)
b=1 b=1

Where,n,,,.,iS the number of branches in the netw@&kjs the branch resistance alyds the branch
current.

B) Minimization of Travelling L oss

The minimum travelling distancewls from currently situated spot &t pus to the candidate CS spot at
i"™ bus [12] is calculated as

Li,j = Zi,j.xi; Vl,]l ij; L?b-in = mln(Ll,])
Where,Z; ; is node bus connectivity matrix amgis binary variable denoting CS availability at bus

The power require(cEl-, j) foran EV to traveL’[fj"” is determined as,

Mf}’
Ej = Z Eg,s. L™ (8)
s=1

The travelling loss of total EV population in theseem [12] is evaluate using this equation.
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Npus NBus

fobjz = min(Lrraper) = Z z Ei,j;Vivj: {i,J} € Npys C)]
=

=2
C) Maximization of Utilization Factor

Utilization factor is the percentage of the numbkcharging ports that are active to the total nemb
of charging ports in the CS [12] & [13]. It mak&éetCS investor able to evaluate the exact usagG&of
infrastructure.

Total amount of energy sold

Utilization Fact UF) =
Ulization Factor (UF) CS's Power capacity * CS's total working time(T,,)

P
M'Vtunit € T,,; V1 € Ncs; Pis = chP'ka (10)

fobjz = max(min(UFr)) = 5 pr
tunit* CS

D) Constraints

i.  Charging Station Location Restriction: Placing two or more than one CS in a one locatton,
would not be beneficial as installation cost of E3/{S much higher than their charging ports
It also reduces the service area because EV not@bklect nearby CS, and wasted investme
in CS.

—|1¢5 = 15| + 1 < 0; Subject toi # j (11)

where If®, I¥* is the bus location of th&,ij" bus in the electrical system.

il Charging Power Limit: The charging power requireme®$i) of i" CS must be within its
limits ( P/™™ A P{"**) and the charging power requirem« (P} of the d'CP of the f' CS.

kep
P < p; < PM9%; viegp@where, P; = z PEY (12)
q=1
lii.  Voltage Limit: The voltage of each bus should be kept within iéimum and minimum
limits (i.e., V™ andV;%¥) in order to maintain a high-quality power supply.

vMIn < v < VMY (i =1,2,3,.....00. , Npus) (13)
RESULTSAND DISCUSSION
A) Simulation of CS L oad Demand

CS load demand is obtained by mathematical framewasr explained above. For this total EV
currently available and running in Kathmandu vabeg grouped into four different classes as per th
battery capacity namely class-1 (Tigor / E-pre€HTROEN and NEXON Prime), class-2 (NETA,
KONA and NEXON Makx), class-3 (ORA and MG ZS) andsd-4 (BYD car). Battery capacity of eacl
EV of a class is averaged to obtain class-wisedappand 90% of total kWh is considered here beeau
battery won't be fully discharged before going baiging station. Different required data of eadssl
is as shown in table-1.
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Table 1: Class-wise EVs parameters

Description Class-1 | Class-2 | Class-3 | Class-4
Market share in % 25.29 29.91 30.3p 14.48
Battery capacity in kwWh 25.62 35.44 44.45 64.53
Energy consumption in kWh/kmj  0.0902  0.09%4  0.1395.1728

For this study, arrival time and service time ofFehicle is taken as 75 minute and 56 minute
respectively. Voltage of charging station is taken420V and maximum charging current limit of
charging port is taken as 150 A. Limiting valuecbérging time is taken as 10 minute and 120 minut
Mean and standard deviation of daily driven distaoica vehicle inside Kathmandu valley is obtaine
to be 40.26 km and 19.45 km respectively. Total p@pulation is taken as 63 and total number
charging port 4. The number of EVs in any CS isegated using M/M/c queuing theory and Mont
Carlo simulation technique is employed to obtaimded of CS. With 25000 iteration PDF witt
different fitting obtained for CS demand simulatisras shown in figure 1.

