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Abstract

Video captioning is a challenging task as it recuimecurately transforming visual understanding imdtural language de-
scriptions. This challenge is further compoundeénvtiealing with Nepali, due to the lack of existamademic work in this
domain. This study develops an encoder-decodedjggnafor Nepali video captioning to address thididlifity. Long Short-
Term Memory (LSTM) and Gated Recurrent Unit (GRU)s=tpe-to-sequence models are utilized to produeeast textual
descriptions based on features extracted from Vidanes using Convolutional Neural Networks (CNNs)d#idnally, a
Nepali video captioning dataset is created by adgphe Microsoft Research Video Description CorfM$VD) datasets
through Google Translate, followed by manual paktiey. The efficiency of the model for video capting in Nepali is
demonstrated using BLEU, METEOR, and ROUGE metri@stess its performance.
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1 Introduction

The increasing availability of multimedia data, tgadarly videos, has brought numerous advantag
but also posed challenges in organizing and actgfise vast amount of visual information. The abui
dance of online videos has made video captionsigraficant area of research. Effectively organigin
indexing, and retrieving videos is crucial for mgimg and understanding this massive volume of Vist
data. The growing popularity of video-sharing wédsihas intensified the need for accurate and e
cient methods of video comprehension.

Video captioning, the process of automatically gatieg a natural language description of a vidso,
inherently challenging due to the dynamic and cexplature of videos. Unlike static images, videc
contain a temporal component, varying over timeictvlitomplicates the extraction of the necessa
temporal and spatial information to produce medmuingnd accurate captions. Deep learning-bas
technigues have recently set the state-of-thesartdeo captioning. These methods typically involv
extracting visual features from videos using couatiohal neural networks (CNNs) and generating ca
tions based on these features using either transfomodels or recurrent neural networks (RNNs
CNNSs, with their ability to learn intricate spatftterns, are well-suited for extracting visuabdaom
videos. RNNs, capable of capturing temporal corioestbetween words, are ideal for generating ca
tions. Transformer models have shown promisinggoerance in video captioning due to their attentic
mechanism, which efficiently understands long-radgpeendencies.

Recurrent neural network architectures, such ag |Qhort-Term Memory (LSTM) and Gated Recut
rent Unit (GRU), are frequently employed for videsptioning, each with its advantages and disa
vantages. LSTM excels at capturing long-term depeaigs in data, making it a strong choice for tas
requiring long-term memory, including video captimgn However, this increased complexity come
with higher computational overhead. In contrastlU3dfs a simpler structure, which speeds up traini
and inference, thereby enhancing processing affigieHowever, its simplicity may compromise its
effectiveness in modeling long-term dependencies.
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2. LITERATURE REVIEW

L. Yan et.al.[1] introduced a technique for cregtitescriptive and contextually relevant video didsti
by combining global and local representations. Thpproach captures high-level knowledge by e
tracting features from the entire video sequenc@gliabal representation, while the second stream 1
cuses on local representations by identifying negiwithin video frames. These global and local fe
tures are then fed into a caption generator usigsformer-based architectures or recurrent neu
networks. Their experiments show that this methogberforms current approaches in terms of tf
relevance and quality of captions.

Zhiwen Yan et.al.[2] introduced an innovative videptioning framework called Object Relation an
Multimodal Feature Fusion (ORMF). ORMF employs a@r Convolution Network (GCN) to encode
object relationships, creating a graph of objeatdees based on their spatiotemporal correlatiods ¢
similarities within the video. Additionally, ORMFoostructs a multimodal feature fusion network t
integrate features from various modalities, enhamthe richness of the captions produced. The €ffe
tiveness of this approach is validated by experialeesults on two publicly available datasets, M
crosoft Research Video to Text (MSR-VTT).

Sandeep Samleti et.al.[4] developed a video caiptissystem that utilizes a CNN for extracting frame
level features and an LSTM for sequence synth&kiy represent the entire video using a mean-poo
vector of all extracted features. However, thishodtfalls short in capturing temporal correlation
between frames due to the mean pooling approadidilBy on this, Kevin Lin et.al.[3] introduced a
two-layer LSTM encoder-decoder model for video maphg, where each frame is used to construct
fixed-size feature vector comprising visual feasuateach time step.

