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Abstract 

The aim of the maximum network flow problem is to push as much flow as possible between two special vertices, the source 
and the sink satisfying the capacity constraints. For the solution of the maximum flow problem, there exists a number of 
algorithms. The existing algorithms can be divided into two families. First, augmenting path algorithms that satisfy the 
conservation constraints at intermediate vertices and the second preflow push relabel algorithms that violates the conservation 
constraints at the intermediate vertices resulting incoming flow more than outgoing flow.In this paper, we study different 
algorithms that determine the maximum flow in the static and dynamic networks. 
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1. Introduction 

To solve a maximum flow problem, we have to determine the maximum amount of flow that can be 
sent from the source to the sink in a flow network.The fundamental algorithms that solvethe maximum 
flow problems are used to solve various real life problems in the network flow theory as presented by 
Ahuja et al.[1] and Dhamala et al. [5]. These algorithms are classified into two groups. Augmenting 
path algorithms based on Ford and Fulkerson [8] and preflow push relabel algorithms based on 
Goldberg and Tarjan [10]. 

In a flow network, augmenting path algorithm is a two-step procedure: finding� � � paths and then 
augment flow along such paths. If augmenting paths are chosen arbitrarily, algorithm runs in �����	 
time complexity which is not a polynomial. If flow is augmentedalong the shortest path (in terms of 
number of arcs) and maximum capacity path,the algorithm runs in polynomial time����
	 and 
���
��
	��		 [7]. In Dinic layer graph [6], the algorithm has time complexity����
	.Moreover, if the 
total capacity of the arcs leaving the source is greater than the minimum cut capacity of the network 
having intermediate nodes with capacities at least equal to the incoming arcs, then the maximum flow 
with intermediate storage is solved in polynomial time complexity by Pyakurel and Dempe [14], 
Pyakurel and Adhikari [13] and Pyakurel et al. [15]. 

Preflow push relabel algorithm of Goldberg and Tarjan [10] uses the concept of preflows developed by 
Karzanoz [11]. The algorithm violates the conservation constraints at the intermediate vertices as it 
saturates all the arcs outgoing from the source. The algorithm performs two basic operations: push and 
relabel until there exist active vertices in the residual network. Number of non-saturating push 
operationsdetermine the complexity. Push relabel algorithm has the time complexity����
	. Further,it 
is reduced to ����	 by examining the active vertices in the first in first out order. Authors in [3] and [4] 
have obtained ���
��	 time bound with highest label active vertex selection rule. 

The paper is organized as follows: Basic network ideas, flow models and some definitions are given in 
Section 2. Different static maximum flow algorithms andtheir efficiency criteria is discussed in Section 
3. Section 4 discusses about time expanded graph and dynamic flow. The paper is concluded in Section 
5. 
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2. Preliminaries 

The procedure of transshipment of flow from the fixed location (source) �to the fixed destination (sink) 
� through the intermediate locations can be represented by a network.  Let � be the set of � vertices 
(locations), and � be the set of � arcs then � � ��� �	 � � is the transshipment route that joins any two 
locations � � � and � � ��The set of incoming and the outgoing arcs  for any vertex � are represented as 
���	 � �� � �� � � ��� �	� � � �� and ���	 � �� � �� � � ��� �	� � � ��. In general, no arcs enter the 
source and exit from the sink so ���	 � � and ���	 � �. The function �� �  !" determines the 
maximum amount of flow that can be transshipped from the vertex � to vertex � using the arc ��� �	 and 
denoted by ���� �	. With these parameters the network is # � ��� �� �� �� �	.

An s-t flow is a non - negative real valued function $� �  %"such that it satisfies: 
a. Capacity constraints: $��� �	 & ���� �	 for all ��� �	 � � 
b. Antisymmetry: $��� �	 � �$��� �	 for all ��� �	 � � 
c. Conservation constraints: Total amount of flow incoming to a vertex � � � is equal to the total 

amount of flow outgoing from � � � 

'$��� �	
(�)	

� '$��� �	
*�)	

�

Value of the flow$ is  

|$| � ' $��� �	
*�,	

� '$��� -	�
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Preflows are like flows where conservation constraints are not satisfied. As a result some intermediate 
vertices will have incoming flows more than the outgoing flows. The difference is called an excess and 
the vertex is an active vertex.  The excess is defined as 

���	 � '$��� �	
(�)	

�'$��� �	
*�)	

. /� 

The residual network #0 of # with respect to the flow $ contains the set of  arcs� � ��� �	 � � known 
as forward arcs for which $��� �	 1 ���� �	 and � � ��� �	 � � known as backward arcs for which 
$��� �	 . /. The residual capacity of the arc is defined as �0��� �	 � ���� �	 � $��� �	, and �0��� �	 �
$��� �	. A flow $2 in #0 defines a flow $3 in # such that $4��� �	 � $��� �	 5 $2��� �	 and $4��� �	 �
$��� �	 � $2��� �	. An arc ��� �	 � � is said to be saturated if �0��� �	 is zero otherwise unsaturated. 