Probability Density Frequency
w s N

0.06
Power (MW)

Figure 1: PDF fitting on CS demand distributiondtions

From figure 1, it can be observed that Weibullrisition best fits on the sample of charging static
demand in case of single CS with 4 number of p@Visibull distribution parameters are A= 0.016628¢
B = 1.04722 and Log-likelihood of 41060.5. Mean amatiance of fitting are 0.0163257 anc
0.000243179 respectively with error in parametend B of 0.0146463% and 0.694882% respective
Parameters of the fitted distribution function &nused in case of probabilistic load flow for rixale
placement of charging station and continuous dentdratharging station can be obtained as per t
requirement

B) Test System

A real 12kV distribution feeder namely OM feeder méw Chabil substation of Maharajgunc
distribution center (DCS), Nepal Electricity Autitgr (NEA) is considered for implementing the
considered concept in context of Nepal and sirigkediagram of the considered network is as shov
in figure 2. It has one feeder with 16 differertelals, 80 buses including substation and 79 besct
The selected network is considered to be balangst@rs and it's per phase total active and reacti
peak load of the system considering total instadiggiacity of transformer is 3936.00 kW and 1924.*
kVAr respectively. With the coded backward/forwakdeep method taking base power 100 MVA, ar
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base voltage 12.00 kV, the total per phase power loss for base configuration obtained is 63.0516 kW
with minimum voltage of 0.96871 p.u. at bus number 58 and current in branch-1 is 371.773 Amp.

C) Single CS Placement

In case of single CS placement, the selected nktear have only one charging station and all the EV
owner should come to that location. The distrihutiosses rise when electric vehicle charging load
demands grow because it creates extra load indtveork's infrastructure. Random placement of CS
(which is one load) will create unwanted disturtesim the electrical network as well increasesdsss
by large amount. So, to have minimum effect in digribution network optimal allocation of the
charging station is done considering following thdifferent scenarios of objective functions. Isea
of single objective function Genetic Algorithm (GAg used to obtain optimal location satisfying
different constraints.

A
’TLH':LL

Figure 2: SLD of OM 80-Bus Radial Distribution Netxk

1) Distribution Loss Minimization

In this case best location of charging statiorelscted for given demand of CS in such a way titat t
loss in the selected distribution network will bénimum and all the constraints are within the limit
Simulation done with help of GA in case of 80 bud @eder, it is found that optimal location of CS
is at bus no. 2 having distribution power loss 828 97kW with minimum voltage of 0.96869 p.u. At
this location travel loss is found to be equal &097kW.

2) Travelling Loss Minimization

In this case, total travelling loss that occurs wh# EVs travel from the bus where they are lodate
the bus where CS is placed, is minimized to geh@gtposition of CS in the network. From the sauti
obtained after running GA, minimum value of traigl loss is found to be 0.3081kW when CS is
placed at bus 10. At this location, distributionygo loss is 64.3199kW and minimum voltage of the
system is 0.96849 p.u.

3) Distribution Loss and Travelling Loss Minimization

In this scenario, both distribution loss of thewmtk and travelling loss occurring in the systera ar
minimized simultaneously with help of NSGA-II opiiration algorithm [14]. A set of compromised
solutions by considering both the functions oréssgsresent in pareto front-1 of NSGA-II algorithon f
the case of one CS are as shown in table 2.
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From the table 2, it is seen that both the objectiinctions are contradictory in nature, so the be
compromised solution among the set of compromisdatiens is obtained with the help of Fuzz)
optimization technique [15]. The best compromisalli® of the distribution loss and travelling loss a
63.7658kW and 0.2982kW respectively with minimunitage of 0.96860 p.u. for location of a CS ¢
bus no. 7.

Table 2: Pareto set considering network loss ameetioss in case of one CS

Pareto Set 1 2 3 4 5 6 7 8 9
Number
Bus No. 2 3 Z 5 6 7 9 10 11
Distribution | o 5 | 63411 63.501 63.585 63.6p4 63.766 63.834 64.323284.
Lossin kW
Travelling

0.4699| 0.3966 0.3596 0.3454 0.3309 0.2982 0.2016 0.2725728)2
Lossin kW

D) Multiple CS Placement

In this case, more than one CS are taken consglehia above-mentioned objective function
individually and simultaneously. In case of a lasgetem, system operator is motivated to have mc
than one CS if the CSs are utilized efficiently, Bere the third objective functions namely utiliaa
factor is also calculated. The policy maker is em3$uo have high return when the CSs are utilize
adequately and hence, the investment on CSs willvd¢hy. During selection of number of CSs
utilization factor plays a vital role. Differentestario of objective function considered are aoied.

1) Distribution Loss Minimization

Considering distribution loss as minimization fuant GA gives bus 2 & 19 for locating the chargin
station in the OM feeder with distribution loss B3L7kW and minimum voltage of 0.968687p.u. Fc
these locations travelling loss is found to be 851&V. Similarly, location and other parameters loan
obtained for 3, 4, etc number of CSs as per theiremgent.