The study "SBAT: Video Captioning with Sparse BoarydAware Transformer" by Tao Jin et.al.[7
introduces a novel approach for video captioningngishe Sparse Boundary-Aware Transforme
(SBAT). Unlike the vanilla transformer, which isitad for unimodal tasks like machine translatior
SBAT addresses the multimodal challenges of vidga 8y eliminating redundant information. It se
lects diverse features from various contexts amqdiegpa boundary-aware pooling technique to muli
head attention scores. To mitigate local infornratass from sparse operations, SBAT employs a loc
correlation strategy. Tested on the MSVD datas®ATS surpasses models like TVT, MARN,
GRUEVE, SCN, and POS-CG. This approach signifigaatihances the accuracy and relevance
video captions, effectively handling the complexfywideo data.

Encoder-decoder frameworks, which incorporate ctutiamal neural networks (CNNs) and variou:
adaptations of recurrent neural networks, are otlyr¢he predominant approaches for video captio
ing. A notable method employs CNNs to extract frdewel features, which are then aggregated intc
mean-pooled vector representing the entire videg Vector is subsequently input into a Long Shot
Term Memory (LSTM) network to generate sequencesvéver, the limitation of this approach lies ir
the inability of mean pooling to capture tempormairelations between frames. To address this, an «
hanced encoder-decoder system utilizing two lapéreSTMs has been proposed. This improve
framework encodes the visual features of a vidéo @nfixed-size feature vector by processing ea
frame as input at each time step, thereby betf@udag the temporal dynamics inherent in vide@adat
LSTM and GRU models are highly effective for videmptioning tasks due to their ability to handl
sequential data and long-term dependencies. Podk has been completed by concentrating on ir
portant languages like Chinese, English, Germath Hindi. This inspired me to use publicly availabl
MSVD dataset, which is translated into Nepali laanges followed by post editing of each referenc
caption, this research attempt to address the gmobF video captioning in NEPALI language.
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2.1 Long Short-Term Memory Architecture

An artificial recurrent neural network architectwa&led long short-term memory combines feedfo
ward and feedback neural networks. Long-term rekan resolved by LSTMs because of their uniqt
architecture, which allows them to manage theimahip between recent past knowledge and curre
tasks even as the gap widens. Information movessaaells in the LSTM structure, a type of memoi
system that can selectively distinguish betweesrimétion that should be remembered and informati
that should be spread. Information about sequethi processing, including speech, video, tegt, et
can be carried by the cell state

 rt b

Xt

Figure 2.1: Basic Architecture of LSTM [22]

The input gate (xt), output gate (ht), and forgatieyft) compose a cell state. An input gate igluse
an LSTM cell to measure the importance of new imi@tion at a certain timestamp. The crucial eleme
in charge of eliminating (forgetting) the data frahe prior timestamp is a forget gate. Additionally

the output gate's goal is to choose the most impbdata from the active LSTM cell and send itamit
the output.

ip = xUN + he W (1)
fe = U/ + he W) (2)
o = x:U° + he_W° 3)
¢! = tanh (x,U9 + h,_,W9). (4)
C, = tanh (x,U9 + h_ W9I). (5)
h; = tanh(C;) * o (6)

Equations 1 through 6 illustrated by Zaoad e2@22 [22], shows the LSTM architecture's mathemsz
ical formulas for corresponding gates. The reasBiM is used in this study is due to its ability tc
retain patterns for extended periods with selagtividditionally, the LSTM design makes it easy t
categorize, process, and forecast the right ré&sult massive time-series data.
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2.2 Gated Recurrent Unit

A basic recurrent neural network with a gating naeéém added is called a gated recurrent unit

(GRU). Just like in LSTM, gates are used to reguihe information flow in GRU. It can train more
quickly and has a simpler architecture than LSTMhviewer parameters. The fundamental architec
ture of a single GRU unit is illustrated by Zaoadle 2022 is shown in figure, which includes g u
date gate (zt), reset gate (rt), current memoryertr(ht), and final memory at the current timgste

(ht). The GRU mathematical formulas are presented:

zy = Wyxxy + W,hhy + b, )
1y =(Wpxxy + Wphhe_y + by 8)
hy = tanh(Wyyxe + Wyphe_q + by) 9

hy = zihe_q + (1 — z.)hy (10)

heq ht

>
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x
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Figure 2.2: Basic Architecture of GRU [22]

2.3 Encoder

It is the objective of the encoder to analyze andeustand the input sequence. The encoder exami
the input, whether it's a sentence in a naturajlage or a series of video frames, step by stegyzan
ing and extracting pertinent information at eaametistep. Each word in the phrase or each tokerein
input sequence is analyzed sequentially in texedassks. At each time step, the LSTM or GRU uni
of the encoder receive inputs and change theirnatehidden states. These concealed states ext
crucial data from the input sequence. The contegtor, often referred to as the thought vectathes
encoder’s final hidden state and contains a corsptesersion of the whole input sequence. It's in
portant to note that in many applications, justititernal states are kept, and the encoder’s ouspu
deleted.
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Depending on the recurrent neural network (RNNh$peised, the encoder cell architecture can chan
The internal state configuration is one of the mzharacteristics that set LSTM (Long Short-Terr
Memory) apart from GRU (Gated Recurrent Unit). Eeelhin an LSTM consists of two internal states
the hidden state, which contains information transid from one time step to the next, and the ¢
state, which oversees managing long-term data.h@rother hand, the architecture of GRU cells
simpler because they have just one hidden state.