An augmenting path is a path from the source to the sink. Let 6 be a simple � � � path in #0. The 
bottleneck capacity of a path is the minimum residual capacity of any arc on the path 6. A cut is a 
partition of vertex set � into two sets 7 and 8 such that 7 9 8 � �, and 7 : 8 � �. An arc ��� �	 � � is 
said to be forward arc if � � 7 and � � 8 and backward arc if � � 7 and � � 8. The cut is an � � �		cut if 
� � 7, � � 8 and its capacity is defined as 

�;7� 8< � ' ���� �	
�)�=	�;>�?<
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A distance function -�#  !" : �/� with respect to the residual capacity �0��� �	 is said to be valid 
with respect to the flow $ if  

a. -��	 � / 
b. -��	 & -��	 5 @	for each ��� �	 � #0. Here, -��	 is the distance label of vertex �. If the 

distance labels are valid, -��	 is a lower bound on the length of the shortest path from the 
vertex � to � in #0 and if -��	 A � then there does not exist an � � � path in #0.

3. Maximum flow algorithms:  In this section, we study two classes of the maximum flow 
algorithms: augmenting path and preflow push relabel. We begin with the first maximum flow 
algorithm that came to the existence due to Ford and Fulkerson [8] 

 

Augmenting path algorithm is based on the concept of augmenting paths, residual network and cut. In 
worst case, it requires���	 time to determine the paths. If such � � � paths are not found in the residual 
network, algorithm terminates and the � � �flow is a maximum flow which is equal to the minimum cut 
capacity.  If all arc capacities are integer values with an upper bound �, the capacity of an � � � cut is 
at most �� � @	�. So complexity of the algorithm is �����	 which is not a polynomial. Some 
polynomial time augmenting path algorithms are discussed below. 

Capacity scaling [7]: We introduce a parameter B � CDEFGHI A J

 and then augment flow along the path 

having residual capacity at least B. At the start of the B scaling phase, value of the maximum flow in the 
residual network #0 is C�B. Initially, B � CDEFGHI and at each B scaling phase divided by C until it is 
less than @� Hence, there are at most ����

 �	 scaling phase and ���	 iterations per B scaling phase 
implying at most ��� ��

 �	iterations. 

Maximum capacity path[7]:Flow is augmented along the path with the maximum capacity. Let $be 
any flow and $2 be a maximum flow in a network #. Then, $2 � $is the maximum flow in the residual 
network #0 and residual capacity of the path is at least KL �$2 � $	. We consider a sequence of C� 
consecutive maximum capacity augmentations each starting with flow $. If each C� augmentations 
carry at least K
L �$2 � $	 units of flow, then we require at most C� augmentations to obtain the 

maximum flow. If at least one of the  C� augmentations carry less than  K
L �$2 � $	 units flow then 
capacity of the maximum capacity augmenting path is reduced by a factor of C. Since the maximum 
capacity is � and the minimum capacity is @after at most ��� ��

 �	 iterations maximum flow is 
obtained. 

����������	
���	�
�������		

�� $ M /�

� �����������������������������6���#0
�� �������N �������
	���
	��������6

�� �� ����$� $��� �	 � O
$��� �	 5 N	�$	��� �	 � 6
$��� �	 � N	�$	��� �	 � 6
$��� �	 P�Q�RS���

!�����N ����������� ��
��������"����#0
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Shortest augmenting path [7]:Flow is augmented along the shortest path in terms of number of arcs. If 
an arc ��� �	 � � is saturated then -��	 � -��	 5 @. In order to saturate this arc again, we need to have 
�0��� �	 . / implying  ��� �	 lies on the shortest path. Let -3 be the distance labeling in the later case 
then-4��	 � -4��	 5 @. But distance labels are non-decreasing. Therefore,  
-4��	 � -4��	 5 @ A -��	 5 @ � -��	 5 C which shows that for the saturation of an arc ��� �	 � � the 
distance label -��	 should be increased at least C units. Any vertex � � � is at a distance of at most � �
@ units from the sink. Hence, an arc ��� �	 � �is saturated at most���	 times. The network has �arcs, 
so there are at most ����	 iterations.  