2) Travelling Loss Minimization

In this case, the traveling loss of all EVs is omlinimized to find the optimal location of the tv@s
in the network by using GA. It is found that minimwalue of travelling loss is 0.2138kW for locatior
of CSs at bus 46 and 57 of the considered OM fe€derthese locations distribution loss is 64.7 %08k
and minimum voltage of the network is 0.96819 p.u.

3) Distribution Lossand Travelling Loss Minimization

Optimal placement of the two-charging station im @M feeder network by simultaneously minimizing
both distribution loss and travelling loss is cadrivith help of NSGA-II optimization algorithm [14]
Figure 3 shows plot of distribution loss and tréimglloss corresponding to pareto set number ptes:
in a set of compromised solution of pareto fromt-tase two charging stations.
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Figure 3: Network loss and travel loss for paretoraimber for two CSs.

From figure 3, it can be observed that for samatloa i.e., same pareto set number value of digioh
loss decreases while value of travelling loss iases, which clearly shows that both the objecti
functions are contradictory in nature. When disttiitn loss is plotted against travelling loss ofveal
in set of compromised solution of pareto frontkrt graph as shown in figure 4 is obtained.

64.8

*®

64.6

“h
G4.4 - J

64.2 -

Network Loss in kW
A

L - _
63.4 -
e e

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Travel L.oss in KW

Figure 4: Network loss and travel loss of paretdrsease of two CS

Using Fuzzy optimization technique [15]. best coompised solution from a set of compromise
solution is obtained and best compromised valughef distribution loss and travelling loss ar
63.9095kW and 0.1872kW respectively with minimunitage of 0.96857 p.u. for location of CSs &
the bus 10 and 22.

4) Distribution Lossand Travelling Loss Minimization with M aximization of Utilization Factor

In this case, optimal placement of the more tham dmarging station in the OM feeder network b
simultaneously minimizing both distribution lossdatnavelling loss with maximization of utilization
factor is carried with help of NSGA-II optimizati@hgorithm [14]. Table 3 shows a set of compromise
solutions by considering all objective functiongdastribution loss, travelling loss and utilizatitactor
present in pareto front-1 of NSGA-II algorithm ftre case of two CS. Figure 5 shows plot ¢
distribution loss and utilization factor correspongd to pareto set number present in a set
compromised solution of pareto front-1 in case tharging stations.
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Table 3: Pareto set considering three objectiveage of two CS

PSN | Bus Distr. | Trav. | Max. | PSN Bus Distr. | Trav. | Max.
No. Loss Loss UF No. Loss Loss UF

1 | 19| 2| 63.222| 0.564 16.2 24 36 63.6/6 0.243 6.4
2 | 20| 2| 63.222| 0.523 14.2 25 38 63.6f/8 0.265 12.3
3 2| 3| 63.315| 043 15.8 26 25 9 63762 0.284 128
4 |19| 3| 63.317| 0.425 135 21 2 10 63.768 0.235 12.7
5 2|4 63.36| 0.394 15.7 28 19 10 63.17 0.248 144
6 | 19| 4| 63.362| 0.382 13.8 24 3 10 63.864 0.211 11.8
7 | 20| 4] 63.363| 0.383 17.4 3( 3 11 63.865 021 10
8 2| 5| 63.392| 0372 143 31 4 10 63909 0.219 133
9 | 19| 5| 63.394| 0.344 13.3 32 22 10 6391 0.211 113
10 | 2| 6| 63.421| 0.361 15.2 3 4 11 63911 0/19 7.38
11 | 19| 6| 63.423| 0.33 8.86 34 6 53 64.366 0.229 155
12 | 20| 6| 63.424| 0.33] 9.71 35 8 b3 64.443 0.206 18.2
13 | 2| 7| 63.492| 0.32 14.5 36 7 54 64.448 0.209 14.2
14 | 19| 7| 63.494| 0.296 11.8 3] 8 b4 64.454 0.207 184
15 | 20| 7| 63.495 0.316 14.9 3¢ 9 B3 64471 0.202 14.3
16 | 2| 8| 63.498| 0.312 14.7 3¢ 8 55 64.477 0[19 11.5
17 | 19| 8| 63.5 0.31§ 15.1 4( 7 %6 64481 0.189 567
18 | 2| 9] 63.526| 0.291 12.2 4] 8 56 64.487 0.202 11.9
19 | 19| 9| 63.528| 0.294 15.6 42 8 b7 64498 0.187 981
20 | 3| 9| 63.622| 0.27¢ 12.6 43 9 55 64506 0.199 122
21 8| 63.639| 0.2717 11.7 44 9 56 64.515 0.199 134
22 | 4| 9| 63.667| 0.28 12.6 45 O b7 6456 0.186 124
23 | 22| 9| 63.668| 0.255 11.7 46 10 B5 6475 0.194 12.6

Where, PSN: Pareto Set Number, Distr. Loss: Distribution Lossin kW and Trav. Loss: Travelling Loss

in KW.

