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Abstract: Hermite and Hadamard independently introduced the Herimite- Hadamard inequal-
ity for convex functions for the first time. In the recent years ,varieties of extensions were given
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1 Introduction and preliminaries

In mathematics,quantum calculus is the study of the classical calculus without the notion of limit
and it is also known as g-calculus , where q is a parameter 0 < ¢ < 1. In q - calculus we obtain
mathematical expression in terms of q and whenever ¢ — 1 it again reduces to the original
form. The history of g-calculus traced back to the Euler (1707- 1783), who first introduced
the g-calculus to deal Newton’s work of infinite series. In the twentieth century Jackson [3]
was the first mathematician who started the systematic study of g- calculus and introduced
g-definite integral .Hermite- Hadamard investigated one of the fundamental inequalities for a
convex function in analysis, that is

(59 < 5= /jf(x)dwsM (M

2 2

which is known as Hermite-Hadamard inequality. For the first time, in [7], Tariboon and
Ntouyas investigated the g-analogue several of classical integral inequalities, from which they
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obtained the g-analogue of Hermite - Hadamard inequality. But their finding was not compat-
ible for ¢ € (0,1) for the left hand side, was proved in [1] by Alp et.al by giving a counter
example and proved the correct q- Hermite Hadamard inequality. Recently, many extensions
were given with the use of convex functions by several researcher. In 2020 years, the inves-
tigation on g- Hermite -Hadamard inequality for general convex functions has been done and
several extensions and variants have been developed .

The purpose of this paper is to present the g- calculus analogue of Hermite-Hadamard inequal-
ities for sevral Godunova -Levin class of function in finite interval [a, b].

We now present some notations and definitions from the g-calculus, which are necessary for
understanding this paper. Let J := [a, b] C R be an interval and q be a constant with 0 < ¢ < 1.

Definition 1. [6] The g-derivative of a continuous function f : J — R at x is defined as:

f(@) = flgz + (1 —q)a)

Dl @) = T e —a)

; forx #a (2)
For x = a it is defined as

oDyf(a) =lim D, f(x)

r—a

If ,D,f(x) exists for all x € J, then f is g- differentiable on J. Moreover, if @ = 0, then 2
reduces to

fz) = flgz).

oDuf(x) = Dyf(r) = HE 10,

x #0

For more details, see [4]
The higher -order g-derivatives of functions on J are also defined.

Definition 2. /6] For a continuous function f : J — R, the second - order derivative of f on J,
if oDy f is g- differentiable on J, denoted by aDg f and defined by

Daf = aDy(uDy)f

Similarly, n'* order q- derivative oDy | can be defined on J, provided that aDg"l f is defined
on J.

Definition 3. [6] Let f : J — R be a continuous function. Then the g-definite integral on J is
represented as

x oo
[ 10t =10 - > a"fla"s + (L= )i forz e . 3)

a n=0
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Ifa=0in 3, it reduces to the classical g-integral called Jackson’s g-integral on [0, x] delineated
as

/0 "1 odyt = / FW) dyt = (1 ) Y@ (@) : for € [0, 00) @

Theorem 1. [6] Assume that function f : J — R is continuous. Then, we have the following
(i) aDq faZ f(t) adqt = f(.%‘) - f(a) )
(ii) f: oDy f(t) adgt = f(z) = f(c) for ¢ € (a, )

Theorem 2. [6] Let functions f,g : J — R be continuous and k € R. Then we have the
following

(i) f;[f(t) + g(t)] adqt = fax f(t) adqt + faxg(t) adqt ;
(i) [7(kF)(E) adgt =k [ f(E) adyt ;
(iii) [ f(t) aDqag(t) adgt = (fo)IZ — [ glgt + (1 — q)a) o« Dy f(t) adgt forc € (a, )

The proofs of fundamental theorem on integral calculus , linear property and integration by
parts in Theorems 1 and 2, see [6].

Definition 4. [7] For a € R — {—1}, the definite q- integral is given by

xr 1 _
[t ar it = () - 8

From this one can write

‘ « o 1 - q a+1
/0 t Odqt = (1_—(](1H>$ (6)

Definition 5 (Godunova class of function Q(I)). [2] A mapping f : I — R is said to belongs
to Q(I) class of function if it is non- negative and for all x,y € I and X\ € (0,1) satisfies the
inequality

f@) | f()

f()\a:+(1—)\)y> < 7

Definition 6 (Godunova class of function P(I)). [2] A function f : I — R is said to belong
to Godunova -Levin type P(I) class of function if it is non- negative and for all x,y € I and
A € [0, 1] satisfies the inequality

f(a+=Ny) < f@)+ ) ®)
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Definition 7 (s-Godunova-Levin class of function Q4(C')). [5] A function [ : C' C X — [0, 00)
is said to be s-Godunova -Levin type wity x € [0, 1], if

1

1
f()+m

fte+0—tw) < ) ©

forallt € (0,1) and z,y € C where C is a convex set in linear space X. This class of function
is denoted by Qs(C).