Layered network [6]:The vertices are partitioned into layers �T� �K� U � �Vsuch that vertices with the 
same distance labels lie on the same layer. In each layer, shortest paths have the same length. Since 
saturated arcs are deleted the reverse arcs are not included. An augmenting path requires ���	 time and 
there are at most  � arcs to saturate. Hence, there are ����	 iterations.  

Preflow push relabel algorithm [10]: Augmenting path algorithms might use the same arc repeatedly 
but preflow push relabel algorithm avoids this situation as all  arcs outgoing from the source are 
saturated.Similar to augmenting path algorithms, preflow push algorithm also works on residual 
network and  violates conservation constraints at the intermediate vertices so some vertices have 
incoming flow more than the outgoing flow. The algorithm repeatedly performs push and relabel 
operations. Firstly, the excess is pushed towards one of its adjacent vertex closer to the sink, and if � is 
not reachable the excess is pushed back towards the vertices that are closer to the source. Each push 
operation saturates at least one arc. If push operation is not applicable then the vertex is relabeled and 
its distance label increases progressively. Algorithms terminate when there are no active vertices 
changing preflow in to a flow and then a maximum flow. 

 

The push operation pushes N � min��0��	� �0��� �		 units flow from � to � if -��	 � -��	 5 1. As a 
result$��� �	 and �0��	 are increased by N units whereas $��� �	 and �0��	 are decreased by N units. The 


���	�
���	���	�W� X	
���
�����
����� ������������0��� �	 . /��� �-��	 � -��	 5 @�
�������	#����N � YZ[��0��	� �0��� �	���������
	����	��� �	���

��
���
	������	W
���
�����
����W������������� �\� � �� �0��� �	 . / ] -��	 & -��	�
�������	��
�$�
-��	 � YZ[�-��	 5 @� �0��� �	 . /�

Preflow push relabel algorithm  
1. Determine exact distance label -��	\ � � �
2. Set $��� �	 � ���� �	 \ ��� �	 � ���	 
3. Set -��	 � � 
4. While there exists active vertices 

a. Select an active vertex �
b. If there exists an admissible arc ��� �	push,  otherwise relabel �
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push operation is saturated if N � �0��� �	. If vertex � is still active and push operation is not applicable, 
then vertex	� is relabeled by setting -��	 � min�-��	 5 @� ��� �	 � �0�. For each vertex ��	the distance 
label -��	 1 2� � 1. The source and sink are never relabeled. Hence, the total number of relabel 
operations is �C� � @	�� � C	 1 C�
.
The complexity of the algorithm is determined by the number of non-saturating pushes. Consider a 
potential function ^ � _-��	� �Z`abcZde. If push operation along the arc ��� �	 is non-saturating, then � is 
not an active. Total increase in ^ due to the relabeling operations is �C� � @	�� � C	�The non-
saturating push operation decreases ^ at least @ unit and saturating push operation  increases^ at most 
C� � @ units. There are at most C� � @ saturating pushes per arc and � arcs to saturate. Hence, there 
are �C� � @	� saturating pushes. During initialization and at the end of the algorithm^is /. Hence, 
total decrease and increase in ^ is at most �C� � @	�C� � @	� 5 �C� � @	�� � C	 1 f��
. Hence, 
the algorithm has ����
	 time complexity. 

The bottleneck operation in the generic preflow push operation is the number of non-saturating pushes 
that is reduced by specifying the rule for the selection of active vertices. A nice feature of this algorithm 
is its further improvement. Proper selection of active vertices can lead to better time complexity. One 
approach is the selection of active vertices in first in first out order where vertices are examined in 
phase. To determine the number of phases we consider a potential function Φ � max 	�-��	� � is active}.
During a phase, if the algorithm performs at least one relabel operation, then Φ increases at most2�2. If 
the algorithm does not perform relabel operations, then Φ decreases by at least 1 unit.  Each phase does 
not contain more than � vertices. Hence, the algorithm has ���3	 time complexity.Cheriyan and 
Maheshwari [3] obtained  ���2��	 time bound with the highest label active vertex selection rule. 
They used the same arc repeatedly until it gets saturated. The proof is based on the concept of flow 
atom and flow path. Cheriyan and Mehlhorn[4] also obtained  the time ���2��	using the potential 
function  