From figure 5 & 6 and table 3, it can be obsented value of distribution loss decreases while &alt

of utilization factor increases but value of trdwvg loss increases, which clearly shows thatradkse

objective functions are contradictory in nature.hefl distribution loss is plotted against traveklos
obtained in set of compromised solution of paretotf1, then graph as shown in figure 6 is obtaine
So, using Fuzzy optimization technique [15] beshpoomised solution from a set of compromise

solution is obtained and best compromised valueeflistribution loss, travelling loss and utilipat

factor with minimum voltage for different numberdifarging station are shown in table 4.
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Figure 5: Network loss and utilization factor f@oé pareto set number.
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Figure 6: Travel loss versus network loss in cdgbree objective function.
Table 4: Results considering three objective flumdi
No. of L ocation Distribution Travelling Utilization Min. Voltage
CSs Lossin kW Lossin kW Factor in % inp.u.
2 4 & 20 63.3627 0.3829 17.40 0.9687
3 4,9 &55 64.1685 0.1556 6.22 0.9684
4 5,10,38 &61 64.1443 0.1137 5.05 0.9684

From table 5, it can be observed that when the eurmbCS is increased from 2 to 3 then utilizatio
factor decreases by around 3 times and when iresleliem 3 to 4 then utilization factor further
decreases. So, in this case we can see that whemuthber of CS increases then utilization fact
decreases. So, it is better to have 2 number oh&8ad of 3 and 4 number from policy maker’s ¢
system operator perspective. But from EV’s ownespective a greater number of CS in the system
better option. When the EVs population is incredseh current EVs population and then utilizatiol
factor is also increased during keeping the CSagpeonstant as shown in table 5.

From the table 5, it can be observed that wheng®ysilation increases then travelling loss, distidyu
loss and utilization factor also increases in comspa to present population of EV in the system. S
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during planning stage near future EVs population ba considered to decide the number of CS
because utilization of CS will get increased inrrfature and system operator will have more revenu

Table 5: Results for varying EVs population

EvV Total 1 phase | Network Travel Utilization
Population Location | Demand of CS | Lossin Lossin Factor in
P in kKW KW KW %
63 4 &20 129.759 63.3627 0.3829 17.40
126 2&7 187.143 63.6877 0.6314 22.13
189 9&19 175.223 63.6957 0.9199 26.88

The voltage magnitude for different case of objecfunction is almost same when charging station

placed optimally in the existing distribution netlkoSince position of charging station only varées!

total capacity is same so there is only slightatérn in voltage magnitude as shown in figure 7e Th

variation in voltage at each bus for different neméf charging station is minor and there is ndation
of voltage limit also.

= o — = e

Figure 7: Voltage magnitude of OM feeder in caseasfous objective function.

CONCLUSION

W Base Case (No Obj.)
W Network & Travel
W Network & Travel

Loss

Loss and Utilization

Factor

099 100 100

099

95 096 096 097 097 098 098

ﬁa-l——-l.—»—&h--t.m—Abt-—-f.v—.v-&l&-o‘.-—x—«&r—-f.—n—taxl-—-l.—n——ba

Voltage Magnitude in p.u.

This paper has introduced a strategy to studyrnipacts of CS placement in the existing distributiol
network. Monte Carlo simulation (MCS) is used tketéanto account the dynamic behaviour of EV:¢
load with the help of queuing theory for taking thaamic characteristics of a CS serviceabilityisTh
method finds the optimal allocation of CS by siranokously minimizing electrical distribution loss
which benefits the system operator, minimizing ¢thng loss of EVs when traveling to the locatidn o
CS benefiting the EVs owner and maximizing theizdtion factor which confirms economical
utilization of charging station infrastructure thusnefiting the charging station investor. This moeit

is tested on the 80-bus OM feeder network for optiplacement of CS. The results of this stud'
indicate very clear that while an increase in nunob€S will increase the distribution loss but abase

in travelling loss of EVs as well as utilization 65. The impact of charging station location on th
network voltage profile is minor and there is nolation of voltage limit also.
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