Furthermore, an important change from conventiarethods is seen when utilizing an attention mec
anism. This technique considers the outputs frdl8@lencoder states, rather than just the last st
This change in focus improves the model’s abiitgxtract and apply pertinent information for tbk j
at hand by enabling it to dynamically attend tdedigént segments of the input sequence. The effgier
of sequence-to-sequence models is greatly infliehgehis architecture and design, especially iA ne
ural language processing and other fields wherenstahding and context are important.

L S

Figure 2.3: Basic Architecture of Encoder Decoder

2.4 Decoder

The output sequence is created by the decoderhvghicceeds the encoder. The context vector fr¢
the encoder is used to initialize its initial LST&M GRU cell. Making the output sequence step by st
is the decoder’s main responsibility. The decodsregates words one at a time for tasks involvirg te
production, such as language translation or taxinsarization. It produces insightful captions foclea
frame of the video when used for captioning. Thetext vector is used to set the initial hiddenest#t
the decoder’'s LSTM or GRU cell, which serves asdtating point for producing the output. The
decoder creates an output token (such as a womljeay time step based on the previous output a
the concealed state it is now in.

3METHODOLOGY

An encoder-decoder paradigm for video captioning strong, adaptable technology with significar
applications. It serves as an example of how Althaspotential to close gaps across various mel
types (visual and textual) and to produce morausiece and educational digital experiences. It prese
fascinating opportunities for enhancing how wernatewith and comprehend video information in oL
increasingly digital world as the field continuesdevelop. A fascinating and interdisciplinary dielf
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research that combines computer vision and nalamglage processing is video captioning utilizin
an encoder-decoder architecture. This strategyahsisle range of real-world uses and is receiving
lot of attention since it has the potential to maideos easier to access, find, and use. It bripgsew
possibilities by allowing machines to comprehend amaracterize the content of videos.

3.1 Dataset

This study utilized the MSVD dataset, developedh®yUniversity of Texas at Austin in collaboratior
with Microsoft Research's Natural Language Proogs&iroup. This extensive dataset includes nea
2,000 brief YouTube video clips, each ranging frbtnto 20 seconds in length and depicting a wic
variety of activities and subjects. Comprising D @listinct videos, the dataset is enriched withrov
80,789 text descriptions, averaging around 40 oaptper video, though the exact number of captio
varies. Each text description includes a videonb an English caption, which were carefully proeess
using Google Translate and manual post-editingHerstudy’s purposes. The MSVD dataset stan
out for its rich annotations and diverse conterakimg it a valuable resource for video captionegks.

3.2 Preprocessing

Initially, English captions were translated intogdé using Google Translate, with subsequent mant
editing to rectify errors, particularly in lengtloy ambiguous captions. Each translated Nepali @capti
was tokenized using a specialized Nepali tokenikerstandardize the captions, a "start of sentenc
token was added at the beginning and an "end désea’ token at the end. The dataset was th
systematically divided into training, validatiomdatesting sets to facilitate accurate model evalna
A word list derived from the training captions eleabeffective tokenization, converting textual dat
into numerical form necessary for machine learrafgprithms. Captions were padded to a unifor
maximum length of 10 words, thereby avoiding exisesgadding and potential complications in mode
performance. This comprehensive preprocessing apprensured that both textual and video data cc
formed to the required input specifications for stedy.

3.3 Feature Extraction

The MSVD (Microsoft Research Video Description) atat feature extraction for video captionini
entails gathering both visual and temporal datenftioe video frames to provide meaningful caption
Frames from videos are extracted using the VGG1léeido extract frames from a given video file
frames function requires parameters like the videth and the desired nhumber of extracted fram
The feature reads frames, distributing them unifgitmroughout the film to guarantee that represent
tive frames are recorded. a thorough pipeline fde@ preprocessing that pulls frames from a data:
of films, stores them as NumPy arrays, and stdregaptions that go with them.