Φ � ' -′��	
g)�)hijklhmn
� -′��	 � |��� -��	 & -��	�|� g � �� 

Excess scaling algorithm of Ahuja and Orlin [2] pushes flow from an active vertex with sufficiently 
large excess to the vertices with sufficiently small excess with smallest distance label. A vertex � with   
���	 A ∆

2
A opqr

2
is considered with sufficiently large excess where ∆ is the least integer which is a 

power of 2. It pushes min����	� �0��� �	�∆� ���	�units flow which is at least ∆
2

. Initially,we have ∆ �
2slog2Ht and during ∆ scaling phase it is ∆

2
& �ujv & ∆. When �ujv 	& ∆

2
, a new phase begins. After 

wlog2�x 5 1 phase,�ujvdecreases to 0 and algorithm terminates withthe time complexity ���� 5
�2 log2�	.

4. Dynamic Flows: 

Flows that are associated with travel time along the arcs are dynamic. Let yo be the travel time along 
the arc. Then, the function yo� �  !" determines the time required to travel flow along the arc � �
��� �	� Travel time along the arc means if a unit flow is at vertex � at time z, then it reaches to the vertex 
� at time z 5 yo. With the predetermined time 8�within which total flow is to be sent,the dynamic 
network is # � ��� �� �� �� �� y� 8	 where total time 8 is discretized as �0�1�2� U � 8�.
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Time expanded network of Ford and Fulkerson [9] plays a vital role in the solution of the maximum 
dynamic flow problem. It contains one copy for each vertex in the dynamic network for each time step 
and defined as	#? � ��?� �{ : �|	. Maximum dynamic flow in # is equivalent to the maximum static 
flow in time expanded network#?. The set of vertices �?and the set arcs�?are defined as �? �
���z	� � � �� z � 0�1�2� U � 8� and �? � �| : �{ where�| is the set of holdover arcs determined 
by�| � �}��z	� ��z 5 1	~�	� � �� z � 0�1� U � 8 � @� and �{ is the set of movement arcs determined 
by�{ � �}��z	� ��z 5 yo	~ � � � �� z � 0�1� U 8 � yo�.
If a travel time is considered as  a cost, then solution of maximum discrete dynamic flow problem is 
same as the temporal solution of minimum cost static flow problem. To solve the minimum cost flow 
problemwe have to determine the possible paths in the network with the minimum cost through which 
maximum amount of flow can be sent.  

Let 6 � ��1� �2� U � ��� be the path decomposition of feasible static flow $ such that $���	 units flow 
can be send along the path ��. The travel time along the path �� is y���	 � _yo� � � ��. We can send 
$���	 units flow along the path �� at time units 0�1�2� U � 8 � y���	 and flow send after 8 � y���	 time 
does not reach the destination within time 8. Such $���	 flows are temporally repeated flow for the 
time 8 � y���	 5 @ with flow value. 

 

'�8 5 y���	 � @	$���	
����

 

The maximum temporally repeated flow can be obtained by finding the minimum cost circulation in the 
static network. For this, we add an arc � � ��� �	 in the network with capacity ���	 � ���� �	 � ∞ and 
travel timey��	 � y��� �	 � ��8 5 1	 where cost on the arcs is replaced by time. The flow along the 
arc � � ��� �	 is ignored and resulting � � � flow is decomposed in to paths.  

����$� 8	 � ' }8 5 1� y���	~}$���	~ � �8 5 1	da��$	
����

�'y��	$��	
o�(

 

Minimum cost circulation algorithm [12] 

�� In a given  dynamic network# � ��� �� �� �� �� y� 8	with additional arc� � ��� �	� ����
$��� �	 � /��	���

���� �	 � ���

2. Apply Algorithm in [12] to find MCF $ by considering transit time on arcs as cost. 
3. Decompose $ in to path flows using the Algorithm of Ford and Fulkerson [9] 
4. Obtain a maximum dynamic flow. 
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5. Conclusion: 

Maximum flow algorithms are applicable to solve different real life problems. In this paper, we studied 
two different classes of the maximum flow algorithms and their efficiency criteria. We discussed about 
themaximum static flow algorithms and their developments in Section 3. Similarly, in Section 4,we 
discussed about the maximum dynamic flow, formation and use of time expanded graph. 
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