Theorem 3. [2] Let f € Q(I),a,b € I witha < band f € Ly|a, b|.Then one has the inequali-

ties
a+b 4 b
1(%57) < b_a/a f(x)de (10)
and
1 fla) + f(b)
= | s < HOIE (an
(b—2x)(x — a) . : .
where p(z) = G- x € [a,b]. The constant in 10 is the best possible.
Theorem 4. [2] Let f € P(I), a,b € I with a < band fis integrable in [a, b]
b
1457 < /f )z < 2(f(a) + £(2)) (12)

Theorem 5. [5] Let f € Q4(C) witha < band f € Li[a,b], C= [a,b], s € [0, 1] then one has
the inequalities

b s+1
(5 <o [ 1 3
fla)+ f(b).
b_a/f < T iselo ) (14)

2 Main results

Theorem 6 (g-analogue of theorem 3). Let f € Q(I),a,b € I witha <b, 0 < q< 1andfis
integrable in [a,b].Then one has the inequalities

a+b
(57) (15)
2
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and
I fla) + f(b)
< a7 77
i | @ e < KO (16)
where p(z) = (b —(;)(x); %) ,x € |a,b]. The constant in 15 is the best possible.
—a
Proof. Since f(z) € Q(I).We have for all z,y € I with A\ = § and using 7
Tty
>
2(f@)+ 1) = F(57)
Letx =ta+ (1 —¢)b and y = (1 —t)a+tb fort € 0, 1].
Then
a+b
2[f(m+(1-t)b)+f((1—t)a+tb)} > f( ; ) (17)
Now, g-integrating over t in [0,1].
1 1 U et
— — >
2/0 f(m +(1 t)b> od,t + 2/0 f((1 ta + tb) od,t > /0 f( . ) ot (18)
Now
1 e
| (s a-tp)adt = =0 -0)>a"f(ar 1= q)
0 n=0
= (1-¢q))_ qnf(q% +(1- (J")b>
n=0
(b—a) g
_ 1 — n n _n
( Q)(b_a);oq f(q a+(1—gq )b>
1 b
= d 1
b—a) af(l’)aﬂ (19)
But,
1 1
/ f<ta +(1- t)b> od,t = / f<(1 —t)a+ tb> od,t
0 0
Again,
1 00
[t = 0-a0-0>
0 n=0
= 1-¢(l+qg++¢+--+)
= (g
Y=g
— 1 (20)
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Using above results, one can get

b b
(bfa)/ f(x)adthr(b—La)/ f(x) odgt >

..,f(a;b) < bfa)/:f(x)adqt 1)

This completes the first inequality and the number 4 is the best.

Vv
=

Again, Since f € Q(I), forall a,b € I and X € [0, 1] we have by definition
AL=NfAa+(1=Xp) < (L=A)f(a) +Af()
and

AL=N(1=Na+Ab) < Afa)+(1=A)f(b)
Adding and q- integrating over A € [0, 1]

/1 L= A+ (1= AB) od, )+ /1 ML= NF((1= Na+2b) od, A < /1(f(a) - 1(b)) od,)
Now, )
/ ML= ) F((1 = N+ Ab) od, A

Letz = (1—=Xa+ b

g-differentiate with respect to A, then we get

ODqI' = —a+b
oDgx = b—a
dgx
e
odo\
! d dgA
xr =
bh—qa 0%q
As A =0,thenz =aandas A = 1,thenx = b
And
r = (1=XNa+ b
= a—Aa+Ab
r—a = (b—a)A
r—a
o)
b—a
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Again,

Tr—a

b—a

o= (5=

So,

1 /b (x —a)(b— :B)f(x) o (22)

/0 AL = NF(1=Na+ M) odA = 7— b—a)y

Similarly one can get

1 /b ($—a)(b—x)f(x) Ao (23)

A,ML—MﬂMa+U—AWM%A b—a (b—a)?

Hence we have all together

2 ["(x—a)(b—x) |
/a (b—a)? f(x) odgr < /O(f(a)+f(b))odq)\

b—a
1 ["(@—a)(b—2) fla) + f(b)
. ad < JgN 7 I N7
"b—a /a (b—a)? (@) adgr < 2
This proves the second inequality. [

Remarks 1. Hermite Hadmard type inequality for the functions in Q(I) are same for g-integral
and Riemann integrals. But in this case the result is more sharp in Q(I)space for g-Hadamard
inequality.