Extracting frames from Video

Frames from videos are extracted during the pregssing stage, and any necessary adjustments
made. To extract frames from a given video file the extract frame’s function. It requires pararset
like the video path and the desired number of ete¢chframes. The feature reads frames, distributi
them uniformly throughout the film to guaranteetthepresentative frames are recorded. a thorou
pipeline for video preprocessing that pulls frarfftem a dataset of films, stores them as NumPy arre
and stores the captions that go with them.
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Fig 3.3: Extracted Frames from Video

The success of video caption creation is attribtietthe pre-processing step that guarantees tle® vil
data is in an appropriate format for subsequenthimaclearning and deep learning activities. If th
captioning model generates the same caption, tteembdel performance increases.

Features from Extracted frames

The pre-trained model performs feature extractioneach chosen frame. The use of a model lil
VGG16, which has been pre-trained on a sizablesdtaiacluding millions of images, produces a vectt
of features, frequently of dimensions 4096, thliects the key visual qualities of each frame ds it
processed by the model. Following the stackingheké feature vectors for each film, a structure
NumPy array with dimensions (28, 4096) is produced.

3.4 Model Training

For various goals, the study on video captionirts ¢ar several machine-learning architectures.réhe
are various uses for each machine learning andldeaepng model. Encoder and decoder models wi
LSTM and GRU, which aid in training a series offies, are needed for training. A train set, a valid
tion set, and a test set have been created froprépeocessed data. To the training model, theifeat
data is sent. Where the LSTM performs best for sege data as a reservoir, an encoder-decoder mc
with an LSTM and GRU is employed. The encoder'slfioutput is supplied as input to the decod:t
model, which creates captions. Under this modelfihining set is trained.

The suggested video captioning models are trainddiasessed using the updated dataset. A spiit r
of 85% is employed for training and validation, lwi450 and 100 video clips used for testing, respe
tively. A neural network model with the followincgapameters was employed: a latent dimension
512, an encoder with 28-time steps, and 2048 unigkens. The decoder was intended to produ
output sequences consisting of ten-time steps ab®808 token output vocabulary. The model we
trained over 40 epochs using a batch size of 32flirtraining procedure. The model’'s architectul
and training schedule were shaped by these pararstes, which in turn affected the model’s pel
formance within the framework of study.

3.5 Evaluation metrics

There are four distinct automated evaluation messtivat are employed: BLEU , METEOR, CIDEr
and ROUGE. Several research reports assert thatugewideos have a dynamic structure, differe
content pieces, events, and activities, the BLEtresenay vary from the human assessment of t
generated captions. However, after noting BLEUtEME success in MT output evaluation, we en
ployed it in addition to METEOR for caption evaligait.
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4 RESULT AND ANALYSIS:

While there has been a lot of research on Nepetiupg captioning, there hasn’t been nearly as mu
done around video captioning for the language. ddvhich consist of a continuous series of image
can be related to images. The suggested modefsrpamnces are compared as well with the results
research done on Nepali image captioning. The pagnce of various models compared to the su
gested ones is shown in the figure below usingouarevaluation metrics

Model Accuracy vs No. of Epochs

- ain ~
¥ —
0.75 validation ———

[ H 10 15 20 25 30 35 40
Epochs

Loss vs No. of Epochs

— train
validation

o s 10 15 20 25 30 35 40
Epochs

Fig 4.1: Accuracy loss plot encoder decoder withUGR
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Model Accuracy vs No. of Epochs

10 15 20 25 30

Loss vs No. of Epochs

Fig 4.2: Accuracy loss plot of Encoder decoder LSTM

Table 4.3: Performance Evaluation on Greedy search

RNN BLEU | BLEU |BLEU | BLEU | METEOR | ROUGE_L
1 2 3 4
LSTM 0.58 0.421 0.282 0.169 0.361 0.248
GRU 0.66 0.479 0.329 0.189 0.361 0.248
5 Conclusion

This study significantly advances video captiortiygdeveloping a syntactically and semantically col
sistent dataset from the MSVD. Among the evaluatedels, the GRU outperformed others, achievir
high scores in BLEU, METEOR, and ROUGE metrics,levttie LSTM also demonstrated competitiv:
performance. These findings underscore the effectiss of GRU-based models in capturing tempo
dynamics and contextual dependencies in video o#txjing a robust solution for video captioning
tasks. Furthermore, this research can be extended MSR-VTT dataset, a large-scale benchmark 1
video captioning that contains 10,000 video clipgwiverse content and multiple reference captior
Extending the study to the MSR-VTT dataset willidate and enhance the model's generalizabilit
paving the way for broader applications in videptmming.
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