Now we give an g- analogue of 12

Theorem 7. Let f € P(I), a,b € I witha <b, 0 < q < 1andfis integrable in [a, b]

() <5 @ty < 2(1(@) + £0)) 4

Proof. As, f : I — R belongs to P(I) class, so for all z,y € Iand A € [0, 1], we have

F(Aw+ (1= Ny) < @)+ F) 25)
Let
r=at+ (1-t)b
y=(1—t)a+tb
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1
and A\ = 5 one can get

f(a;b) Sf(at+(1—t)b)+f<(1—t)a+tb> (26)

q- integrating over ¢ € [0, 1], we get

/olf(a;rb%dqt < /01f<at+ (1 —t)b)odthr /01f<(1 B t)a+tb)0dqt @7

From 19 and 20 the equation 27 becomes

() <5 @+ / @y

() <5 Fahudga 28)

Again, Let z = a and y = b then from 32 one can have

f(a)\ +(1- A)b) < f(a) + f(b)

Now, g-integrating over A € [0, 1], we get

/O g (a>\ +(1- )\)b)odq)\ < /0 1 Fla)od A+ /0 1 F(b)od,\ (29)

Let us compute the integral in 29

/01 F(aA+ (1= 2)p)odgA = (1 = g)(1 - 0) iq"f(aq" em—_

n=0
=(1-q)) qnf(aq +(1— q”)b)
n=0
(b—a) -
~(1- "f(ag" + (1= g")b)
( q)(b_a);q flag"+(1—q")
1 b
e / F(@)adyz (30)
Using 30 and 20 in 29 one can get
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1 b
= | e < (1) + 1)
9 b
g | @i <2(f0)+ 1) (D)
So combining 28 and 31 we can get the result.
b
1(*57) < 5=z | F@hadaa <2(s(0)+ 1) (2)

Remarks 2. As ¢ — 1, then 32 reduces to 12.

Theorem 8 (q-analogue of theorem 5 ). Let f € Q4(C) with a < b and f is integrable in [a, D],
C=[ab],0 < q<1 and s € |0, 1] then one has the inequalities

a+b gstl  pb
f( 2 ) = (b—@)/a f(2)adqw (33)

b J—
bia/a f(l")adqdl‘ < %(f(a) + f(b)>’ se0,1) (34)

Proof. Since [ € Q,(C), we have for all x,y in C with ¢ = %

15 <2 @) + 21w

2
1Y) <2 (1) + 1) (35)

Let

r=at+ (1—-1)b
y=(1—ta+tb

Then 35 gives

f(a;b> gQS[f(ta+(1—t)b>+f<(1—t)a+tb>} (36)

g-integrating 36 over t € [0, 1], we get

/1f(a;b>0dqt§23[/1f<ta+(1—t)b)0dqt+/1f<(1—t)a+tb>0dqt} (37)
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Now,
/01 f(at+ (1= 1)) odgt = (1= g)(1 - 0) iq"f(aq" F(1— ")
=(1-9q) i qnf<aq” +(1— q”)b)
=(1-9q) Eziz Zq"f(aq +(1—-¢" )b)
0D /abf (ot (38)
Also,

/Oodqt — - -0)Y ¢ 1

= 1-q)l+q+a+q¢ +-)

1
N <1_q)(l—q)

= 1 (39)

So, using 38 and 39 in 37 we get

f<a+b>§25[(bi

5 x)gdgx + ﬁ/a f(:c)adqx]

a) Ja
bi /bf(:t)dx

25+1
5=a /f )adyz (40)

=2°x%x2

So, this proofs first inequality 33
Now we prove the next inequality
As f € Qs(C), we have

f<ta+(1—t) > < t( )+
F(ta+ (=) <)+ (1= 1) f(b)

g-integrating over ¢ € [0, 1] we get
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/01f<ta+(1 ~ 1)b)odgt < /Olt_sf(a)odqt+/01(1_t)_5f(b)odqt an

Now,

LA rodgt = (1—q) > q"(¢")
=(1-9)> (™

=(1-q)> ¢
n=0

1
= (=g X 55
l—q
= se (0,1) (42)
Expression 33 is valid for our calculation in usual integration. For
Take s = §
1 —1/2+1 41
1 t
t2dt = ————ﬁ
/0 [—1 /24 1lo
1
=2(v1)
0
-2 (43)
Again
1
s l—gq
.At “#:TiEZH (44)

As g — 1 the right hand side of equation 44 is also 2. For, Using L’Hospital rule.

) 1—g¢q 0—1
lim T = -
=11 — g5t =11 — (—s+1)g=st1=
) —1
= lim
=11 —(—=s+1)g—*
) —1
= lim
g1 (s — 1)g~*
1
= (45)
1—s
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As s = £ then

. 1—¢q 1
im =
=11 —qg=stt  1-1/2
-9 (46)
Similarly one we can find
1 . 1 — q
/0 (=8 det = T 47)

From 41 and using above stuffs one can get

1

/1 f(ta + (1 - t)b)odqt < /1t—8f(a)0dqt +/ (1— 1) f(b)od,t

i [ e < 0 () 0 ()

- (%) (r@ + 1)
1 b 1—gq
e | e < (=25 (@) + ) 8)

This completes the proof. ]
Remarks 3. As ¢ — 1, then 48 reduces to 14

Remarks 4. Combining 33 and 34 one can get the following inequality.
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